Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water
Guohua Zhang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
Guangdong-Hong Kong–Macau Joint Laboratory for Environmental
Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR China
Xiaodong Hu
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
University of Chinese Academy of Sciences, Beijing 100049, PR China
Wei Sun
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
University of Chinese Academy of Sciences, Beijing 100049, PR China
Yuxiang Yang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
Ziyong Guo
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
University of Chinese Academy of Sciences, Beijing 100049, PR China
Yuzhen Fu
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
Haichao Wang
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
519082, PR China
Shengzhen Zhou
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
519082, PR China
Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
Mingjin Tang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
Guangdong-Hong Kong–Macau Joint Laboratory for Environmental
Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR China
Zongbo Shi
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
Duohong Chen
State Environmental Protection Key Laboratory of Regional Air
Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
Guangdong-Hong Kong–Macau Joint Laboratory for Environmental
Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR China
Xinming Wang
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, PR China
Guangdong-Hong Kong–Macau Joint Laboratory for Environmental
Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR China
Related authors
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Xuan Li, Lei Li, Zeming Zhuo, Guohua Zhang, Xubing Du, Xue Li, Zhengxu Huang, Zhen Zhou, and Zhi Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-598, https://doi.org/10.5194/egusphere-2022-598, 2022
Preprint archived
Short summary
Short summary
The particle size and chemical composition of bioaerosol were analyzed based on single particle aerosol mass spectrometer. Fungal aerosol of 10 μm was measured for the first time and the characteristic spectrum of bioaerosol was updated. The ion peak ratio method can distinguish bioaerosols from interferers by 97 %. The factors influencing the differentiation of bioaerosols are also discussed. Single particle mass spectrometry can be a new method for real-time identification of bioaerosols.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Hua Fang, Xiaoqing Huang, Yanli Zhang, Chenglei Pei, Zuzhao Huang, Yujun Wang, Yanning Chen, Jianhong Yan, Jianqiang Zeng, Shaoxuan Xiao, Shilu Luo, Sheng Li, Jun Wang, Ming Zhu, Xuewei Fu, Zhenfeng Wu, Runqi Zhang, Wei Song, Guohua Zhang, Weiwei Hu, Mingjin Tang, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 21, 10005–10013, https://doi.org/10.5194/acp-21-10005-2021, https://doi.org/10.5194/acp-21-10005-2021, 2021
Short summary
Short summary
A tunnel test was initiated to measure the vehicular IVOC emissions under real-world driving conditions. Higher SOA formation estimated from vehicular IVOCs compared to those from traditional VOCs emphasized the greater importance of IVOCs in modulating urban SOA. The results also revealed that non-road diesel-fueled engines greatly contributed to IVOCs in China.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-443, https://doi.org/10.5194/acp-2020-443, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, chemical composition, mixing state and aging degree of individual sea spray aerosol (SSA) were measured by single particle aerosol mass spectrometer (SPAMS) during summer monsoon in southern China. Our results show that organic acids has significant contribution to chloride depletion of SSA. A class of biological SSA underwent relative weak chloride depletion compare to other SSA types, which may attribute to organic species (i.e. organic nitrogen and biological phosphate).
Guohua Zhang, Xiufeng Lian, Yuzhen Fu, Qinhao Lin, Lei Li, Wei Song, Zhanyong Wang, Mingjin Tang, Duohong Chen, Xinhui Bi, Xinming Wang, and Guoying Sheng
Atmos. Chem. Phys., 20, 1469–1481, https://doi.org/10.5194/acp-20-1469-2020, https://doi.org/10.5194/acp-20-1469-2020, 2020
Short summary
Short summary
Seasonal atmospheric processing of NOCs was investigated using single-particle mass spectrometry in urban Guangzhou. The abundance of NOCs was found to be strongly enhanced by internal mixing with photochemically produced secondary oxidized organics. A multiple linear regression analysis and a positive matrix factorization analysis were performed to predict the relative abundance of NOCs. More than 70 % of observed NOCs could be well explained by oxidized organics and ammonium.
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Short summary
Hygroscopicity is one of the most important properties of aerosol particles, and a number of experimental techniques, which differ largely in principles, configurations and cost, have been developed to investigate hygroscopic properties of atmospherically relevant particles. Our paper provides a comprehensive and critical review of available techniques for aerosol hygroscopicity studies.
Qinhao Lin, Yuxiang Yang, Yuzhen Fu, Guohua Zhang, Feng Jiang, Long Peng, Xiufeng Lian, Fengxian Liu, Xinhui Bi, Lei Li, Duohong Chen, Mei Li, Jie Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 19, 10469–10479, https://doi.org/10.5194/acp-19-10469-2019, https://doi.org/10.5194/acp-19-10469-2019, 2019
Short summary
Short summary
The effects of the chemical composition and size of sea-salt-containing particles on their cloud condensation nuclei activity are incompletely understood. Our results showed that submicron sea-salt-containing particles can enrich in small cloud droplets, likely due to change in the chemical composition, while supermicron sea-salt-containing particles tended in the large cloud droplets less affected by chemical composition. This difference might further influence their atmospheric residence time.
Liya Guo, Wenjun Gu, Chao Peng, Weigang Wang, Yong Jie Li, Taomou Zong, Yujing Tang, Zhijun Wu, Qinhao Lin, Maofa Ge, Guohua Zhang, Min Hu, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 19, 2115–2133, https://doi.org/10.5194/acp-19-2115-2019, https://doi.org/10.5194/acp-19-2115-2019, 2019
Short summary
Short summary
In this work, hygroscopic properties of eight Ca- and Mg-containing salts were systematically investigated using two complementary techniques. The results largely improve our knowledge of the physicochemical properties of mineral dust and sea salt aerosols.
Qinhao Lin, Xinhui Bi, Guohua Zhang, Yuxiang Yang, Long Peng, Xiufeng Lian, Yuzhen Fu, Mei Li, Duohong Chen, Mark Miller, Ji Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 19, 1195–1206, https://doi.org/10.5194/acp-19-1195-2019, https://doi.org/10.5194/acp-19-1195-2019, 2019
Zirui Liu, Wenkang Gao, Yangchun Yu, Bo Hu, Jinyuan Xin, Yang Sun, Lili Wang, Gehui Wang, Xinhui Bi, Guohua Zhang, Honghui Xu, Zhiyuan Cong, Jun He, Jingsha Xu, and Yuesi Wang
Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, https://doi.org/10.5194/acp-18-8849-2018, 2018
Short summary
Short summary
We have established a national-level network (CARE-China) that conducted continuous monitoring of PM2.5 and its chemical compositions in China. Our analysis reveals the spatial and seasonal variabilities of the urban and background aerosol species and their contributions to the PM2.5 budget. The integration of data provided an extensive spatial coverage of fine-particle concentrations and could be used to validate model results and implement effective air pollution control strategies.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Guohua Zhang, Qinhao Lin, Long Peng, Yuxiang Yang, Yuzhen Fu, Xinhui Bi, Mei Li, Duohong Chen, Jianxin Chen, Zhang Cai, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 13891–13901, https://doi.org/10.5194/acp-17-13891-2017, https://doi.org/10.5194/acp-17-13891-2017, 2017
Short summary
Short summary
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the cloud interstitial, and cloud-free particles by single particle mass spectrometry. Individual particle analysis provides unique insight into the formation and evolution of oxalate during in-cloud processing. The data show that in-cloud aqueous reactions dramatically improved the formation of oxalate from organic acids that were strongly associated with the aged biomass burning particles.
Wenjun Gu, Yongjie Li, Jianxi Zhu, Xiaohong Jia, Qinhao Lin, Guohua Zhang, Xiang Ding, Wei Song, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Meas. Tech., 10, 3821–3832, https://doi.org/10.5194/amt-10-3821-2017, https://doi.org/10.5194/amt-10-3821-2017, 2017
Short summary
Short summary
In this work we describe a method to directly quantify water adsorption and mass hygroscopic growth of atmospheric particles as a function of RH at different temperature, using a commercial vapor sorption analyzer. We have demonstrated that this commercial instrument provides a simple, sensitive, and robust method to determine water adsorption and hygroscopicity of atmospheric particles.
Qinhao Lin, Guohua Zhang, Long Peng, Xinhui Bi, Xinming Wang, Fred J. Brechtel, Mei Li, Duohong Chen, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 8473–8488, https://doi.org/10.5194/acp-17-8473-2017, https://doi.org/10.5194/acp-17-8473-2017, 2017
Short summary
Short summary
A ground-based counterflow virtual impactor coupled with a single-particle aerosol mass spectrometer (SPAMS) was used to assess the mixing state of individual cloud residue particles. Abundant aged EC cloud residues that internally mixed with inorganic salts were found in air masses from northerly polluted areas. K-rich cloud residues significantly increased within southwesterly air masses. This study increases our understanding of the impacts of aerosols on cloud droplets in southern China.
Guohua Zhang, Xinhui Bi, Ning Qiu, Bingxue Han, Qinhao Lin, Long Peng, Duohong Chen, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 16, 2631–2640, https://doi.org/10.5194/acp-16-2631-2016, https://doi.org/10.5194/acp-16-2631-2016, 2016
Short summary
Short summary
This paper first presents an estimate of the real part of the refractive indices and effective densities of chemically segregated aerosols in China. The results indicate the presence of spherical or nearly spherical shape for the majority of particle types. While sharing refractive index in a narrow range (1.47–1.53), they exhibited a wide range of effective density (0.87–1.51). Detailed relationship between physical and chemical properties benefits future research on visibility and climate.
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3337, https://doi.org/10.5194/egusphere-2024-3337, 2024
Short summary
Short summary
This study reports an observation of organic nitrate (including total peroxy nitrates and total alkyl nitrates) in Shanghai, China during the summer of 2021, by a homemade thermal dissociation cavity-enhanced absorption spectrometer (TD-CEAS, Atmos. Meas. Tech., 14, 4033–4051, 2021). The distribution of organic nitrates and their effects on local ozone production are analyzed based on the field observation in conjunction with model simulation.
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3210, https://doi.org/10.5194/egusphere-2024-3210, 2024
Short summary
Short summary
We measured ambient OH and HO2 concentrations at a subtropical rural site and compared our observations with model results. During warm periods, the model overestimated the concentrations of OH and HO2, leading to overestimation of ozone and nitric acid production. Our findings highlight the need to better understand how OH and HO2are formed and removed, which is important for accurate air quality and climate predictions.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Junhong Huang, Lei Li, Xue Li, Zhengxu Huang, and Zhi Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2577, https://doi.org/10.5194/egusphere-2024-2577, 2024
Short summary
Short summary
We developed an aerodynamic sampling system that extends the PM2.5 lens transmission range to 10 µm. This approach reduces the beam incidence angle and narrows the beam width compared to earlier designs. Using PSL balls, we confirmed the injection system's high transmission performance. Tests with standard dust sample showed consistency with APS results. This study presents a new design framework that enhances transmission range and efficiency while supporting instrument miniaturization.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024, https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Short summary
Analysis of modeling, in situ, and remote sensing measurements reveals the microphysical state of orographic clouds and their response to aerosol from the boundary layer and free troposphere. We show that cloud response to aerosol is robust, as predicted supersaturation and cloud droplet number levels agree with those determined from in-cloud measurements. The ability to determine if clouds are velocity- or aerosol-limited allows for novel model constraints and remote sensing products.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1638, https://doi.org/10.5194/egusphere-2024-1638, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study revealed that the nighttime heterogeneous N2O5 uptake process was the major contributor of ClNO2 sources, while nitrate photolysis promoted the elevation of daytime ClNO2 concentrations. The rates of alkane oxidation by Cl radical in the early morning exceeded those by OH radical, significantly promoted the formation of ROx and O3, further enhanced the atmospheric oxidation capacity levels.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024, https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Short summary
We found that for ultrapure water batch leaching, the difference in specific experimental parameters, including agitation methods, filter pore size, and contact time, only led to a small and sometimes insignificant difference in determined aerosol trace element solubility. Furthermore, aerosol trace element solubility determined using four common ultrapure water leaching protocols showed good agreement.
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024, https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Short summary
In this paper, we further optimize the measurement of atmospheric organosulfates by hydrophilic interaction liquid chromatography (HILIC), offering an improved method for quantifying and speciating atmospheric organosulfates. These efforts will contribute to a deeper understanding of secondary organic aerosol precursors, formation mechanisms, and the contribution of organosulfate to atmospheric aerosols, ultimately guiding research in the field of air pollution prevention and control.
Hengjia Ou, Mingfu Cai, Yongyun Zhang, Xue Ni, Baoling Liang, Qibin Sun, Shixin Mai, Cuizhi Sun, Shengzhen Zhou, Haichao Wang, Jiaren Sun, and Jun Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-956, https://doi.org/10.5194/egusphere-2024-956, 2024
Short summary
Short summary
Two shipborne observations in the South China Sea (SCS) during the summer and winter of 2021 were conducted. Our study found that aerosol hygroscopicity is higher in SCS in summer than in winter, with significant influences from various terrestrial air masses. Aerosol size distribution had a stronger effect on activation ratio (AR) than aerosol hygroscopicity in summer and vice versa in winter. Our study provides valuable information to enhance our understanding of CCN activities in the SCS.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
Cuizhi Sun, Yongyun Zhang, Baoling Liang, Min Gao, Xi Sun, Fei Li, Xue Ni, Qibin Sun, Hengjia Ou, Dexian Chen, Shengzhen Zhou, and Jun Zhao
Atmos. Chem. Phys., 24, 3043–3063, https://doi.org/10.5194/acp-24-3043-2024, https://doi.org/10.5194/acp-24-3043-2024, 2024
Short summary
Short summary
In a May–June 2021 expedition in the South China Sea, we analyzed black and brown carbon in marine aerosols, key to light absorption and climate impact. Using advanced in situ and microscope techniques, we observed particle size, structure, and tar balls mixed with various elements. Results showed biomass burning and fossil fuels majorly influence light absorption, especially during significant burning events. This research aids the understanding of carbonaceous aerosols' role in marine climate.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024, https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Short summary
Currently, the limitations of single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low-concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Hua Fang, Ting Wu, Shutan Ma, Qina Jia, Fengyu Zan, Juan Zhao, Jintao Zhang, Zhi Yang, Hongling Xu, Yuzhe Huang, and Xinming Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2998, https://doi.org/10.5194/egusphere-2023-2998, 2024
Preprint archived
Short summary
Short summary
Using in situ VOC flux measurements, we reveal that the freshwater wetland is a potential source of atmospheric VOCs and that litter decomposition enhances net VOC emission. Ambient temperature is the key factor driving the seasonal variation of net VOC flux. Notably, the release or uptake of VOCs varies depending on chemical groups and is jointly controlled by biotic and abiotic processes.
