Articles | Volume 16, issue 20
https://doi.org/10.5194/acp-16-13049-2016
https://doi.org/10.5194/acp-16-13049-2016
Research article
 | 
21 Oct 2016
Research article |  | 21 Oct 2016

Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime

Daniel Leukauf, Alexander Gohm, and Mathias W. Rotach

Related authors

The impact of a forest parametrization on coupled WRF-CFD simulations during the passage of a cold front over the WINSENT test-site
Daniel Leukauf, Asmae El-Bahlouli, Kjell zum Berge, Martin Schön, Hermann Knaus, and Jens Bange
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-68,https://doi.org/10.5194/wes-2019-68, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Valley floor inclination affecting valley winds and transport of passive tracers in idealised simulations
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1900,https://doi.org/10.5194/egusphere-2024-1900, 2024
Short summary
The marinada fall wind in the eastern Ebro sub-basin: physical mechanisms and role of the sea, orography and irrigation
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024,https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
The influences of El Niño–Southern Oscillation on tropospheric ozone in CMIP6 models
Thanh Le, Seon-Ho Kim, Jae-Yeong Heo, and Deg-Hyo Bae
Atmos. Chem. Phys., 24, 6555–6566, https://doi.org/10.5194/acp-24-6555-2024,https://doi.org/10.5194/acp-24-6555-2024, 2024
Short summary
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
James M. Salter, Helen N. Webster, and Cameron Saint
Atmos. Chem. Phys., 24, 6251–6274, https://doi.org/10.5194/acp-24-6251-2024,https://doi.org/10.5194/acp-24-6251-2024, 2024
Short summary
To what extent is the description of streets important in estimating local air-quality? A case study over Paris
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1043,https://doi.org/10.5194/egusphere-2024-1043, 2024
Short summary

Cited articles

Catalano, F. and Cenedese, A.: High-Resolution Numerical Modeling of Thermally Driven Slope Winds in a Valley with Strong Capping, J. Appl. Meteorol. Clim., 49, 1859–1880, https://doi.org/10.1175/2010JAMC2385.1, 2010.
Catalano, F. and Moeng, C.-H.: Large-Eddy Simulation of the Daytime Boundary Layer in an Idealized Valley Using the Weather Research and Forecasting Numerical Model, Bound-Lay. Meteorol., 137, 49–75, https://doi.org/10.1007/s10546-010-9518-8, 2010.
Chazette, P., Couvert, P., Randriamiarisoa, H., Sanak, J., Bonsang, B., Moral, P., Berthier, S., Salanave, S., and Toussaint, F.: Three-dimensional survey of pollution during winter in French Alps valleys, Atmos. Environ., 39, 1035–1047, https://doi.org/10.1016/j.atmosenv.2004.10.014, 2005.
Chemel, C., Arduini, G., Staquet, C., Largeron, Y., Legain, D., Tzanos, D., and Paci, A.: Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley, Atmos. Environ., 128, 208–215, https://doi.org/10.1016/j.atmosenv.2015.12.058, 2016.
Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W., and Xue, M.: High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments, J. Appl. Meteorol. Clim., 45, 63–86, https://doi.org/10.1175/JAM2322.1, 2006.
Download
Short summary
Since populated valleys suffer often from poor air quality, it is of interest to better understand the various mechanisms relevant to remove pollutants from the valley atmosphere. One mechanism is the transport by along-slope flows, which are generated during fair-weather days. In this study we quantify the amount of tracer that is removed from a valley atmosphere and the amount that is re-circulated within the valleys. For this study we are using the numerical weather model WRF.
Altmetrics
Final-revised paper
Preprint