Articles | Volume 17, issue 10
https://doi.org/10.5194/acp-17-6353-2017
https://doi.org/10.5194/acp-17-6353-2017
Research article
 | 
29 May 2017
Research article |  | 29 May 2017

A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget

Hannah M. Horowitz, Daniel J. Jacob, Yanxu Zhang, Theodore S. Dibble, Franz Slemr, Helen M. Amos, Johan A. Schmidt, Elizabeth S. Corbitt, Eloïse A. Marais, and Elsie M. Sunderland

Related authors

Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Intended and Unintended Consequences of Atmospheric Methane Oxidation Enhancement
Hannah Marie Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3139,https://doi.org/10.5194/egusphere-2024-3139, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impacts of Sea Ice Leads on Sea Salt Aerosols and Atmospheric Chemistry in the Arctic
Erin Emme and Hannah Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3147,https://doi.org/10.5194/egusphere-2024-3147, 2024
Short summary
Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET
Hannah M. Horowitz, Rebecca M. Garland, Marcus Thatcher, Willem A. Landman, Zane Dedekind, Jacobus van der Merwe, and Francois A. Engelbrecht
Atmos. Chem. Phys., 17, 13999–14023, https://doi.org/10.5194/acp-17-13999-2017,https://doi.org/10.5194/acp-17-13999-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024,https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
The potential of drone observations to improve air quality predictions by 4D-Var
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024,https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024,https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024,https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Opinion: Challenges and needs of tropospheric chemical mechanism development
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024,https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary

Cited articles

Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004jd005659, 2005.
Allard, B. and Arsenie, I.: Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle, Water Air Soil Pollut., 56, 457–464, https://doi.org/10.1007/bf00342291, 1991.
Amyot, M., Mierle, G., Lean, D., and McQueen, D.: Sunlight-Induced Formation of Dissolved Gaseous Mercury in Lake Waters, Environ. Sci. Technol., 28, 2366–2371, https://doi.org/10.1021/es00062a022, 1994.
Amyot, M., Lean, D. R. S., Poissant, L., and Doyon, M. R.: Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario, Can. J. Fish. Aquat. Sci., 57, 155–163, https://doi.org/10.1139/Cjfas-57-S1-155, 2000.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Mercury is a toxic, global pollutant released to the air from human activities like coal burning. Chemical reactions in air determine how far mercury is transported before it is deposited to the environment, where it may be converted to a form that accumulates in fish. We use a 3-D atmospheric model to evaluate a new set of chemical reactions and its effects on mercury deposition. We find it is consistent with observations and leads to increased deposition to oceans, especially in the tropics.
Altmetrics
Final-revised paper
Preprint