Jie Wang, Haichao Wang, Yee Jun Tham, Lili Ming, Zelong Zheng, Guizhen Fang, Cuizhi Sun, Zhenhao Ling, Jun Zhao, and Shaojia Fan
Atmos. Chem. Phys., 24, 977–992, https://doi.org/10.5194/acp-24-977-2024, https://doi.org/10.5194/acp-24-977-2024, 2024
Short summary
Short summary
Many works report NO3 chemistry in inland regions while less target marine regions. We measured N2O5 and related species on a typical island and found intensive nighttime chemistry and rapid NO3 loss. NO contributed significantly to NO3 loss despite its sub-ppbv level, suggesting nocturnal NO3 reactions would be largely enhanced once free from NO emissions in the open ocean. This highlights the strong influences of urban outflow on downward marine areas in terms of nighttime chemistry.
Zhanyu Su, Lanxiadi Chen, Yuan Liu, Peng Zhang, Tianzeng Chen, Biwu Chu, Mingjin Tang, Qingxin Ma, and Hong He
Atmos. Chem. Phys., 24, 993–1003, https://doi.org/10.5194/acp-24-993-2024, https://doi.org/10.5194/acp-24-993-2024, 2024
Short summary
Short summary
In this study, different soot particles were analyzed to better understand their behavior. It was discovered that water-soluble substances in soot facilitate water adsorption at low humidity while increasing the number of water layers at high humidity. Soot from organic fuels exhibits hygroscopicity influenced by organic carbon and microstructure. Additionally, the presence of sulfate ions due to the oxidation of SO2 enhances soot's hygroscopicity.
Morgane M. G. Perron, Susanne Fietz, Douglas S. Hamilton, Akinori Ito, Rachel U. Shelley, and Mingjin Tang
Atmos. Meas. Tech., 17, 165–166, https://doi.org/10.5194/amt-17-165-2024, https://doi.org/10.5194/amt-17-165-2024, 2024
Short summary
Short summary
The solubility of vital and toxic trace elements delivered by the atmosphere determines their potential to fertilise or limit ocean productivity. A poor understanding of aeolian trace element solubility and the absence of a standard method to define this parameter hinder accurate model representation of the impact of atmospheric deposition on ocean productivity in a changing climate. The inter-journal special issue aims at “Reducing Uncertainty in Soluble aerosol Trace Element Deposition”.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Can Ye, Keding Lu, Xuefei Ma, Wanyi Qiu, Shule Li, Xinping Yang, Chaoyang Xue, Tianyu Zhai, Yuhan Liu, Xuan Li, Yang Li, Haichao Wang, Zhaofeng Tan, Xiaorui Chen, Huabin Dong, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 15455–15472, https://doi.org/10.5194/acp-23-15455-2023, https://doi.org/10.5194/acp-23-15455-2023, 2023
Short summary
Short summary
In this study, combining comprehensive field measurements and a box model, we found NO2 conversion on the ground surface was the most important source for HONO production among the proposed heterogeneous and gas-phase HONO sources. In addition, HONO was found to evidently enhance O3 production and aggravate O3 pollution in summer in China. Our study improved our understanding of the relative importance of different HONO sources and the crucial role of HONO in O3 formation in polluted areas.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 23, 13597–13611, https://doi.org/10.5194/acp-23-13597-2023, https://doi.org/10.5194/acp-23-13597-2023, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during the Beijing Olympic Winter Games using a SPAMS in tandem with a DMA and an AAC. OC and sulfate-containing particles increased, while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Guowen He, Cheng He, Haofan Wang, Xiao Lu, Chenglei Pei, Xiaonuan Qiu, Chenxi Liu, Yiming Wang, Nanxi Liu, Jinpu Zhang, Lei Lei, Yiming Liu, Haichao Wang, Tao Deng, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 23, 13107–13124, https://doi.org/10.5194/acp-23-13107-2023, https://doi.org/10.5194/acp-23-13107-2023, 2023
Short summary
Short summary
We analyze nighttime ozone in the lower boundary layer (up to 500 m) from the 2017–2019 measurements at the Canton Tower and the WRF-CMAQ model. We identify a strong ability of the residual layer to store daytime ozone in the convective mixing layer, investigate the chemical and meteorological factors controlling nighttime ozone in the residual layer, and quantify the contribution of nighttime ozone in the residual layer to both the nighttime and the following day’s surface ozone air quality.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Hejun Hu, Haichao Wang, Keding Lu, Jie Wang, Zelong Zheng, Xuezhen Xu, Tianyu Zhai, Xiaorui Chen, Xiao Lu, Wenxing Fu, Xin Li, Limin Zeng, Min Hu, Yuanhang Zhang, and Shaojia Fan
Atmos. Chem. Phys., 23, 8211–8223, https://doi.org/10.5194/acp-23-8211-2023, https://doi.org/10.5194/acp-23-8211-2023, 2023
Short summary
Short summary
Nitrate radical chemistry is critical to the degradation of volatile organic compounds (VOCs) and secondary organic aerosol formation. This work investigated the level, seasonal variation, and trend of nitrate radical reactivity towards volatile organic compounds (kNO3) in Beijing. We show the key role of isoprene and styrene in regulating seasonal variation in kNO3 and rebuild a long-term record of kNO3 based on the reported VOC measurements.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, https://doi.org/10.5194/acp-23-2379-2023, 2023
Short summary
Short summary
Particulate nitrate is a growing issue in air pollution. Based on comprehensive field measurement, we show heavy nitrate pollution in eastern China in summer. OH reacting with NO2 at daytime dominates nitrate formation on clean days, while N2O5 hydrolysis largely enhances and become comparable with that of OH reacting with O2 on polluted days (67.2 % and 30.2 %). Model simulation indicates that VOC : NOx = 2 : 1 is effective in mitigating the O3 and nitrate pollution coordinately.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Xiaorui Chen, Haichao Wang, Tianyu Zhai, Chunmeng Li, and Keding Lu
Atmos. Meas. Tech., 15, 7019–7037, https://doi.org/10.5194/amt-15-7019-2022, https://doi.org/10.5194/amt-15-7019-2022, 2022
Short summary
Short summary
N2O5 is an important reservoir of atmospheric nitrogen, on whose interface reaction ambient particles can largely influence the fate of nitrogen oxides and air quality. In this study, we develop an approach to enable the reactions of N2O5 on ambient particles directly in a tube reactor, deriving the reaction rates with high accuracy by means of a chemistry model. Its successful application helps complement the data scarcity and to fill the knowledge gap between laboratory and field results.
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022, https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Short summary
We report that nocturnal ozone enhancement (NOE) events are observed at a high annual frequency of 41 % over 800 sites in China in 2014–2019 (about 50 % higher than that over Europe or the US). High daytime ozone provides a rich ozone source in the nighttime residual layer, determining the overall high frequency of NOE events in China, and enhanced atmospheric mixing then triggers NOE events by allowing the ozone-rich air in the residual layer to be mixed into the nighttime boundary layer.
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Short summary
We present intensive field measurement of ClNO2 in the Pearl River Delta in 2019. Large variation in the level, formation, and atmospheric impacts of ClNO2 was found in different air masses. ClNO2 formation was limited by the particulate chloride (Cl−) and aerosol surface area. Our results reveal that Cl− originated from various anthropogenic emissions rather than sea sources and show minor contribution to the O3 pollution and photochemistry.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Xuan Li, Lei Li, Zeming Zhuo, Guohua Zhang, Xubing Du, Xue Li, Zhengxu Huang, Zhen Zhou, and Zhi Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-598, https://doi.org/10.5194/egusphere-2022-598, 2022
Preprint archived
Short summary
Short summary
The particle size and chemical composition of bioaerosol were analyzed based on single particle aerosol mass spectrometer. Fungal aerosol of 10 μm was measured for the first time and the characteristic spectrum of bioaerosol was updated. The ion peak ratio method can distinguish bioaerosols from interferers by 97 %. The factors influencing the differentiation of bioaerosols are also discussed. Single particle mass spectrometry can be a new method for real-time identification of bioaerosols.
Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Wei Song, Weiwei Hu, Xinming Wang, Bin Yuan, Min Shao, Zhijiong Huang, Zhen Li, Junyu Zheng, Haichao Wang, and Xiaofang Yu
Atmos. Chem. Phys., 22, 8951–8971, https://doi.org/10.5194/acp-22-8951-2022, https://doi.org/10.5194/acp-22-8951-2022, 2022
Short summary
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022, https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Short summary
This paper presents the first OH and HO2 radical observations made in the Yangtze River Delta in China, and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanisms, monoterpene oxidation, and HO2 uptake processes are examined and discussed. The sources and the factors to sustain such strong oxidation are the key to understanding the ozone pollution formed in this area.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, https://doi.org/10.5194/acp-22-6045-2022, 2022
Short summary
Short summary
High ionic strength relevant to the aerosol-water enhanced proton-promoted dissolution of iron in coal fly ash (up to 7 times) but suppressed oxalate-promoted dissolution at low pH (< 3). Fe in coal fly ash dissolved up to 7 times faster than in Saharan dust at low pH. A global model with the updated dissolution rates of iron in coal fly ash suggested a larger contribution of pyrogenic dissolved Fe over regions with a strong impact from fossil fuel combustions.
Ülkü Alver Şahin, Roy M. Harrison, Mohammed S. Alam, David C. S. Beddows, Dimitrios Bousiotis, Zongbo Shi, Leigh R. Crilley, William Bloss, James Brean, Isha Khanna, and Rulan Verma
Atmos. Chem. Phys., 22, 5415–5433, https://doi.org/10.5194/acp-22-5415-2022, https://doi.org/10.5194/acp-22-5415-2022, 2022
Short summary
Short summary
Wide-range particle size spectra have been measured in three seasons in Delhi and are interpreted in terms of sources and processes. Condensational growth is a major feature of the fine fraction, and a coarse fraction contributes substantially – but only in summer.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Xiaorui Chen, Haichao Wang, and Keding Lu
Atmos. Chem. Phys., 22, 3525–3533, https://doi.org/10.5194/acp-22-3525-2022, https://doi.org/10.5194/acp-22-3525-2022, 2022
Short summary
Short summary
We use a complete set of simulations to evaluate whether equilibrium and steady state are appropriate for a chemical system involving several reactive nitrogen-containing species (NO2, NO3, and N2O5) under various conditions. A previously neglected bias for the coefficient applied for interpreting their effects is disclosed, and the relevant ambient factors are examined. We therefore provide a good solution to an accurate representation of nighttime chemistry in high-aerosol areas.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Yingze Tian, Xiaoning Wang, Peng Zhao, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1007, https://doi.org/10.5194/acp-2021-1007, 2022
Revised manuscript not accepted
Short summary
Short summary
Chemical mass balance (CMB) is a widely used method to apportion the sources of PM2.5. We explore the sensitivity of CMB results to input data of organic markers only (OM-CMB) with a combination of organic and inorganic markers (IOM-CMB), as well as using different chemical profiles for sources. Our results indicate the superiority of combining inorganic and organic tracers and using locally-relevant source profiles in source apportionment of PM.
Juanjuan Qin, Jihua Tan, Xueming Zhou, Yanrong Yang, Yuanyuan Qin, Xiaobo Wang, Shaoxuan Shi, Kang Xiao, and Xinming Wang
Atmos. Chem. Phys., 22, 465–479, https://doi.org/10.5194/acp-22-465-2022, https://doi.org/10.5194/acp-22-465-2022, 2022
Short summary
Short summary
Water-soluble organic compounds (WSOCs) play important roles in atmospheric particle formation, migration, and transformation processes. In this work, size-segregated atmospheric particles were collected in a rural area of Beijing, and 3D fluorescence spectroscopy was used to investigate the optical properties of WSOCs as a means of inferring information about their atmospheric sources. It was found that these data could efficiently reveal the secondary transformation processes of WSOCs.
Jianqiang Zeng, Yanli Zhang, Huina Zhang, Wei Song, Zhenfeng Wu, and Xinming Wang
Atmos. Meas. Tech., 15, 79–93, https://doi.org/10.5194/amt-15-79-2022, https://doi.org/10.5194/amt-15-79-2022, 2022
Short summary
Short summary
The emission of biogenic volatile organic compounds (BVOCs) from plant leaves is an essential part of biosphere–atmosphere interactions. Here we demonstrate how a dynamic chamber for measuring branch-scale BVOC emissions could be characterized both in the lab for adsorptive losses and in the field for ambient–enclosure environmental differences. The results also imply emission factors for terpenes might be underestimated if measured using dynamic chambers without certified transfer efficiencies.
