Articles | Volume 17, issue 23
Atmos. Chem. Phys., 17, 14709–14726, 2017
https://doi.org/10.5194/acp-17-14709-2017
Atmos. Chem. Phys., 17, 14709–14726, 2017
https://doi.org/10.5194/acp-17-14709-2017

Research article 11 Dec 2017

Research article | 11 Dec 2017

The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

Maximilian Maahn et al.

Related authors

PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019,https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location
Jessie M. Creamean, Rachel M. Kirpes, Kerri A. Pratt, Nicholas J. Spada, Maximilian Maahn, Gijs de Boer, Russell C. Schnell, and Swarup China
Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018,https://doi.org/10.5194/acp-18-18023-2018, 2018
Short summary
The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
Amy Solomon, Gijs de Boer, Jessie M. Creamean, Allison McComiskey, Matthew D. Shupe, Maximilian Maahn, and Christopher Cox
Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018,https://doi.org/10.5194/acp-18-17047-2018, 2018
Short summary
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963–4980, https://doi.org/10.5194/amt-11-4963-2018,https://doi.org/10.5194/amt-11-4963-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Joint cloud water path and rainwater path retrievals from airborne ORACLES observations
Andrew M. Dzambo, Tristan L'Ecuyer, Kenneth Sinclair, Bastiaan van Diedenhoven, Siddhant Gupta, Greg McFarquhar, Joseph R. O'Brien, Brian Cairns, Andrzej P. Wasilewski, and Mikhail Alexandrov
Atmos. Chem. Phys., 21, 5513–5532, https://doi.org/10.5194/acp-21-5513-2021,https://doi.org/10.5194/acp-21-5513-2021, 2021
Short summary
Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021,https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021,https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Observed trends in clouds and precipitation (1983–2009): implications for their cause(s)
Xiang Zhong, Shaw Chen Liu, Run Liu, Xinlu Wang, Jiajia Mo, and Yanzi Li
Atmos. Chem. Phys., 21, 4899–4913, https://doi.org/10.5194/acp-21-4899-2021,https://doi.org/10.5194/acp-21-4899-2021, 2021
Short summary
Statistical characteristics of raindrop size distribution over the Western Ghats of India: wet versus dry spells of the Indian summer monsoon
Uriya Veerendra Murali Krishna, Subrata Kumar Das, Ezhilarasi Govindaraj Sulochana, Utsav Bhowmik, Sachin Madhukar Deshpande, and Govindan Pandithurai
Atmos. Chem. Phys., 21, 4741–4757, https://doi.org/10.5194/acp-21-4741-2021,https://doi.org/10.5194/acp-21-4741-2021, 2021
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
ARM: Atmospheric Radiation Measurement (ARM) Climate Research Facility standard Meteorological Instrumentation at Surface (NSAMET and OLIMET). Jun. 2015–Sep. 2015, 71°19′22.8′′ N, 156°36′32.4′′ W: North Slope of Alaska Central Facility (C1) and 70°29′42′′ N, 149°53′9.6′′ W: Oliktok Mobile Facility (M1). Compiled by Donna Holdridge and Jenni Kyrouac. ARM Data Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. Data set accessed: 23 March 2016, https://doi.org/10.5439/1025220, 1993 (updated daily).
ARM: Atmospheric Radiation Measurement Climate Research Facility Campaign datasets for ARM Airborne Carbon Measurements (ARM-ACME-V). Jun. 2015–Sep. 2015, ARM Aerial Facility. Compiled by Sebastien Biraud, Fan Mei, Connor Flynn, John Hubbe, Chuck Long, Alyssa Matthews, Mikhail Pekour, Arthur Sedlacek, Stephen Springston, Jason Tomlinson, and Duli Chand. ARM Data Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. Data set accessed: 23 March 2016, https://doi.org/10.5439/1346549, 2016.
Biraud, S. C.: ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report, Tech. Rep., DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), available at: https://www.arm.gov/publications/programdocs/doe-sc-arm-16-031.pdf, 2016.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004.
Short summary
Liquid-containing clouds are a key component of the Arctic climate system and their radiative properties depend strongly on cloud drop sizes. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska using aircraft in situ observations. We show that near local anthropogenic sources, the concentrations of black carbon and condensation nuclei are enhanced and cloud drop sizes are reduced.
Altmetrics
Final-revised paper
Preprint