Articles | Volume 17, issue 23
Atmos. Chem. Phys., 17, 14709–14726, 2017
https://doi.org/10.5194/acp-17-14709-2017
Atmos. Chem. Phys., 17, 14709–14726, 2017
https://doi.org/10.5194/acp-17-14709-2017
Research article
11 Dec 2017
Research article | 11 Dec 2017

The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

Maximilian Maahn et al.

Related authors

Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022,https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Using artificial neural networks to predict riming from Doppler cloud radar observations
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022,https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019,https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location
Jessie M. Creamean, Rachel M. Kirpes, Kerri A. Pratt, Nicholas J. Spada, Maximilian Maahn, Gijs de Boer, Russell C. Schnell, and Swarup China
Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018,https://doi.org/10.5194/acp-18-18023-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022,https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Experimental study on the evolution of droplet size distribution during the fog life cycle
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022,https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022,https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022,https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region
Saleem Ali, Sanjay Kumar Mehta, Aravindhavel Ananthavel, and Tondapu Venkata Ramesh Reddy
Atmos. Chem. Phys., 22, 8321–8342, https://doi.org/10.5194/acp-22-8321-2022,https://doi.org/10.5194/acp-22-8321-2022, 2022
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
ARM: Atmospheric Radiation Measurement (ARM) Climate Research Facility standard Meteorological Instrumentation at Surface (NSAMET and OLIMET). Jun. 2015–Sep. 2015, 71°19′22.8′′ N, 156°36′32.4′′ W: North Slope of Alaska Central Facility (C1) and 70°29′42′′ N, 149°53′9.6′′ W: Oliktok Mobile Facility (M1). Compiled by Donna Holdridge and Jenni Kyrouac. ARM Data Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. Data set accessed: 23 March 2016, https://doi.org/10.5439/1025220, 1993 (updated daily).
ARM: Atmospheric Radiation Measurement Climate Research Facility Campaign datasets for ARM Airborne Carbon Measurements (ARM-ACME-V). Jun. 2015–Sep. 2015, ARM Aerial Facility. Compiled by Sebastien Biraud, Fan Mei, Connor Flynn, John Hubbe, Chuck Long, Alyssa Matthews, Mikhail Pekour, Arthur Sedlacek, Stephen Springston, Jason Tomlinson, and Duli Chand. ARM Data Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. Data set accessed: 23 March 2016, https://doi.org/10.5439/1346549, 2016.
Biraud, S. C.: ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report, Tech. Rep., DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), available at: https://www.arm.gov/publications/programdocs/doe-sc-arm-16-031.pdf, 2016.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004.
Short summary
Liquid-containing clouds are a key component of the Arctic climate system and their radiative properties depend strongly on cloud drop sizes. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska using aircraft in situ observations. We show that near local anthropogenic sources, the concentrations of black carbon and condensation nuclei are enhanced and cloud drop sizes are reduced.
Altmetrics
Final-revised paper
Preprint