Qi En Zhong, Chunlei Cheng, Zaihua Wang, Lei Li, Mei Li, Dafeng Ge, Lei Wang, Yuanyuan Li, Wei Nie, Xuguang Chi, Aijun Ding, Suxia Yang, Duohong Chen, and Zhen Zhou
Atmos. Chem. Phys., 21, 17953–17967, https://doi.org/10.5194/acp-21-17953-2021, https://doi.org/10.5194/acp-21-17953-2021, 2021
Short summary
Short summary
Particulate amines play important roles in new particle formation, aerosol acidity, and hygroscopicity. Most of the field observations did not distinguish the different behavior of each type amine under the same ambient influencing factors. In this study, two amine-containing single particles exhibited different mixing states and disparate enrichment of secondary organics, which provide insight into the discriminated fates of organics during the formation and evolution processes.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Lei Li, Chao Lu, Pak-Wai Chan, Zi-Juan Lan, Wen-Hai Zhang, Hong-Long Yang, and Hai-Chao Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-579, https://doi.org/10.5194/acp-2021-579, 2021
Revised manuscript not accepted
Short summary
Short summary
The COVID-19 induced lockdown provided a time-window to study the impact of emission decrease on atmospheric environment. A 350 m meteorological tower in the Pearl River Delta recorded the vertical distribution of pollutants during the lockdown period. The observation confirmed that an extreme emission reduction, can reduce the concentrations of fine particles and the peak concentration of ozone at the same time, which had been taken as difficult to realize in the past in many regions.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021, https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Short summary
Ozone (O3) pollution has received extensive attention due to worsening air quality and rising health risks. The Chinese National Day holiday (CNDH), which is associated with intensive commercial and tourist activities, serves as a valuable experiment to evaluate the O3 response during the holiday. We find sharply increasing trends of observed O3 concentrations throughout China during the CNDH, leading to 33 % additional total daily deaths.
Gang Zhao, Yishu Zhu, Zhijun Wu, Taomou Zong, Jingchuan Chen, Tianyi Tan, Haichao Wang, Xin Fang, Keding Lu, Chunsheng Zhao, and Min Hu
Atmos. Chem. Phys., 21, 9995–10004, https://doi.org/10.5194/acp-21-9995-2021, https://doi.org/10.5194/acp-21-9995-2021, 2021
Short summary
Short summary
New particle formation is thought to contribute half of the global cloud condensation nuclei. We find that the new particle formation is more likely to happen in the upper boundary layer than that at the ground, which can be partially explained by the aerosol–radiation interaction. Our study emphasizes the influence of aerosol–radiation interaction on the NPF.
Hua Fang, Xiaoqing Huang, Yanli Zhang, Chenglei Pei, Zuzhao Huang, Yujun Wang, Yanning Chen, Jianhong Yan, Jianqiang Zeng, Shaoxuan Xiao, Shilu Luo, Sheng Li, Jun Wang, Ming Zhu, Xuewei Fu, Zhenfeng Wu, Runqi Zhang, Wei Song, Guohua Zhang, Weiwei Hu, Mingjin Tang, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 21, 10005–10013, https://doi.org/10.5194/acp-21-10005-2021, https://doi.org/10.5194/acp-21-10005-2021, 2021
Short summary
Short summary
A tunnel test was initiated to measure the vehicular IVOC emissions under real-world driving conditions. Higher SOA formation estimated from vehicular IVOCs compared to those from traditional VOCs emphasized the greater importance of IVOCs in modulating urban SOA. The results also revealed that non-road diesel-fueled engines greatly contributed to IVOCs in China.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys., 21, 8455–8478, https://doi.org/10.5194/acp-21-8455-2021, https://doi.org/10.5194/acp-21-8455-2021, 2021
Short summary
Short summary
We performed measurements of gaseous and particulate organic compounds using a state-of-the-art online mass spectrometer in urban air. Using the dataset, we provide a holistic chemical characterization of oxygenated organic compounds in the polluted urban atmosphere, which can serve as a reference for the future field measurements of organic compounds in cities.
Chunmeng Li, Haichao Wang, Xiaorui Chen, Tianyu Zhai, Shiyi Chen, Xin Li, Limin Zeng, and Keding Lu
Atmos. Meas. Tech., 14, 4033–4051, https://doi.org/10.5194/amt-14-4033-2021, https://doi.org/10.5194/amt-14-4033-2021, 2021
Short summary
Short summary
We present a feasible instrument for the measurement of NO2, total peroxy nitrates (PNs, RO2NO2), and total alkyl nitrates (ANs, RONO2) in the atmosphere. The instrument samples sequentially from three channels at different temperature settings and then measures spectra using one cavity-enhanced absorption spectrometer. The concentrations are determined by spectral fitting and corrected using the lookup table method conveniently. The instrument will promote the study of PNs and ANs.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Kai Song, Song Guo, Haichao Wang, Ying Yu, Hui Wang, Rongzhi Tang, Shiyong Xia, Yuanzheng Gong, Zichao Wan, Daqi Lv, Rui Tan, Wenfei Zhu, Ruizhe Shen, Xin Li, Xuena Yu, Shiyi Chen, Liming Zeng, and Xiaofeng Huang
Atmos. Chem. Phys., 21, 7917–7932, https://doi.org/10.5194/acp-21-7917-2021, https://doi.org/10.5194/acp-21-7917-2021, 2021
Short summary
Short summary
Nitrated phenols (NPs) are crucial components of brown carbon. To comprehend the constitutes and sources of NPs in winter of Beijing, their concentrations were measured by a CI-LToF-MS. The secondary formation process was simulated by a box model. NPs were mainly influenced by primary emissions and regional transport. Primary emitted phenol rather than benzene oxidation was crucial in the heavy pollution episode in Beijing. This provides more insight into pollution control strategies of NPs.
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Short summary
Source apportionment of fine aerosols in an urban site of Beijing used a chemical mass balance (CMB) model. Seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. CMB was found to resolve more primary OA sources than AMS-PMF, but the latter apportioned more secondary OA sources.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Caihong Wu, Chaomin Wang, Sihang Wang, Wenjie Wang, Bin Yuan, Jipeng Qi, Baolin Wang, Hongli Wang, Chen Wang, Wei Song, Xinming Wang, Weiwei Hu, Shengrong Lou, Chenshuo Ye, Yuwen Peng, Zelong Wang, Yibo Huangfu, Yan Xie, Manni Zhu, Junyu Zheng, Xuemei Wang, Bin Jiang, Zhanyi Zhang, and Min Shao
Atmos. Chem. Phys., 20, 14769–14785, https://doi.org/10.5194/acp-20-14769-2020, https://doi.org/10.5194/acp-20-14769-2020, 2020
Short summary
Short summary
Based on measurements from an online mass spectrometer, we quantify volatile organic compound (VOC) concentrations from numerous ions of the mass spectrometer, using information from laboratory-obtained calibration results. We find that most VOC concentrations are from oxygenated VOCs (OVOCs). We further show that these OVOCs also contribute significantly to OH reactivity. Our results suggest the important role of OVOCs in VOC emissions and chemistry in urban air.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping'an Peng, and Xinming Wang
Atmos. Chem. Phys., 20, 14581–14595, https://doi.org/10.5194/acp-20-14581-2020, https://doi.org/10.5194/acp-20-14581-2020, 2020
Short summary
Short summary
We carried out a 1-year PM concurrent observation at 12 sites across six regions of China, and size-segregated PAHs were measured. We found both PAHs and BaPeq were concentrated in PM1.1, and northern China had higher PAHs' pollution and inhalation cancer risk than southern China. Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. We suggest reducing coal and biofuel consumption in the residential sector is an important option to mitigate PAHs' health risks.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Liang Xu, Satoshi Fukushima, Sophie Sobanska, Kotaro Murata, Ayumi Naganuma, Lei Liu, Yuanyuan Wang, Hongya Niu, Zongbo Shi, Tomoko Kojima, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 20, 14321–14332, https://doi.org/10.5194/acp-20-14321-2020, https://doi.org/10.5194/acp-20-14321-2020, 2020
Short summary
Short summary
We quantified the mixing structures of soot particles and found that the dominant mixing structure changed from fresh to partially embedded to fully embedded along the pathway of an Asian dust storm from eastern China to Japan. Soot particles became more compact following transport. Our findings not only provide direct evidence for soot aging during regional transport but also help us understand how their morphology changes in different air environments.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Yingze Tian, Yinchang Feng, Yongli Liang, Yixuan Li, Qianqian Xue, Zongbo Shi, Jingsha Xu, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-507, https://doi.org/10.5194/acp-2020-507, 2020
Revised manuscript not accepted
Short summary
Short summary
Size distributions of inorganic and organic components in particulate matter (PM) can provide critical information on sources and pollution processes. Ions, elements, carbon fractions, n-alkanes, PAHs, hopanes and steranes in size-resolved PM were analyzed during one year in a northern Chinese megacity. Results reveal that size distributions of inorganic and organic aerosol components are dependent on seasons and pollution levels as a result of differing sources and physicochemical processes.
Yang Chen, Jing Cai, Zhichao Wang, Chao Peng, Xiaojiang Yao, Mi Tian, Yiqun Han, Guangming Shi, Zongbo Shi, Yue Liu, Xi Yang, Mei Zheng, Tong Zhu, Kebin He, Qiang Zhang, and Fumo Yang
Atmos. Chem. Phys., 20, 9231–9247, https://doi.org/10.5194/acp-20-9231-2020, https://doi.org/10.5194/acp-20-9231-2020, 2020
Short summary
Short summary
Patterns of particle transport, accumulation, and evolution in both urban and rural areas of Beijing are investigated. The two sites shared 17 common particle types in different stages of atmospheric processing.
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020, https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Short summary
Individual particles were observed in two field studies during winter 2016 in the urban and rural areas of Beijing. An online single-particle chemical composition analysis was used as a tracing system to investigate the impact of heating activities and the formation of haze events. During the pollution events, a pattern of transport and accumulation was found with evidence of single particles. The transport from Pinggu to Peking University was significant but PKU to PG occurred occasionally.
Mingfu Cai, Baoling Liang, Qibin Sun, Shengzhen Zhou, Xiaoyang Chen, Bin Yuan, Min Shao, Haobo Tan, and Jun Zhao
Atmos. Chem. Phys., 20, 9153–9167, https://doi.org/10.5194/acp-20-9153-2020, https://doi.org/10.5194/acp-20-9153-2020, 2020
Short summary
Short summary
Cloud condensation nuclei activity in marine atmosphere affects cloud formation and the solar radiation balance over ocean. We employed advanced instruments to measure aerosol hygroscopicity and chemical composition in the northern South China Sea. Our results show that marine aerosols can be affected by local emissions or pollutants from long-range transport. Our study highlights dynamical variations in particle properties and the impact of long-range transport on this region during summertime.
Shengqiang Zhu, Lei Li, Shurong Wang, Mei Li, Yaxi Liu, Xiaohui Lu, Hong Chen, Lin Wang, Jianmin Chen, Zhen Zhou, Xin Yang, and Xiaofei Wang
Atmos. Meas. Tech., 13, 4111–4121, https://doi.org/10.5194/amt-13-4111-2020, https://doi.org/10.5194/amt-13-4111-2020, 2020
Short summary
Short summary
Single-particle aerosol mass spectrometry (SPAMS) is widely used to detect chemical compositions and sizes of individual aerosol particles. However, it has a major issue: the mass accuracy of high-resolution SPAMS is relatively low. Here we developed an automatic linear calibration method to greatly improve the mass accuracy of SPAMS spectra so that the elemental compositions of organic peaks, such as Cx, CxHy, CxHyOz and CxHyNO peaks, can be directly identified just based on their m / z values.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Yi Ji, L. Gregory Huey, David J. Tanner, Young Ro Lee, Patrick R. Veres, J. Andrew Neuman, Yuhang Wang, and Xinming Wang
Atmos. Meas. Tech., 13, 3683–3696, https://doi.org/10.5194/amt-13-3683-2020, https://doi.org/10.5194/amt-13-3683-2020, 2020
Short summary
Short summary
A common way of measuring trace gases in the atmosphere is chemical ionization mass spectrometry. One large drawback of these instruments is that they require radioactive ion sources. In this work we demonstrate a simple ion source that uses a small krypton lamp that can be used to replace a radioactive source.
Junchen Guo, Shengzhen Zhou, Mingfu Cai, Jun Zhao, Wei Song, Weixiong Zhao, Weiwei Hu, Yele Sun, Yao He, Chengqiang Yang, Xuezhe Xu, Zhisheng Zhang, Peng Cheng, Qi Fan, Jian Hang, Shaojia Fan, Xinming Wang, and Xuemei Wang
Atmos. Chem. Phys., 20, 7595–7615, https://doi.org/10.5194/acp-20-7595-2020, https://doi.org/10.5194/acp-20-7595-2020, 2020
Short summary
Short summary
We characterized non-refractory submicron particulate matter (PM1.0) during winter in Guangzhou, south China. Chemical composition and key sources of ambient PM1.0 are revealed, highlighting the significant role of SOA. The relationship with SOA and peroxy radicals indicated gas-phase oxidation contributed predominantly to SOA formation during non-pollution periods, while heterogeneous/multiphase reactions played more important roles in SOA formation during pollution periods.
