Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6065-2023
https://doi.org/10.5194/acp-23-6065-2023
Research article
 | 
02 Jun 2023
Research article |  | 02 Jun 2023

Divergent convective outflow in large-eddy simulations

Edward Groot and Holger Tost

Related authors

Divergent convective outflow in ICON deep convection-permitting and parameterised deep convection simulations
Edward Groot, Patrick Kuntze, Annette Katharina Miltenberger, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2023-664,https://doi.org/10.5194/egusphere-2023-664, 2023
Short summary
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023,https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Analysis of variability in divergence and turn-over induced by three idealized convective systems with a 3D cloud resolving model
Edward Groot and Holger Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1142,https://doi.org/10.5194/acp-2020-1142, 2020
Publication in ACP not foreseen
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024,https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024,https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024,https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023,https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023,https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary

Cited articles

Baumgart, M., Ghinassi, P., Wirth, V., Selz, T., Craig, G. C., and Riemer, M.: Quantitative View on the Processes Governing the Upscale Error Growth up to the Planetary Scale Using a Stochastic Convection Scheme, Mon. Weather Rev., 147, 1713–1731, https://doi.org/10.1175/mwr-d-18-0292.1, 2019. a, b, c, d, e, f
Bierdel, L., Selz, T., and Craig, G.: Theoretical aspects of upscale error growth through the mesoscales: an analytical model, Q. J. Roy. Meteor. Soc., 143, 3048–3059, https://doi.org/10.1002/qj.3160, 2017. a, b
Bierdel, L., Selz, T., and Craig, G. C.: Theoretical aspects of upscale error growth on the mesoscales: Idealized numerical simulations, Q. J. Roy. Meteor. Soc., 144, 682–694, https://doi.org/10.1002/qj.3236, 2018. a, b
Bretherton, C. S. and Smolarkiewicz, P. K.: Gravity Waves, Compensating Subsidence and Detrainment around Cumulus Clouds, J. Atmos. Sci., 46, 740–759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2, 1989. a, b, c, d, e, f, g, h, i, j, k, l
Bryan, G.: Cloud Model 1, Version 19.8/cm1r19.8, NCAR [code], https://www2.mmm.ucar.edu/people/bryan/cm1/ (last access: 10 January 2023), 2019. a, b
Download
Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper troposphere and lower stratosphere in idealized high-resolution simulations (LESs) depends linearly on the net amount of latent heat released by the cloud for fixed geometry of the clouds. However, it is shown that, in more realistic situations, convective organization and aggregation (collecting mechanisms of cumulonimbus clouds) affect the amount of outflow non-linearly through non-idealized geometry.
Altmetrics
Final-revised paper
Preprint