Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-6843-2025
https://doi.org/10.5194/acp-25-6843-2025
Research article
 | 
04 Jul 2025
Research article |  | 04 Jul 2025

Kinematic properties of regions that can involve persistent contrails over the North Atlantic and Europe during April and May 2024

Sina Maria Hofer and Klaus Martin Gierens

Related authors

Synoptic and microphysical lifetime constraints for contrails
Sina Maria Hofer and Klaus Martin Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2025-326,https://doi.org/10.5194/egusphere-2025-326, 2025
Short summary
How well can persistent contrails be predicted? An update
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024,https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022,https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Synoptic and microphysical lifetime constraints for contrails
Sina Maria Hofer and Klaus Martin Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2025-326,https://doi.org/10.5194/egusphere-2025-326, 2025
Short summary
Country- and species-dependent parameters for the heating degree day method to distribute NOx and PM emissions from residential heating in the EU 27: application to air quality modelling and multi-year emission projections
Antoine Guion, Florian Couvidat, Marc Guevara, and Augustin Colette
Atmos. Chem. Phys., 25, 2807–2827, https://doi.org/10.5194/acp-25-2807-2025,https://doi.org/10.5194/acp-25-2807-2025, 2025
Short summary
Contribution of gravity waves to shear in the extratropical lowermost stratosphere: insights from idealized baroclinic life cycle experiments
Madhuri Umbarkar and Daniel Kunkel
EGUsphere, https://doi.org/10.5194/egusphere-2025-351,https://doi.org/10.5194/egusphere-2025-351, 2025
Short summary
Physical processes influencing the Asian climate due to black carbon emission over East and South Asia
Feifei Luo, Bjørn Samset, Camilla Stjern, Manoj Joshi, Laura Wilcox, Robert Allen, Wei Hua, and Shuanglin Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3867,https://doi.org/10.5194/egusphere-2024-3867, 2025
Short summary
Significant Response of Methane in the Upper Troposphere to Subseasonal Variability of the Asian Monsoon Anticyclone
Sihong Zhu, Mengchu Tao, Zhaonan Cai, Yi Liu, Liang Feng, Pubu Sangmu, Zhongshui Yu, and Junji Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-4188,https://doi.org/10.5194/egusphere-2024-4188, 2025
Short summary

Cited articles

Bakan, S., Betancor, M., Gayler, V., and Graßl, H.: Contrail frequency over Europe from NOAA-satellite images, Ann. Geophys., 12, 962–968, https://doi.org/10.1007/s00585-994-0962-y, 1994. a, b
Copernicus Climate Change Service (C3S): Datasets, Climate Data Store, https://cds.climate.copernicus.eu/datasets, last access: 27 June 2025. a
Dietmüller, S., Matthes, S., Dahlmann, K., Yamashita, H., Simorgh, A., Soler, M., Linke, F., Lührs, B., Meuser, M. M., Weder, C., Grewe, V., Yin, F., and Castino, F.: A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0, Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, 2023. a, b
Dixon, J. and Swift, R.: The directional variation of wind probability and Weibull speed parameters, Atmospheric Environment (1967), 18, 2041–2047, https://doi.org/10.1016/0004-6981(84)90190-2, 1984. a
Dutton, J.: The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion, Dover books on earth sciences, Dover Publications, ISBN 9780486650968, https://books.google.de/books?id=g7URAQAAIAAJ (last access: 23 June 2025), 1986. a
Download
Short summary
Ice supersaturation is an immaterial feature that does not generally move with the wind that carries contrails and cirrus clouds. Here we analyse the different motions and show that ice supersaturated regions (ISSRs) on average move slower than the wind, the direction of movement is usually quite similar, and the distributions of both velocities follow Weibull distributions. The almost identical direction of the movements is beneficial for contrail lifetimes.
Share
Altmetrics
Final-revised paper
Preprint