Daniel J. Bryant, William J. Dixon, James R. Hopkins, Rachel E. Dunmore, Kelly L. Pereira, Marvin Shaw, Freya A. Squires, Thomas J. Bannan, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Bin Ouyang, Tianqu Cui, Jason D. Surratt, Di Liu, Zongbo Shi, Roy Harrison, Yele Sun, Weiqi Xu, Alastair C. Lewis, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 20, 7531–7552, https://doi.org/10.5194/acp-20-7531-2020, https://doi.org/10.5194/acp-20-7531-2020, 2020
Short summary
Short summary
Using the chemical composition of offline filter samples, we report that a large share of oxidized organic aerosol in Beijing during summer is due to isoprene secondary organic aerosol (iSOA). iSOA organosulfates showed a strong correlation with the product of ozone and particulate sulfate. This highlights the role of both photochemistry and the availability of particulate sulfate in heterogeneous reactions and further demonstrates that iSOA formation is controlled by anthropogenic emissions.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-443, https://doi.org/10.5194/acp-2020-443, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, chemical composition, mixing state and aging degree of individual sea spray aerosol (SSA) were measured by single particle aerosol mass spectrometer (SPAMS) during summer monsoon in southern China. Our results show that organic acids has significant contribution to chloride depletion of SSA. A class of biological SSA underwent relative weak chloride depletion compare to other SSA types, which may attribute to organic species (i.e. organic nitrogen and biological phosphate).
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Jing Cai, Xiangying Zeng, Guorui Zhi, Sasho Gligorovski, Guoying Sheng, Zhiqiang Yu, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 20, 6115–6128, https://doi.org/10.5194/acp-20-6115-2020, https://doi.org/10.5194/acp-20-6115-2020, 2020
Short summary
Short summary
The composition and light-induced evolution of a water-soluble organic carbon mixture from fresh biomass burning aerosols was investigated with direct infusion electrospray ionisation high-resolution mass spectrometry (HRMS) and liquid chromatography coupled with HRMS. Our findings indicate that the water-soluble organic fraction of combustion-derived aerosols has the potential to form more oxidised organic matter, contributing to the highly oxygenated nature of atmospheric organic aerosols.
Jian Zhang, Lei Liu, Liang Xu, Qiuhan Lin, Hujia Zhao, Zhibin Wang, Song Guo, Min Hu, Dantong Liu, Zongbo Shi, Dao Huang, and Weijun Li
Atmos. Chem. Phys., 20, 5355–5372, https://doi.org/10.5194/acp-20-5355-2020, https://doi.org/10.5194/acp-20-5355-2020, 2020
Short summary
Short summary
Northeast China faces severe air pollution in regional haze in wintertime. In this study, we revealed a contrasting formation mechanism of two typical haze events: Haze-I was induced by adverse meteorological conditions together with residential coal burning emissions; Haze-II was caused by agricultural biomass waste burning. In particular, we observed large numbers of tar balls as the primary brown carbon in northeast China.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020, https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary
Short summary
Ambient air pollution is a major cause of premature death in China. We examine the street-scale variation of pollutant levels in Beijing using air pollution dispersion and chemistry model ADMS-Urban. Campaign measurements are compared with simulated pollutant levels, providing a valuable means of evaluating the impact of key processes on urban air quality. Air quality modelling at such fine scales is essential for human exposure studies and for informing choices on future emission controls.
Ying Chen, Viacheslav Kozlovskiy, Xubing Du, Jinnuo Lv, Sergei Nikiforov, Jiajun Yu, Alexander Kolosov, Wei Gao, Zhen Zhou, Zhengxu Huang, and Lei Li
Atmos. Meas. Tech., 13, 941–949, https://doi.org/10.5194/amt-13-941-2020, https://doi.org/10.5194/amt-13-941-2020, 2020
Short summary
Short summary
Ion delayed extraction technique in single particle mass spectrometry has been found to improve the mass resolution of instruments. Through further research, it was found that it can improve the aerosol particle detection efficiency because it can eliminate the influence of the electrical field on the charged aerosol trajectory so that more effective data can be obtained in a short time in laboratory or field atmospheric aerosol research, especially in low-concentration aerosol sample analysis.
Jia Yin Sun, Cheng Wu, Dui Wu, Chunlei Cheng, Mei Li, Lei Li, Tao Deng, Jian Zhen Yu, Yong Jie Li, Qianni Zhou, Yue Liang, Tianlin Sun, Lang Song, Peng Cheng, Wenda Yang, Chenglei Pei, Yanning Chen, Yanxiang Cen, Huiqing Nian, and Zhen Zhou
Atmos. Chem. Phys., 20, 2445–2470, https://doi.org/10.5194/acp-20-2445-2020, https://doi.org/10.5194/acp-20-2445-2020, 2020
Short summary
Short summary
Atmospheric aging processes (AAPs) can lead to black carbon (BC) light absorption enhancement (Eabs), which remained poorly characterized at a long timescale. By applying a newly developed approach, the minimum R squared method (MRS), this study investigated the temporal variations of BC Eabs at both seasonal and diel scales in an urban environment. Factors affecting the temporal variability of BC Eabs were also analyzed, including variability in emission sources and various types of AAPs.
Zhenfeng Wu, Yanli Zhang, Junjie He, Hongzhan Chen, Xueliang Huang, Yujun Wang, Xu Yu, Weiqiang Yang, Runqi Zhang, Ming Zhu, Sheng Li, Hua Fang, Zhou Zhang, and Xinming Wang
Atmos. Chem. Phys., 20, 1887–1900, https://doi.org/10.5194/acp-20-1887-2020, https://doi.org/10.5194/acp-20-1887-2020, 2020
Short summary
Short summary
As ship emissions impact air quality in coastal areas, ships are required to switch their fuel from high-sulfur residual fuel oil to
low-sulfur diesel or heavy oil in emission control areas (ECA). Our study reveals that while this policy did result in a large drop in ship emissions of particulate matter and sulfur dioxide, emissions of volatile organic compounds (VOCs), however, became over 10 times larger and therefore risks ozone pollution control in harbor cities.
Guohua Zhang, Xiufeng Lian, Yuzhen Fu, Qinhao Lin, Lei Li, Wei Song, Zhanyong Wang, Mingjin Tang, Duohong Chen, Xinhui Bi, Xinming Wang, and Guoying Sheng
Atmos. Chem. Phys., 20, 1469–1481, https://doi.org/10.5194/acp-20-1469-2020, https://doi.org/10.5194/acp-20-1469-2020, 2020
Short summary
Short summary
Seasonal atmospheric processing of NOCs was investigated using single-particle mass spectrometry in urban Guangzhou. The abundance of NOCs was found to be strongly enhanced by internal mixing with photochemically produced secondary oxidized organics. A multiple linear regression analysis and a positive matrix factorization analysis were performed to predict the relative abundance of NOCs. More than 70 % of observed NOCs could be well explained by oxidized organics and ammonium.
Yanbing Fan, Cong-Qiang Liu, Linjie Li, Lujie Ren, Hong Ren, Zhimin Zhang, Qinkai Li, Shuang Wang, Wei Hu, Junjun Deng, Libin Wu, Shujun Zhong, Yue Zhao, Chandra Mouli Pavuluri, Xiaodong Li, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, Zongbo Shi, and Pingqing Fu
Atmos. Chem. Phys., 20, 117–137, https://doi.org/10.5194/acp-20-117-2020, https://doi.org/10.5194/acp-20-117-2020, 2020
Short summary
Short summary
This study provides useful knowledge on the abundance, sources, and formation processes of organic aerosols in the coastal megacity of Tianjin, North China, based on the investigation of the molecular composition, diurnal variation, and winter/summer differences under the influence of land/sea breezes and the Asian summer monsoon.
James Brean, Roy M. Harrison, Zongbo Shi, David C. S. Beddows, W. Joe F. Acton, C. Nicholas Hewitt, Freya A. Squires, and James Lee
Atmos. Chem. Phys., 19, 14933–14947, https://doi.org/10.5194/acp-19-14933-2019, https://doi.org/10.5194/acp-19-14933-2019, 2019
Short summary
Short summary
Measurements of highly oxidized molecules measured during a summer campaign in Beijing are presented. These molecules represent an intermediary between gas-phase chemicals from which they are formed and airborne particles which form from them. Conclusions are drawn as to the factors affecting the formation of new particles within the Beijing atmosphere.
Yu-Qing Zhang, Duo-Hong Chen, Xiang Ding, Jun Li, Tao Zhang, Jun-Qi Wang, Qian Cheng, Hao Jiang, Wei Song, Yu-Bo Ou, Peng-Lin Ye, Gan Zhang, and Xin-Ming Wang
Atmos. Chem. Phys., 19, 14403–14415, https://doi.org/10.5194/acp-19-14403-2019, https://doi.org/10.5194/acp-19-14403-2019, 2019
Short summary
Short summary
BSOA formation is affected by human activities, which are not well understood in polluted areas. In the polluted PRD region, we find that monoterpene SOA is aged, which probably results from high Ox and sulfate levels. NOx levels significantly affect isoprene SOA formation pathways. An unexpected increase of β-caryophyllene SOA in winter is also highly associated with enhanced biomass burning, Ox, and sulfate. Our results indicate that BSOA could be reduced by lowering anthropogenic emissions.
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Short summary
Hygroscopicity is one of the most important properties of aerosol particles, and a number of experimental techniques, which differ largely in principles, configurations and cost, have been developed to investigate hygroscopic properties of atmospherically relevant particles. Our paper provides a comprehensive and critical review of available techniques for aerosol hygroscopicity studies.
Zhenzhen Wang, Tao Wang, Hongbo Fu, Liwu Zhang, Mingjin Tang, Christian George, Vicki H. Grassian, and Jianmin Chen
Atmos. Chem. Phys., 19, 12569–12585, https://doi.org/10.5194/acp-19-12569-2019, https://doi.org/10.5194/acp-19-12569-2019, 2019
Short summary
Short summary
This study confirmed that SO2 uptake on mineral particles could be greatly enhanced during cloud processing. The large pH fluctuations between the cloud-aerosol modes could significantly modify the microphysical properties of particles, and triggered the formation of reactive Fe particles to accelerate sulfate formation via a self-amplifying process. Results of this study could partly explain the missing source of sulfate and improve agreement between models and field observations.
Jun Zhang, Xinfeng Wang, Rui Li, Shuwei Dong, Yingnan Zhang, Penggang Zheng, Min Li, Tianshu Chen, Yuhong Liu, Likun Xue, Wei Nie, Aijun Ding, Mingjin Tang, Xuehua Zhou, Lin Du, Qingzhu Zhang, and Wenxing Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-757, https://doi.org/10.5194/acp-2019-757, 2019
Preprint withdrawn
Short summary
Short summary
This study presents the concentrations, variation characteristics, and key influencing factors of particulate organic nitrates at four urban and rural sites in eastern China. The effects of anthropogenic activities (i.e. biomass burning and coal combustion) and meteorological conditions (in particular the humidity) on the secondary formation of organic nitrates have been investigated. The results highlight the greater role of SO2 in organic nitrate chemistry than previously assumed.
Tuan V. Vu, Zongbo Shi, Jing Cheng, Qiang Zhang, Kebin He, Shuxiao Wang, and Roy M. Harrison
Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, https://doi.org/10.5194/acp-19-11303-2019, 2019
Short summary
Short summary
A 5-year Clean Air Action Plan was implemented in 2013 to improve ambient air quality in Beijing. Here, we applied a novel machine-learning-based model to determine the real trend in air quality from 2013 to 2017 in Beijing to assess the efficacy of the plan. We showed that the action plan led to a major reduction in primary emissions and significant improvement in air quality. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion.
Ruihe Lyu, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 10865–10881, https://doi.org/10.5194/acp-19-10865-2019, https://doi.org/10.5194/acp-19-10865-2019, 2019
Short summary
Short summary
Severe pollution of the Beijing atmosphere is a frequent occurrence. The airborne particles which characterize the episodes of haze contain a wide range of chemical constituents but organic compounds make up a substantial proportion. In this study individual compounds are analysed under both haze and non-haze conditions, and the measurements are compared with samples collected in London, where the air pollution climate and sources are very different.
Jingwei Liu, Xin Li, Yiming Yang, Haichao Wang, Yusheng Wu, Xuewei Lu, Mindong Chen, Jianlin Hu, Xiaobo Fan, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 12, 4439–4453, https://doi.org/10.5194/amt-12-4439-2019, https://doi.org/10.5194/amt-12-4439-2019, 2019
Short summary
Short summary
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) has been proven to be a reliable method for measuring glyoxal and methylglyoxal in the atmosphere. However, the commonly overlying strong spectral absorption of nitrogen dioxide hampers the accurate and sensitive resolve of the weak absorption features of glyoxal and methylglyoxal. Here, we report a custom-built IBBCEAS system that could overcome this problem by quantitatively removing nitrogen dioxide from the sample air.
Qinhao Lin, Yuxiang Yang, Yuzhen Fu, Guohua Zhang, Feng Jiang, Long Peng, Xiufeng Lian, Fengxian Liu, Xinhui Bi, Lei Li, Duohong Chen, Mei Li, Jie Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 19, 10469–10479, https://doi.org/10.5194/acp-19-10469-2019, https://doi.org/10.5194/acp-19-10469-2019, 2019
Short summary
Short summary
The effects of the chemical composition and size of sea-salt-containing particles on their cloud condensation nuclei activity are incompletely understood. Our results showed that submicron sea-salt-containing particles can enrich in small cloud droplets, likely due to change in the chemical composition, while supermicron sea-salt-containing particles tended in the large cloud droplets less affected by chemical composition. This difference might further influence their atmospheric residence time.
Hua Yu, Weijun Li, Yangmei Zhang, Peter Tunved, Manuel Dall'Osto, Xiaojing Shen, Junying Sun, Xiaoye Zhang, Jianchao Zhang, and Zongbo Shi
Atmos. Chem. Phys., 19, 10433–10446, https://doi.org/10.5194/acp-19-10433-2019, https://doi.org/10.5194/acp-19-10433-2019, 2019
Short summary
Short summary
Interaction of anthropogenic particles with radiation and clouds plays an important role in Arctic climate change. The mixing state of different aerosols is a key parameter influencing such interactions. However, little is known of this parameter, preventing an accurate representation of this information in global models. Multi-microscopic techniques were used to find one general core–shell structure in which secondary sulfate particles were covered by organic coating in the Arctic atmosphere.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Yue Liu, Mei Zheng, Mingyuan Yu, Xuhui Cai, Huiyun Du, Jie Li, Tian Zhou, Caiqing Yan, Xuesong Wang, Zongbo Shi, Roy M. Harrison, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, https://doi.org/10.5194/acp-19-6595-2019, 2019
Short summary
Short summary
This study is part of the UK–China APHH campaign. To identify both source types and source regions at the same time, this study developed a combined method including receptor model, footprint model, and air quality model for the first time to investigate sources of PM2.5 during haze episodes in Beijing. It is an expansion of the application of the receptor model and is helpful for formulating effective control strategies to improve air quality in this region.
Yuqing Ye, Zhouqing Xie, Ming Zhu, and Xinming Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-410, https://doi.org/10.5194/acp-2019-410, 2019
Preprint withdrawn
Short summary
Short summary
Aerosol samples from the Arctic Ocean and Antarctic atmosphere were analysed by ultrahigh resolution mass spectrometry coupled with negative ion mode electrospray ionization. Hundreds of organic compounds, including organosulfates, nitrooxy-organosulfates, organonitrates and oxygenated hydrocarbons, were detected. Our study presents the first overview of OSs and ONs in the polar regions and promotes the understanding of their characteristics and sources.
Mingjin Tang, Wenjun Gu, Qingxin Ma, Yong Jie Li, Cheng Zhong, Sheng Li, Xin Yin, Ru-Jin Huang, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 2247–2258, https://doi.org/10.5194/acp-19-2247-2019, https://doi.org/10.5194/acp-19-2247-2019, 2019
Ruihe Lyu, Mohammed S. Alam, Christopher Stark, Ruixin Xu, Zongbo Shi, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 2233–2246, https://doi.org/10.5194/acp-19-2233-2019, https://doi.org/10.5194/acp-19-2233-2019, 2019
Short summary
Short summary
Organic matter comprises a substantial proportion of the mass of toxic airborne particles which cause poor health and premature death. In this paper, new measurements of three important groups of organic compounds are reported and are analysed to infer their sources and their contributions to airborne particle concentrations.
Liya Guo, Wenjun Gu, Chao Peng, Weigang Wang, Yong Jie Li, Taomou Zong, Yujing Tang, Zhijun Wu, Qinhao Lin, Maofa Ge, Guohua Zhang, Min Hu, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 19, 2115–2133, https://doi.org/10.5194/acp-19-2115-2019, https://doi.org/10.5194/acp-19-2115-2019, 2019
Short summary
Short summary
In this work, hygroscopic properties of eight Ca- and Mg-containing salts were systematically investigated using two complementary techniques. The results largely improve our knowledge of the physicochemical properties of mineral dust and sea salt aerosols.
Qinhao Lin, Xinhui Bi, Guohua Zhang, Yuxiang Yang, Long Peng, Xiufeng Lian, Yuzhen Fu, Mei Li, Duohong Chen, Mark Miller, Ji Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 19, 1195–1206, https://doi.org/10.5194/acp-19-1195-2019, https://doi.org/10.5194/acp-19-1195-2019, 2019
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Michael Le Breton, Åsa M. Hallquist, Ravi Kant Pathak, David Simpson, Yujue Wang, John Johansson, Jing Zheng, Yudong Yang, Dongjie Shang, Haichao Wang, Qianyun Liu, Chak Chan, Tao Wang, Thomas J. Bannan, Michael Priestley, Carl J. Percival, Dudley E. Shallcross, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, https://doi.org/10.5194/acp-18-13013-2018, 2018
Short summary
Short summary
We apply state-of-the-art chemical characterization to determine the chloride radical production in Beijing via measurement of inorganic halogens at a semi-rural site. The high concentration of inorganic halogens, namely nitryl chloride, enables the production of chlorinated volatile organic compounds which are measured in both the gas and particle phases simultaneously. This enables the secondary production of aerosols via chlorine oxidation to be directly observed in ambient air.
Weiqiang Yang, Yanli Zhang, Xinming Wang, Sheng Li, Ming Zhu, Qingqing Yu, Guanghui Li, Zhonghui Huang, Huina Zhang, Zhenfeng Wu, Wei Song, Jihua Tan, and Min Shao
Atmos. Chem. Phys., 18, 12663–12682, https://doi.org/10.5194/acp-18-12663-2018, https://doi.org/10.5194/acp-18-12663-2018, 2018
Short summary
Short summary
We present observation-based evaluations of the reduction of ambient VOCs under intervention control measures during APEC China 2014 in Beijing and the contributions of emissions from domestic solid fuel burning to ambient VOCs during winter heating. Controlling vehicle exhaust and solvent use was found to be effective in reducing ambient VOCs in non-heating periods, and controlling emissions from residential burning of solid fuels became much more important during winter heating.
Zhaofeng Tan, Franz Rohrer, Keding Lu, Xuefei Ma, Birger Bohn, Sebastian Broch, Huabin Dong, Hendrik Fuchs, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Yuhan Liu, Anna Novelli, Min Shao, Haichao Wang, Yusheng Wu, Limin Zeng, Min Hu, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 12391–12411, https://doi.org/10.5194/acp-18-12391-2018, https://doi.org/10.5194/acp-18-12391-2018, 2018
Short summary
Short summary
We present the first wintertime OH, HO2, and RO2 measurements in Beijing, China. OH concentrations are nearly 2-fold larger than those observed in foreign cities during wintertime. The high OH and large OH reactivities indicate photochemical processes can be effective even during wintertime. A box model largely underestimated HO2 and RO2 concentrations during pollution episodes correlated with high NOx, indicating a deficit current chemistry in the high NOx regime.
Tengyu Liu, Zhaoyi Wang, Xinming Wang, and Chak K. Chan
Atmos. Chem. Phys., 18, 11363–11374, https://doi.org/10.5194/acp-18-11363-2018, https://doi.org/10.5194/acp-18-11363-2018, 2018
Short summary
Short summary
POA and SOA from seven heated cooking oil emissions were investigated in a smog chamber. We found that PMF analysis separated POA and SOA better than the residual spectrum method and the traditional method, assuming first-order POA loss. The PMF factors mass spectra were compared with those of ambient PMF factors. Our results suggest that COA source analysis from ambient data is likely complicated by the cooking style and atmospheric oxidation conditions.
Haichao Wang, Keding Lu, Xiaorui Chen, Qindan Zhu, Zhijun Wu, Yusheng Wu, and Kang Sun
Atmos. Chem. Phys., 18, 10483–10495, https://doi.org/10.5194/acp-18-10483-2018, https://doi.org/10.5194/acp-18-10483-2018, 2018
Short summary
Short summary
The vertical measurement of NOx and O3 was carried out on a movable carriage on a tower during a winter heavy-haze episode in urban Beijing, China. We found that pNO3- formation via N2O5 uptake was significant at high altitudes (e.g., > 150 m), which was supported by the lower total oxidant
(NO2 + O3) level at high altitudes than at ground level. This study highlights the fact that pNO3- formation via N2O5 uptake may be an important source of pNO3- in the urban airshed during wintertime.
Haichao Wang, Keding Lu, Song Guo, Zhijun Wu, Dongjie Shang, Zhaofeng Tan, Yujue Wang, Michael Le Breton, Shengrong Lou, Mingjin Tang, Yusheng Wu, Wenfei Zhu, Jing Zheng, Limin Zeng, Mattias Hallquist, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 9705–9721, https://doi.org/10.5194/acp-18-9705-2018, https://doi.org/10.5194/acp-18-9705-2018, 2018
Short summary
Short summary
N2O5, ClNO2, and particulate nitrate were measured simultaneously in Beijing, China, in 2016. The elevated N2O5 uptake coefficient and ClNO2 yield were determined, which suggest fast N2O5 uptake in Beijing. We highlight that the NO3 oxidation in nocturnal VOC degradation is efficient, with fast formation of organic nitrates. More studies are needed to investigate NO3–N2O5 chemistry and its contribution to secondary organic aerosol formation.
Chunlei Cheng, Zuzhao Huang, Chak K. Chan, Yangxi Chu, Mei Li, Tao Zhang, Yubo Ou, Duohong Chen, Peng Cheng, Lei Li, Wei Gao, Zhengxu Huang, Bo Huang, Zhong Fu, and Zhen Zhou
Atmos. Chem. Phys., 18, 9147–9159, https://doi.org/10.5194/acp-18-9147-2018, https://doi.org/10.5194/acp-18-9147-2018, 2018
Short summary
Short summary
Particulate amines play an important role for the particle acidity and hygroscopicity. We found amines were internally mixed with sulfate and nitrate at a rural site in the PRD, China, suggesting the formation of aminium sulfate and nitrate salts. The ammonium-poor state of amine particles in summer was associated with the low emission sources of ammonia and a possible contribution of ammonium–amine exchange reactions. Amines could be a buffer for the particle acidity of ammonium-poor particles.
Zirui Liu, Wenkang Gao, Yangchun Yu, Bo Hu, Jinyuan Xin, Yang Sun, Lili Wang, Gehui Wang, Xinhui Bi, Guohua Zhang, Honghui Xu, Zhiyuan Cong, Jun He, Jingsha Xu, and Yuesi Wang
Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, https://doi.org/10.5194/acp-18-8849-2018, 2018
Short summary
Short summary
We have established a national-level network (CARE-China) that conducted continuous monitoring of PM2.5 and its chemical compositions in China. Our analysis reveals the spatial and seasonal variabilities of the urban and background aerosol species and their contributions to the PM2.5 budget. The integration of data provided an extensive spatial coverage of fine-particle concentrations and could be used to validate model results and implement effective air pollution control strategies.
Felix A. Mackenzie-Rae, Helen J. Wallis, Andrew R. Rickard, Kelly L. Pereira, Sandra M. Saunders, Xinming Wang, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 18, 4673–4693, https://doi.org/10.5194/acp-18-4673-2018, https://doi.org/10.5194/acp-18-4673-2018, 2018
Short summary
Short summary
Native to Australasia, the remarkable adaptability, rapid growth rates and high quality wood of eucalypt trees has led to them the most widely planted hardwood forest trees in the world. In contrast to boreal and tropical forests, there has been little study of aerosol formation in these regions. Here, we study the secondary organic aerosol formation from the very fast reaction of α-phellandrene, emitted from eucalypts, and identify key products and reaction pathways.
Hao Wang, Xiaopu Lyu, Hai Guo, Yu Wang, Shichun Zou, Zhenhao Ling, Xinming Wang, Fei Jiang, Yangzong Zeren, Wenzhuo Pan, Xiaobo Huang, and Jin Shen
Atmos. Chem. Phys., 18, 4277–4295, https://doi.org/10.5194/acp-18-4277-2018, https://doi.org/10.5194/acp-18-4277-2018, 2018
Short summary
Short summary
While oceanic air is generally thought to be clean, the air pollution over waters in proximity to the coasts is not well recognized. This research indicated that ozone was higher over South China Sea (SCS) than that in the adjacent continental area, while continental anticyclone, tropical cyclone and land breeze favored O3 formation over SCS. In addition, weaker NO titration and stronger atmospheric oxidative capacity led to higher O3 production efficiency over SCS.
Shengzhen Zhou, Perry K. Davy, Minjuan Huang, Jingbo Duan, Xuemei Wang, Qi Fan, Ming Chang, Yiming Liu, Weihua Chen, Shanju Xie, Travis Ancelet, and William J. Trompetter
Atmos. Chem. Phys., 18, 2049–2064, https://doi.org/10.5194/acp-18-2049-2018, https://doi.org/10.5194/acp-18-2049-2018, 2018
Short summary
Short summary
We collected hourly samples of PM2.5 and PM2.5–10 at an industrial city in the PRD, China. The samples were analyzed for black carbon and elemental compositions. Receptor modeling of the dataset by positive matrix factorization was used to identify PM sources. Human health exposure risks to the selected trace elements in PM released from the specific sources were estimated. The source–risk apportionment method helps decision makers to manage air quality more effectively.
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Zheng Fang, Wei Deng, Yanli Zhang, Xiang Ding, Mingjin Tang, Tengyu Liu, Qihou Hu, Ming Zhu, Zhaoyi Wang, Weiqiang Yang, Zhonghui Huang, Wei Song, Xinhui Bi, Jianmin Chen, Yele Sun, Christian George, and Xinming Wang
Atmos. Chem. Phys., 17, 14821–14839, https://doi.org/10.5194/acp-17-14821-2017, https://doi.org/10.5194/acp-17-14821-2017, 2017
Short summary
Short summary
Primary emissions and aging of open straw burning plumes were characterized in ambient dilution conditions in a chamber. Rich in alkenes, the plumes have high O3 formation potential. The emissions of specific particulate and gaseous compounds were less when the straws were fully burned. Organic aerosol (OA) mass increased by a factor of 2–8 with 3–9 h photo-oxidation, yet > 70 % of the mass cannot be explained by the known precursors. OA gained more O- and N-containing compounds during aging.
Guohua Zhang, Qinhao Lin, Long Peng, Yuxiang Yang, Yuzhen Fu, Xinhui Bi, Mei Li, Duohong Chen, Jianxin Chen, Zhang Cai, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 13891–13901, https://doi.org/10.5194/acp-17-13891-2017, https://doi.org/10.5194/acp-17-13891-2017, 2017
Short summary
Short summary
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the cloud interstitial, and cloud-free particles by single particle mass spectrometry. Individual particle analysis provides unique insight into the formation and evolution of oxalate during in-cloud processing. The data show that in-cloud aqueous reactions dramatically improved the formation of oxalate from organic acids that were strongly associated with the aged biomass burning particles.
Wenjun Gu, Yongjie Li, Jianxi Zhu, Xiaohong Jia, Qinhao Lin, Guohua Zhang, Xiang Ding, Wei Song, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Meas. Tech., 10, 3821–3832, https://doi.org/10.5194/amt-10-3821-2017, https://doi.org/10.5194/amt-10-3821-2017, 2017
Short summary
Short summary
In this work we describe a method to directly quantify water adsorption and mass hygroscopic growth of atmospheric particles as a function of RH at different temperature, using a commercial vapor sorption analyzer. We have demonstrated that this commercial instrument provides a simple, sensitive, and robust method to determine water adsorption and hygroscopicity of atmospheric particles.
Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, https://doi.org/10.5194/acp-17-11727-2017, 2017
Short summary
Short summary
We provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is also assessed. In addition, we have outlined major open questions and challenges in this field and discussed research strategies to address them.
Chunlei Cheng, Mei Li, Chak K. Chan, Haijie Tong, Changhong Chen, Duohong Chen, Dui Wu, Lei Li, Cheng Wu, Peng Cheng, Wei Gao, Zhengxu Huang, Xue Li, Zhijuan Zhang, Zhong Fu, Yanru Bi, and Zhen Zhou
Atmos. Chem. Phys., 17, 9519–9533, https://doi.org/10.5194/acp-17-9519-2017, https://doi.org/10.5194/acp-17-9519-2017, 2017
Short summary
Short summary
Oxalic acid is an abundant and ubiquitous constituent in secondary organic aerosol (SOA) and can be an effective tracer for the oxidative processes leading to the formation of SOA. In this work photochemical reactions have a significant contribution to oxalic acid formation in summer, while in winter the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.
Qinhao Lin, Guohua Zhang, Long Peng, Xinhui Bi, Xinming Wang, Fred J. Brechtel, Mei Li, Duohong Chen, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 8473–8488, https://doi.org/10.5194/acp-17-8473-2017, https://doi.org/10.5194/acp-17-8473-2017, 2017
Short summary
Short summary
A ground-based counterflow virtual impactor coupled with a single-particle aerosol mass spectrometer (SPAMS) was used to assess the mixing state of individual cloud residue particles. Abundant aged EC cloud residues that internally mixed with inorganic salts were found in air masses from northerly polluted areas. K-rich cloud residues significantly increased within southwesterly air masses. This study increases our understanding of the impacts of aerosols on cloud droplets in southern China.
Felix A. Mackenzie-Rae, Tengyu Liu, Wei Deng, Sandra M. Saunders, Zheng Fang, Yanli Zhang, and Xinming Wang
Atmos. Chem. Phys., 17, 6583–6609, https://doi.org/10.5194/acp-17-6583-2017, https://doi.org/10.5194/acp-17-6583-2017, 2017
Short summary
Short summary
The atmospheric decomposition of the biogenic α-phellandrene with ozone is characterised by conducting carefully controlled experiments in a smog chamber. Major gas-phase products are identified based on theoretical/mechanism insight, with yields quantified. Meanwhile, a significant amount of aerosol is formed and characterised, with Criegee intermediates found to be important for new particle formation. It is concluded that α-phellandrene contributes to aerosol formation/growth where emitted.
Haichao Wang, Jun Chen, and Keding Lu
Atmos. Meas. Tech., 10, 1465–1479, https://doi.org/10.5194/amt-10-1465-2017, https://doi.org/10.5194/amt-10-1465-2017, 2017
Short summary
Short summary
A new incoherent broadband cavity-enhanced absorption spectrometer for ambient NO3 and N2O5 detection is developed. This new instrument is featured with a mechanically aligned non-adjustable optical mounting system. Fast setup and stable running of this N2O5 spectrometer were successfully achieved during recent field campaigns in China due to this new feature. In addition, a dynamic reference spectrum is used for the CEAS type of instrument by NO titration for the first time.
Chunlin Li, Yunjie Hu, Fei Zhang, Jianmin Chen, Zhen Ma, Xingnan Ye, Xin Yang, Lin Wang, Xingfu Tang, Renhe Zhang, Mu Mu, Guihua Wang, Haidong Kan, Xinming Wang, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 4957–4988, https://doi.org/10.5194/acp-17-4957-2017, https://doi.org/10.5194/acp-17-4957-2017, 2017
Short summary
Short summary
Detailed emission factors for smoke particulate species in PM2.5 and PM1.0 were derived from laboratory simulation of crop straw burning using aerosol chamber systems. Based on this, emissions for crop residue field burning in China were calculated and characterized with respect to five different burning scenarios. Moreover, health effects and health-related economic loss from smoke particle exposure were assessed; a practical emission control policy for agricultural field burning was proposed.
Mingjin Tang, James Keeble, Paul J. Telford, Francis D. Pope, Peter Braesicke, Paul T. Griffiths, N. Luke Abraham, James McGregor, I. Matt Watson, R. Anthony Cox, John A. Pyle, and Markus Kalberer
Atmos. Chem. Phys., 16, 15397–15412, https://doi.org/10.5194/acp-16-15397-2016, https://doi.org/10.5194/acp-16-15397-2016, 2016
Short summary
Short summary
We have investigated for the first time the heterogeneous hydrolysis of ClONO2 on TiO2 and SiO2 aerosol particles at room temperature and at different relative humidities (RHs), using an aerosol flow tube. The kinetic data reported in our current and previous studies have been included in the UKCA chemistry–climate model to assess the impact of TiO2 injection on stratospheric chemistry and stratospheric ozone in particular.
Long Cui, Zhou Zhang, Yu Huang, Shun Cheng Lee, Donald Ray Blake, Kin Fai Ho, Bei Wang, Yuan Gao, Xin Ming Wang, and Peter Kwok Keung Louie
Atmos. Meas. Tech., 9, 5763–5779, https://doi.org/10.5194/amt-9-5763-2016, https://doi.org/10.5194/amt-9-5763-2016, 2016
Short summary
Short summary
In this manuscript, the effect of ambient RH and T on HCHO measurements by PTR-MS was investigated, and the Poly 2-D regression was found to be a good nonlinear surface simulation of R (RH, T) for correcting measured HCHO concentration. Intercomparisons between PTR-MS and other OVOC and VOC measuring techniques were conducted through a field study in urban roadside areas of Hong Kong primarily, and good agreements were found between these different techniques.
Gavin J. Phillips, Jim Thieser, Mingjin Tang, Nicolas Sobanski, Gerhard Schuster, Johannes Fachinger, Frank Drewnick, Stephan Borrmann, Heinz Bingemer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 16, 13231–13249, https://doi.org/10.5194/acp-16-13231-2016, https://doi.org/10.5194/acp-16-13231-2016, 2016
Short summary
Short summary
We use trace gas measurements (N2O5, ClNO2, NO3) and particle properties (surface area, nitrate content etc.) to derive uptake coefficients (the probability of removal from the gas-phase on a per-collision basis) for the interaction of N2O5 with ambient aerosol and also the efficiency of formation of ClNO2. The uptake coefficients show high variability but are reasonably well captured by parameterisations based on laboratory measurements.
N. Sobanski, M. J. Tang, J. Thieser, G. Schuster, D. Pöhler, H. Fischer, W. Song, C. Sauvage, J. Williams, J. Fachinger, F. Berkes, P. Hoor, U. Platt, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 16, 4867–4883, https://doi.org/10.5194/acp-16-4867-2016, https://doi.org/10.5194/acp-16-4867-2016, 2016
Short summary
Short summary
The nitrate radical (NO3) is an important nocturnal oxidant. By measuring NO3, its precursors (nitrogen dioxide and ozone) and several trace gases with which it reacts, we examined the chemical and meteorological factors influencing the lifetime of NO3 at a semi-rural mountain site. Unexpectedly long lifetimes, approaching 1 h, were observed on several nights and were associated with a low-lying residual layer. We discuss the role of other reactions that convert NO2 to NO3.
Junwen Liu, Jun Li, Di Liu, Ping Ding, Chengde Shen, Yangzhi Mo, Xinming Wang, Chunling Luo, Zhineng Cheng, Sönke Szidat, Yanlin Zhang, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 16, 2985–2996, https://doi.org/10.5194/acp-16-2985-2016, https://doi.org/10.5194/acp-16-2985-2016, 2016
Short summary
Short summary
Many Chinese cities now are suffering the high loadings of fine particular matters, which can bring a lot of negative impacts on air quality, human health, and the climate system. The Chinese government generally focuses on the control of the emissions from vehicles and industry. Our results evidently show that the burning of biomass materials such as wood and agricultural residues can lead to the urban air pollution in China. The characteristic of haze covering China is distinct from regions.
Guohua Zhang, Xinhui Bi, Ning Qiu, Bingxue Han, Qinhao Lin, Long Peng, Duohong Chen, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 16, 2631–2640, https://doi.org/10.5194/acp-16-2631-2016, https://doi.org/10.5194/acp-16-2631-2016, 2016
Short summary
Short summary
This paper first presents an estimate of the real part of the refractive indices and effective densities of chemically segregated aerosols in China. The results indicate the presence of spherical or nearly spherical shape for the majority of particle types. While sharing refractive index in a narrow range (1.47–1.53), they exhibited a wide range of effective density (0.87–1.51). Detailed relationship between physical and chemical properties benefits future research on visibility and climate.
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-50, https://doi.org/10.5194/acp-2016-50, 2016
Revised manuscript not accepted
T. Liu, X. Wang, Q. Hu, W. Deng, Y. Zhang, X. Ding, X. Fu, F. Bernard, Z. Zhang, S. Lü, Q. He, X. Bi, J. Chen, Y. Sun, J. Yu, P. Peng, G. Sheng, and J. Fu
Atmos. Chem. Phys., 16, 675–689, https://doi.org/10.5194/acp-16-675-2016, https://doi.org/10.5194/acp-16-675-2016, 2016
Short summary
Short summary
The formation of SOA and sulfate aerosols from the photooxidation of gasoline vehicle exhaust (GVE) when mixing with SO2 was investigated in a smog chamber. We found that the presence of GVE enhanced the conversion of SO2 to sulfate predominantly through reactions with stabilized Criegee intermediates. On the other hand, the elevated particle acidity enhanced the SOA production from GVE. This study indicated that SO2 and GVE could enhance each other in forming secondary aerosols.
A. Ito and Z. Shi
Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, https://doi.org/10.5194/acp-16-85-2016, 2016
Short summary
Short summary
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport model to estimate anthropogenic soluble Fe deposition. Our improved model successfully captured an inverse relationship of Fe solubility and total Fe loading. Our model estimated the low end of Fe solubility compared to the previous studies. Our model results suggest that human activities contribute to about half of bioavailable Fe supply to significant portions of the oceans in the Northern Hemisphere.
T. Liu, X. Wang, W. Deng, Q. Hu, X. Ding, Y. Zhang, Q. He, Z. Zhang, S. Lü, X. Bi, J. Chen, and J. Yu
Atmos. Chem. Phys., 15, 9049–9062, https://doi.org/10.5194/acp-15-9049-2015, https://doi.org/10.5194/acp-15-9049-2015, 2015
R.-Q. Shen, X. Ding, Q.-F. He, Z.-Y. Cong, Q.-Q. Yu, and X.-M. Wang
Atmos. Chem. Phys., 15, 8781–8793, https://doi.org/10.5194/acp-15-8781-2015, https://doi.org/10.5194/acp-15-8781-2015, 2015
Short summary
Short summary
1) Seasonal trends of SOA tracers and origins were studied in the remote TP for the first time.
2) Seasonal variation of isoprene SOA tracers was mainly influenced by emission.
3) Due to the transport of air pollutants from the Indian subcontinent, aromatics SOA tracer presented relatively higher levels in the summer and elevated mass fractions in the winter.
4) Biogenic SOC dominated over anthropogenic SOC in the remote TP.
M. J. Tang, M. Shiraiwa, U. Pöschl, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 15, 5585–5598, https://doi.org/10.5194/acp-15-5585-2015, https://doi.org/10.5194/acp-15-5585-2015, 2015
D. Mogensen, R. Gierens, J. N. Crowley, P. Keronen, S. Smolander, A. Sogachev, A. C. Nölscher, L. Zhou, M. Kulmala, M. J. Tang, J. Williams, and M. Boy
Atmos. Chem. Phys., 15, 3909–3932, https://doi.org/10.5194/acp-15-3909-2015, https://doi.org/10.5194/acp-15-3909-2015, 2015
S. Dai, X. Bi, L. Y. Chan, J. He, B. Wang, X. Wang, P. Peng, G. Sheng, and J. Fu
Atmos. Chem. Phys., 15, 3097–3108, https://doi.org/10.5194/acp-15-3097-2015, https://doi.org/10.5194/acp-15-3097-2015, 2015
M. J. Tang, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 14, 9233–9247, https://doi.org/10.5194/acp-14-9233-2014, https://doi.org/10.5194/acp-14-9233-2014, 2014
M. J. Tang, P. J. Telford, F. D. Pope, L. Rkiouak, N. L. Abraham, A. T. Archibald, P. Braesicke, J. A. Pyle, J. McGregor, I. M. Watson, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014, https://doi.org/10.5194/acp-14-6035-2014, 2014
X. Wang, T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lü, J. Chen, S. Saunders, and J. Yu
Atmos. Meas. Tech., 7, 301–313, https://doi.org/10.5194/amt-7-301-2014, https://doi.org/10.5194/amt-7-301-2014, 2014
M. J. Tang, G. Schuster, and J. N. Crowley
Atmos. Chem. Phys., 14, 245–254, https://doi.org/10.5194/acp-14-245-2014, https://doi.org/10.5194/acp-14-245-2014, 2014
S. Situ, A. Guenther, X. Wang, X. Jiang, A. Turnipseed, Z. Wu, J. Bai, and X. Wang
Atmos. Chem. Phys., 13, 11803–11817, https://doi.org/10.5194/acp-13-11803-2013, https://doi.org/10.5194/acp-13-11803-2013, 2013
J. J. Li, G. H. Wang, J. J. Cao, X. M. Wang, and R. J. Zhang
Atmos. Chem. Phys., 13, 11535–11549, https://doi.org/10.5194/acp-13-11535-2013, https://doi.org/10.5194/acp-13-11535-2013, 2013
X. Ding, X.-M. Wang, Q.-F. He, X.-X. Fu, and B. Gao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-13773-2013, https://doi.org/10.5194/acpd-13-13773-2013, 2013
Revised manuscript not accepted
G. Zhang, X. Bi, L. Li, L. Y. Chan, M. Li, X. Wang, G. Sheng, J. Fu, and Z. Zhou
Atmos. Chem. Phys., 13, 4723–4735, https://doi.org/10.5194/acp-13-4723-2013, https://doi.org/10.5194/acp-13-4723-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Amie Dobracki, Ernie Lewis, Arthur Sedlacek III, Tyler Tatro, Maria Zawadowicz, and Paquita Zuidema
EGUsphere, https://doi.org/10.5194/egusphere-2024-1347, https://doi.org/10.5194/egusphere-2024-1347, 2024
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer of the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes, both heterogeneous and aqueous-phase determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Cited articles
Aksoyoglu, S., Ciarelli, G., El-Haddad, I., Baltensperger, U., and Prévôt, A. S. H.: Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate, Atmos. Chem. Phys., 17, 7757–7773, https://doi.org/10.5194/acp-17-7757-2017, 2017.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, 2020.
Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, Atmos. Chem. Phys., 7, 5043–5059, https://doi.org/10.5194/acp-7-5043-2007, 2007.
Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.
Bi, X. H., Lin, Q. H., Peng, L., Zhang, G. H., Wang, X. M., Brechtel, F. J.,
Chen, D. H., Li, M., Peng, P. A., Sheng, G. Y., and Zhou, Z.: In situ
detection of the chemistry of individual fog droplet residues in the Pearl
River Delta region, China, J. Geophys. Res.-Atmos., 121, 9105–9116,
https://doi.org/10.1002/2016JD024886, 2016.
Boone, E. J., Laskin, A., Laskin, J., Wirth, C., Shepson, P. B., Stirm, B.
H., and Pratt, K. A.: Aqueous Processing of Atmospheric Organic Particles in
Cloud Water Collected via Aircraft Sampling, Environ. Sci. Technol., 49,
8523–8530, https://doi.org/10.1021/acs.est.5b01639, 2015.
Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S.,
Wang, Z., Blake, D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime
chemistry at a high altitude site above Hong Kong, J. Geophys. Res.-Atmos.,
121, 2457–2475, https://doi.org/10.1002/2015JD024566, 2016.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical kinetics and photochemical data for use in atmospheric studies C,
edited by: Evaluation No. 18, JPL Publication, National Aeronautics and Space
Administration, http://jpldataeval.jpl.nasa.gov (last access:
10 May 2022), 2015.
Chan, Y.-C., Evans, M. J., He, P., Holmes, C. D., Jaegle, L., Kasibhatla,
P., Liu, X.-Y., Sherwen, T., Thornton, J. A., Wang, X., Xie, Z., Zhai, S.,
and Alexander, B.: Heterogeneous Nitrate Production Mechanisms in Intense
Haze Events in the North China Plain, J. Geophys. Res.-Atmos., 126, e2021JD034688, https://doi.org/10.1029/2021jd034688, 2021.
Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub,
D.: Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model
Calculations of N2O5: A Review, Aerosol Sci. Tech., 45, 665–695,
https://doi.org/10.1080/02786826.2010.551672, 2011.
Chen, X., Wang, H., Lu, K., Li, C., Zhai, T., Tan, Z., Ma, X., Yang, X.,
Liu, Y., Chen, S., Dong, H., Li, X., Wu, Z., Hu, M., Zeng, L., and Zhang,
Y.: Field Determination of Nitrate Formation Pathway in Winter Beijing,
Environ. Sci. Technol., 54, 9243–9253, https://doi.org/10.1021/acs.est.0c00972, 2020.
Chen, Y., Wolke, R., Ran, L., Birmili, W., Spindler, G., Schröder, W., Su, H., Cheng, Y., Tegen, I., and Wiedensohler, A.: A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: improvement of particulate nitrate prediction, Atmos. Chem. Phys., 18, 673–689, https://doi.org/10.5194/acp-18-673-2018, 2018.
Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C.,
Yang, N., Ma, H., Ma, J., Russell, A. G., and He, H.: Air Pollutant
Correlations in China: Secondary Air Pollutant Responses to NOx and SO2
Control, Environ. Sci. Tech. Let., 7, 695–700,
https://doi.org/10.1021/acs.estlett.0c00403, 2020.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian
Integrated Trajectory), NOAA ARL READY, NOAA Air Resources Laboratory, MD,
Silver Spring, http://ready.arl.noaa.gov/HYSPLIT.php (last access: 10 April 2022), 2012.
Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K., Targino, A.,
Weimer, S., and Borrmann, S.: Measurement of ambient, interstitial, and
residual aerosol particles on a mountaintop site in central Sweden using an
aerosol mass spectrometer and a CVI, J. Atmos. Chem., 56, 1–20,
https://doi.org/10.1007/s10874-006-9036-8, 2007.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A.,
Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and
Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed
tropospheric aqueous phase mechanism and its application, J. Geophys.
Res.-Atmos., 108, 4426, https://doi.org/10.1029/2002jd002202, 2003.
Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in Clouds and
Fogs, Chem. Rev., 115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Fahey, K. M., Pandis, S. N., Collett, J. L., and Herckes, P.: The influence
of size-dependent droplet composition on pollutant processing by fogs,
Atmos. Environ., 39, 4561–4574, https://doi.org/10.1016/j.atmosenv.2005.04.006, 2005.
Fan, M. Y., Zhang, Y. L., Lin, Y. C., Hong, Y., Zhao, Z. Y., Xie, F., Du,
W., Cao, F., Sun, Y., and Fu, P.: Important Role of NO3 Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes Measured at the Tower, Environ. Sci. Technol., 56, 6870–6879, https://doi.org/10.1021/acs.est.1c02843, 2021.
Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y., Wang, S., Zhao, B., and Xue,
L.: Persistent Heavy Winter Nitrate Pollution Driven by Increased
Photochemical Oxidants in Northern China, Environ. Sci. Technol., 54,
3881–3889, https://doi.org/10.1021/acs.est.9b07248, 2020.
Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkle, P. M., Lawler, M. J., Brown, S. S., Edwards, P. M., Cohen, R. C., and Lee, L.: Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons, Environ. Sci. Technol., 48, 11944–11953, https://doi.org/10.1021/es502204x, 2014.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe
urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373,
https://doi.org/10.1073/pnas.1419604111, 2014.
Hall, S. R., Ullmann, K., Prather, M. J., Flynn, C. M., Murray, L. T., Fiore, A. M., Correa, G., Strode, S. A., Steenrod, S. D., Lamarque, J.-F., Guth, J., Josse, B., Flemming, J., Huijnen, V., Abraham, N. L., and Archibald, A. T.: Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809–16828, https://doi.org/10.5194/acp-18-16809-2018, 2018.
Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H.,
Miettinen, P., Komppula, M., Leskinen, A., Virtanen, A., Smith, J. N.,
Sueper, D., Worsnop, D. R., Lehtinen, K. E. J., and Laaksonen, A.: Aerosol
Chemical Composition in Cloud Events by High Resolution Time-of-Flight
Aerosol Mass Spectrometry, Environ. Sci. Technol., 47, 2645–2653,
https://doi.org/10.1021/es302889w, 2013.
Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031–11063, https://doi.org/10.5194/acp-14-11031-2014, 2014.
Hayden, K. L., Macdonald, A. M., Gong, W., Toom-Sauntry, D., Anlauf, K. G.,
Leithead, A., Li, S. M., Leaitch, W. R., and Noone, K.: Cloud processing of
nitrate, J. Geophys. Res.-Atmos., 113, 1–18, https://doi.org/10.1029/2007jd009732, 2008.
Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prévôt, A. S. H., Baltensperger, U., Sarda-Estève, R., McGuire, M. L., Jeong, C.-H., McGillicuddy, E., O'Connor, I. P., Sodeau, J. R., Evans, G. J., and Wenger, J. C.: Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements, Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, 2013.
Herckes, P., Chang, H., Lee, T., and Collett, J. L.: Air pollution
processing by radiation fogs, Water Air Soil Poll., 181, 65–75,
https://doi.org/10.1007/s11270-006-9276-x, 2007.
Herckes, P., Marcotte, A. R., Wang, Y., and Collett, J. L.: Fog composition
in the Central Valley of California over three decades, Atmos. Res., 151,
20–30, https://doi.org/10.1016/j.atmosres.2014.01.025, 2015.
Hodas, N., Sullivan, A. P., Skog, K., Keutsch, F. N., Collett, J. L., Jr.,
Decesari, S., Facchini, M. C., Carlton, A. G., Laaksonen, A., and Turpin, B.
J.: Aerosol liquid water driven by anthropogenic nitrate: implications for
lifetimes of water-soluble organic gases and potential for secondary organic
aerosol formation, Environ. Sci. Technol., 48, 11127–11136,
https://doi.org/10.1021/es5025096, 2014.
Holmes, C. D., Bertram, T. H., Confer, K. L., Grahams, K. A., Ronan, A. C.,
Wirks, C. K., and Shah, V.: The Role of Clouds in the Tropospheeric NOx
Cycle: A New Modeling Approach for Cloud Chemistry and Its Global
Implications, Geophys. Res. Lett., 46, 4980–4990, https://doi.org/10.1029/2019gl081990,
2019.
Huang, D. D., Zhang, Q., Cheung, H. H. Y., Yu, L., Zhou, S., Anastasio, C.,
Smith, J. D., and Chan, C. K.: Formation and Evolution of aqSOA from
Aqueous-Phase Reactions of Phenolic Carbonyls: Comparison between Ammonium
Sulfate and Ammonium Nitrate Solutions, Environ. Sci. Technol., 52,
9215–9224, https://doi.org/10.1021/acs.est.8b03441, 2018.
Jeong, C.-H., McGuire, M. L., Godri, K. J., Slowik, J. G., Rehbein, P. J. G., and Evans, G. J.: Quantification of aerosol chemical composition using continuous single particle measurements, Atmos. Chem. Phys., 11, 7027–7044, https://doi.org/10.5194/acp-11-7027-2011, 2011.
Kaur, R. and Anastasio, C.: Light absorption and the photoformation of
hydroxyl radical and singlet oxygen in fog waters, Atmos. Environ., 164,
387–397, https://doi.org/10.1016/j.atmosenv.2017.06.006, 2017.
Leaitch, W. R., Bottenheim, J. W., and Strapp, J. W.: Possible contribution
of N2O5 scavenging to HNO3 observed in winter stratiform
cloud, J. Geophys. Res.-Atmos., 93, 12569–12584,
https://doi.org/10.1029/JD093iD10p12569, 1988.
Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X., and He, K.: Nitrate-driven urban haze pollution during summertime over the North China Plain, Atmos. Chem. Phys., 18, 5293–5306, https://doi.org/10.5194/acp-18-5293-2018, 2018.
Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Fu, Z.,
Zhang, G. H., Bi, X. H., Cheng, P., and Zhou, Z.: Real time bipolar
time-of-flight mass spectrometer for analyzing single aerosol particles,
Int. J. Mass. Spectrom., 303, 118–124, https://doi.org/10.1016/j.ijms.2011.01.017,
2011.
Li, S., Zhang, F., Jin, X., Sun, Y., Wu, H., Xie, C., Chen, L., Liu, J., Wu,
T., Jiang, S., Cribb, M., and Li, Z.: Characterizing the ratio of nitrate to
sulfate in ambient fine particles of urban Beijing during 2018–2019, Atmos.
Environ., 237, 117662, https://doi.org/10.1016/j.atmosenv.2020.117662, 2020.
Li, T., Wang, Z., Wang, Y., Wu, C., Liang, Y., Xia, M., Yu, C., Yun, H., Wang, W., Wang, Y., Guo, J., Herrmann, H., and Wang, T.: Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR, Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, 2020.
Lin, Q., Zhang, G., Peng, L., Bi, X., Wang, X., Brechtel, F. J., Li, M., Chen, D., Peng, P., Sheng, G., and Zhou, Z.: In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China, Atmos. Chem. Phys., 17, 8473–8488, https://doi.org/10.5194/acp-17-8473-2017, 2017.
Lin, Y. C., Zhang, Y. L., Yu, M., Fan, M. Y., Xie, F., Zhang, W. Q., Wu, G.,
Cong, Z., and Michalski, G.: Formation Mechanisms and Source Apportionments
of Airborne Nitrate Aerosols at a Himalayan-Tibetan Plateau Site: Insights
from Nitrogen and Oxygen Isotopic Compositions, Environ. Sci. Technol., 55,
12261–12271, https://doi.org/10.1021/acs.est.1c03957, 2021.
Liu, H. Y., Crawford, J. H., Pierce, R. B., Norris, P., Platnick, S. E.,
Chen, G., Logan, J. A., Yantosca, R. M., Evans, M. J., Kittaka, C., Feng,
Y., and Tie, X. X.: Radiative effect of clouds on tropospheric chemistry in
a global three-dimensional chemical transport model, J. Geophys. Res.-Atmos., 111, D20303, https://doi.org/10.1029/2005jd006403, 2006.
Liu, L., Bei, N. F., Hu, B., Wu, J. R., Liu, S. X., Li, X., Wang, R. N.,
Liu, Z. R., Shen, Z. X., and Li, G. H.: Wintertime nitrate formation
pathways in the north China plain: Importance of N2O5 heterogeneous
hydrolysis, Environ. Pollut., 266, 10, https://doi.org/10.1016/j.envpol.2020.115287,
2020.
Liu, P., Ye, C., Xue, C., Zhang, C., Mu, Y., and Sun, X.: Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry, Atmos. Chem. Phys., 20, 4153–4165, https://doi.org/10.5194/acp-20-4153-2020, 2020.
Lu, K., Fuchs, H., Hofzumahaus, A., Tan, Z., Wang, H., Zhang, L., Schmitt,
S. H., Rohrer, F., Bohn, B., Broch, S., Dong, H., Gkatzelis, G. I., Hohaus,
T., Holland, F., Li, X., Liu, Y., Liu, Y., Ma, X., Novelli, A., Schlag, P.,
Shao, M., Wu, Y., Wu, Z., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A.,
and Zhang, Y.: Fast Photochemistry in Wintertime Haze: Consequences for
Pollution Mitigation Strategies, Environ. Sci. Technol., 53, 10676–10684,
https://doi.org/10.1021/acs.est.9b02422, 2019.
McNeill, V. F.: Atmospheric Aerosols: Clouds, Chemistry, and Climate, Annu.
Rev. Chem. Biomol., 8, 427–444,
https://doi.org/10.1146/annurev-chembioeng-060816-101538, 2017.
Neuman, J. A., Nowak, J. B., Brock, C. A., Trainer, M., Fehsenfeld, F. C.,
Holloway, J. S., Hubler, G., Hudson, P. K., Murphy, D. M., Nicks, D. K.,
Orsini, D., Parrish, D. D., Ryerson, T. B., Sueper, D. T., Sullivan, A., and
Weber, R.: Variability in ammonium nitrate formation and nitric acid
depletion with altitude and location over California, J. Geophys. Res.-Atmos., 108, 4557, https://doi.org/10.1029/2003jd003616, 2003.
Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711–1722, https://doi.org/10.5194/acp-9-1711-2009, 2009.
Prabhakar, G., Ervens, B., Wang, Z., Maudlin, L. C., Coggon, M. M., Jonsson,
H. H., Seinfeld, J. H., and Sorooshian, A.: Sources of nitrate in
stratocumulus cloud water: Airborne measurements during the 2011 E-PEACE and
2013 NiCE studies, Atmos. Environ., 97, 166–173,
https://doi.org/10.1016/j.atmosenv.2014.08.019, 2014.
Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L.,
Heymsfield, A. J., Twohy, C. H., Prenni, A. J., and Prather, K. A.: In situ
detection of biological particles in cloud ice-crystals, Nat. Geosci., 2,
397–400, 2009.
Qu, K., Wang, X., Xiao, T., Shen, J., Lin, T., Chen, D., He, L.-Y., Huang,
X.-F., Zeng, L., Lu, K., Ou, Y., and Zhang, Y.: Cross-regional transport of
PM2.5 nitrate in the Pearl River Delta, China: Contributions and
mechanisms, Sci. Total. Environ., 753, 142439, https://doi.org/10.1016/j.scitotenv.2020.142439, 2021.
Riemer, N., Vogel, H., Vogel, B., Schell, B., Ackermann, I., Kessler, C.,
and Hass, H.: Impact of the heterogeneous hydrolysis of N2O5 on
chemistry and nitrate aerosol formation in the lower troposphere under
photosmog conditions, J. Geophys. Res.-Atmos., 108, 4144,
https://doi.org/10.1029/2002jd002436, 2003.
Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010, Atmos. Chem. Phys., 16, 505–524, https://doi.org/10.5194/acp-16-505-2016, 2016.
Scharko, N. K., Berke, A. E., and Raff, J. D.: Release of Nitrous Acid and
Nitrogen Dioxide from Nitrate Photolysis in Acidic Aqueous Solutions,
Environ. Sci. Technol., 48, 11991–12001, https://doi.org/10.1021/es503088x, 2014.
Schneider, J., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: Uptake of nitric acid, ammonia, and organics in orographic clouds: mass spectrometric analyses of droplet residual and interstitial aerosol particles, Atmos. Chem. Phys., 17, 1571–1593, https://doi.org/10.5194/acp-17-1571-2017, 2017.
Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, John Wiley & Sons, Inc., New Jersey, ISBN 9780471720188, 2006.
Sellegri, K., Laj, P., Marinoni, A., Dupuy, R., Legrand, M., and Preunkert, S.: Contribution of gaseous and particulate species to droplet solute composition at the Puy de Dôme, France, Atmos. Chem. Phys., 3, 1509–1522, https://doi.org/10.5194/acp-3-1509-2003, 2003.
Shi, X., Nenes, A., Xiao, Z., Song, S., Yu, H., Shi, G., Zhao, Q., Chen, K.,
Feng, Y., and Russell, A. G.: High-Resolution Data Sets Unravel the Effects
of Sources and Meteorological Conditions on Nitrate and Its Gas-Particle
Partitioning, Environ. Sci. Technol., 53, 3048–3057,
https://doi.org/10.1021/acs.est.8b06524, 2019.
Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M., Mülmenstädt, J., Russell, L. M., Jonsson, H. H., and Seinfeld, J. H.: Characterisation and airborne deployment of a new counterflow virtual impactor inlet, Atmos. Meas. Tech., 5, 1259–1269, https://doi.org/10.5194/amt-5-1259-2012, 2012.
Song, X. H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.:
Classification of single particles analyzed by ATOFMS using an artificial
neural network, ART-2A, Anal. Chem., 71, 860–865, 1999.
Strode, S. A., Douglass, A. R., Ziemke, J. R., Manyin, M., Nielsen, J. E.,
and Oman, L. D.: A Model and Satellite-Based Analysis of the Tropospheric
Ozone Distribution in Clear Versus Convectively Cloudy Conditions, J.
Geophys. Res.-Atmos., 122, 11948–11960, https://doi.org/10.1002/2017jd027015, 2017.
Sultana, C. M., Cornwell, G. C., Rodriguez, P., and Prather, K. A.: FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data, Atmos. Meas. Tech., 10, 1323–1334, https://doi.org/10.5194/amt-10-1323-2017, 2017.
Sun, J. X., Liu, L., Xu, L., Wang, Y. Y., Wu, Z. J., Hu, M., Shi, Z. B., Li,
Y. J., Zhang, X. Y., Chen, J. M., and Li, W. J.: Key Role of Nitrate in
Phase Transitions of Urban Particles: Implications of Important Reactive
Surfaces for Secondary Aerosol Formation, J. Geophys. Res.-Atmos., 123,
1234–1243, https://doi.org/10.1002/2017JD027264, 2018.
Tao, J., Zhang, Z., Tan, H., Zhang, L., Wu, Y., Sun, J., Che, H., Cao, J.,
Cheng, P., Chen, L., and Zhang, R.: Observational evidence of cloud
processes contributing to daytime elevated nitrate in an urban atmosphere,
Atmos. Environ., 186, 209–215, https://doi.org/10.1016/j.atmosenv.2018.05.040, 2018.
Tian, M., Liu, Y., Yang, F. M., Zhang, L. M., Peng, C., Chen, Y., Shi, G.
M., Wang, H. B., Luo, B., Jiang, C. T., Li, B., Takeda, N., and Koizumi, K.:
Increasing importance of nitrate formation for heavy aerosol pollution in
two megacities in Sichuan Basin, southwest China, Environ. Pollut., 250,
898–905, https://doi.org/10.1016/j.envpol.2019.04.098, 2019.
Voulgarakis, A., Wild, O., Savage, N. H., Carver, G. D., and Pyle, J. A.: Clouds, photolysis and regional tropospheric ozone budgets, Atmos. Chem. Phys., 9, 8235–8246, https://doi.org/10.5194/acp-9-8235-2009, 2009.
Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X.,
Shang, D., Tan, Z., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zeng, L., Zhu, T.,
Hu, M., and Zhang, Y.: High N2O5 Concentrations Observed in Urban
Beijing: Implications of a Large Nitrate Formation Pathway, Environ. Sci.
Tech. Lett., 4, 416–420, https://doi.org/10.1021/acs.estlett.7b00341, 2017.
Wang, X. F., Zhang, Y. P., Chen, H., Yang, X., Chen, J. M., and Geng, F. H.:
Particulate Nitrate Formation in a Highly Polluted Urban Area: A Case Study
by Single-Particle Mass Spectrometry in Shanghai, Environ. Sci. Technol.,
43, 3061–3066, https://doi.org/10.1021/es8020155, 2009.
Wen, L., Xue, L., Wang, X., Xu, C., Chen, T., Yang, L., Wang, T., Zhang, Q., and Wang, W.: Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy, Atmos. Chem. Phys., 18, 11261–11275, https://doi.org/10.5194/acp-18-11261-2018, 2018.
Wu, C., Liu, L., Wang, G., Zhang, S., Li, G., Lv, S., Li, J., Wang, F.,
Meng, J., and Zens, Y.: Important contribution of N2O5 hydrolysis
to the daytime nitrate in Xi'an, China during haze periods: Isotopic
analysis and WRF-Chem model simulation, Environ. Pollut., 288, 117712,
https://doi.org/10.1016/j.envpol.2021.117712, 2021.
Xiao, H.-W., Zhu, R.-G., Pan, Y.-Y., Guo, W., Zheng, N.-J., Liu, Y.-H., Liu,
C., Zhang, Z.-Y., Wu, J.-F., Kang, C.-A., Luo, L., and Xiao, H.-Y.:
Differentiation Between Nitrate Aerosol Formation Pathways in a Southeast
Chinese City by Dual Isotope and Modeling Studies, J. Geophys. Res.-Atmos.,
125, 13, https://doi.org/10.1029/2020jd032604, 2020.
Xu, L. and Penner, J. E.: Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys., 12, 9479–9504, https://doi.org/10.5194/acp-12-9479-2012, 2012.
Xu, Q., Wang, S., Jiang, J., Bhattarai, N., Li, X., Chang, X., Qiu, X.,
Zheng, M., Hua, Y., and Hao, J.: Nitrate dominates the chemical composition
of PM2.5 during haze event in Beijing, China, Sci. Total. Environ.,
689, 1293–1303, https://doi.org/10.1016/j.scitotenv.2019.06.294, 2019.
Yan, C., Tham, Y. J., Zha, Q. Z., Wang, X. F., Xue, L. K., Dai, J. N., Wang,
Z., and Wang, T.: Fast heterogeneous loss of N2O5 leads to
significant nighttime NOx removal and nitrate aerosol formation at a coastal
background environment of southern China, Sci. Total. Environ., 677,
637–647, https://doi.org/10.1016/j.scitotenv.2019.04.389, 2019.
Ye, C., Heard, D. E., and Whalley, L. K.: Evaluation of Novel Routes for NOx
Formation in Remote Regions, Environ. Sci. Technol., 51, 7442–7449,
https://doi.org/10.1021/acs.est.6b06441, 2017a.
Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate
as a Source of HONO and NOx, Environ. Sci. Technol., 51, 6849–6856,
https://doi.org/10.1021/acs.est.7b00387, 2017b.
Zhai, S., Jacob, D. J., Wang, X., Liu, Z., Wen, T., Shah, V., Li, K., Moch,
J. M., Bates, K. H., Song, S., Shen, L., Zhang, Y., Luo, G., Yu, F., Sun,
Y., Wang, L., Qi, M., Tao, J., Gui, K., Xu, H., Zhang, Q., Zhao, T., Wang,
Y., Lee, H. C., Choi, H., and Liao, H.: Control of particulate nitrate air
pollution in China, Nat. Geosci., 14, 389–395,
https://doi.org/10.1038/s41561-021-00726-z, 2021.
Zhang, G., Lin, Q., Peng, L., Yang, Y., Fu, Y., Bi, X., Li, M., Chen, D., Chen, J., Cai, Z., Wang, X., Peng, P., Sheng, G., and Zhou, Z.: Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry, Atmos. Chem. Phys., 17, 13891–13901, https://doi.org/10.5194/acp-17-13891-2017, 2017.
Zhang, R., Gen, M., Fu, T. M., and Chan, C. K.: Production of Formate via
Oxidation of Glyoxal Promoted by Particulate Nitrate Photolysis, Environ.
Sci. Technol., 55, 5711–5720, https://doi.org/10.1021/acs.est.0c08199, 2021.
Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X.,
Zhang, S., Xing, J., Sun, Y., Ji, D., Chan, C. K., Gao, J., and McElroy, M.
B.: Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate
Formation for Winter Haze in China, Environ. Sci. Tech. Let., 7, 632–638,
https://doi.org/10.1021/acs.estlett.0c00368, 2020.
Zhu, Y., Tilgner, A., Hoffmann, E. H., Herrmann, H., Kawamura, K., Yang, L., Xue, L., and Wang, W.: Multiphase MCM–CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014, Atmos. Chem. Phys., 20, 6725–6747, https://doi.org/10.5194/acp-20-6725-2020, 2020.
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity...
Altmetrics
Final-revised paper
Preprint