Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-6067-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6067-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects
Nair K. Kala
CORRESPONDING AUTHOR
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bengaluru, India
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Narayana Sarma Anand
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Mohanan R. Manoj
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Harshavardhana S. Pathak
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Krishnaswamy K. Moorthy
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Sreedharan K. Satheesh
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bengaluru, India
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
DST – Centre of Excellence in Climate Change, Indian Institute of
Science, Bengaluru, India
Related authors
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Archana Devi, Sreedharan K Satheesh, and Jayaraman Srinivasan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4146, https://doi.org/10.5194/egusphere-2025-4146, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares aerosol single scattering albedo data from two algorithms, CERES-MODIS and OMI, across different regions like forests, oceans, land, and deserts. It finds that CERES-MODIS tracks aerosol absorption more accurately, especially in areas with smoke and pollution. In clean regions, both algorithms perform similarly. The study helps scientists understand which satellite gives better data in different conditions, supporting improved climate and air quality research.
Srinivasan Prasanth, Narayana Sarma Anand, Kudilil Sunilkumar, Subin Jose, Kenath Arun, Sreedharan K. Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 25, 7161–7186, https://doi.org/10.5194/acp-25-7161-2025, https://doi.org/10.5194/acp-25-7161-2025, 2025
Short summary
Short summary
We study the impact of the 2019–2020 Australian bushfires on stratospheric chemistry and polar stratospheric cloud (PSC) dynamics. Our results show that the stratospheric intrusion of bushfire aerosols significantly increases nitric acid in the lower stratosphere, thereby increasing the PSC volume during the Austral winter. Notably, rapid ice PSC nucleation on nitric acid trihydrate particles leads to unusually high ice PSC volumes, highlighting the response of PSCs to an enhanced stratospheric aerosol scenario.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021, https://doi.org/10.5194/acp-21-17665-2021, 2021
Short summary
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020, https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
Short summary
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded aerosol datasets over the Indian region. The present ARF estimates are more accurate and certain than those estimated using the currently available, latest satellite-retrieved aerosol products. Therefore, the present ARF estimates and corresponding assimilated aerosol products emerge as potential candidates for improving the aerosol climate impact assessment at regional, subregional and seasonal scales.
Cited articles
Anderson, T. L., Masonis, S. J., Covert, D. S., Ahlquist, N. C., Howell, S.
G., Clarke, A. D., and McNaughton, C. S.: Variability of aerosol optical
properties derived from in situ aircraft measurements during ACE-Asia,
J. Geophys. Res.-Atmos., 108, D23, https://doi.org/10.1029/2002JD003247, 2003.
Ansmann, A., Althausen, D., Wandinger, U., Franke, K., Müller, D.,
Wagner, F., and Heintzenberg, J.: Vertical profiling of the Indian aerosol
plume with six-wavelength lidar during INDOEX: A first case study,
Geophys. Res. Lett., 27, 963–966, 2000.
Babu, S. S., Satheesh, S. K., and Moorthy, K. K.: Aerosol radiative forcing
due to enhanced black carbon at an urban site in India, Geophys. Res. Lett., 29, 27 pp., 2002.
Babu, S. S., Moorthy, K. K., and Satheesh, S. K.: Vertical and horizontal
gradients in aerosol black carbon and its mass fraction to composite
aerosols over the east coast of Peninsular India from Aircraft measurements,
Adv. Meteorol., 2010, https://doi.org/10.1155/2010/812075, 2010.
Babu, S. S., Moorthy, K. K., Manchanda, R. K., Sinha, P. R., Satheesh, S.
K., Vajja, D. P., Srinivasan, S., and Kumar, V. H. A.: Free tropospheric
black carbon aerosol measurements using high altitude balloon: Do BC layers
build “their own homes” up in the atmosphere?, Geophys. Res. Lett., 38, 8, https://doi.org/10.1029/2011GL046654, 2011.
Babu, S. S., Nair, V. S., Gogoi, M. M., and Moorthy, K. K.: Seasonal
variation of vertical distribution of aerosol single scattering albedo over
Indian sub-continent: RAWEX aircraft observations, Atmos. Environ.,
125, 312–323, 2016.
Badarinath, K. V. S., Kharol, S. K., and Sharma, A. R.: Long-range transport
of aerosols from agriculture crop residue burning in Indo-Gangetic
Plains – a study using LIDAR, ground measurements and satellite data,
J. Atmos. Sol.-Terr. Phys., 71, 112–120, 2009.
Banerjee, P., Satheesh, S. K., Moorthy, K. K., Nanjundiah, R. S., and Nair,
V. S.: Long-range transport of mineral dust to the Northeast Indian Ocean:
Regional versus remote sources and the implications, J. Clim., 32,
1525–1549, 2019.
Beegum, S. N., Moorthy, K. K., Nair, V. S., Babu, S. S., Satheesh, S. K.,
Vinoj, V., Reddy, R. R., Gopal, K. R., Badarinath, K. V. S., and Niranjan,
K.: Characteristics of spectral aerosol optical depths over India during
ICARB, J. Earth Syst. Sci., 117, 303–313, 2008.
Bhattacharya, A., Chakraborty, A., and Venugopal, V.: Role of aerosols in
modulating cloud properties during active–break cycle of Indian summer
monsoon, Clim. Dynam., 49, 2131–2145, 2017.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., and Lohmann, U.: Clouds and
aerosols, in: Climate change 2013: the physical science basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, 571–657, 2013.
Brooks, J., Allan, J. D., Williams, P. I., Liu, D., Fox, C., Haywood, J., Langridge, J. M., Highwood, E. J., Kompalli, S. K., O'Sullivan, D., Babu, S. S., Satheesh, S. K., Turner, A. G., and Coe, H.: Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons, Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, 2019.
Chandrasekhar, S.: Radiative transfer, Dover Publications, New York, ISBN 10 0486605906, ISBN 13 9780486605906, 1960.
Choi, J.-O. and Chung, C. E.: Sensitivity of aerosol direct radiative
forcing to aerosol vertical profile, Tellus B, 66, 24376, https://doi.org/10.3402/tellusb.v66.24376, 2014.
Das, S., Giorgi, F., and Giuliani, G.: Investigating the relative responses
of regional monsoon dynamics to snow darkening and direct radiative effects
of dust and carbonaceous aerosols over the Indian subcontinent, Clim. Dynam., 55, 1011–1030, 2020.
Deepshikha, S., Satheesh, S. K., and Srinivasan, J.: Regional distribution
of absorbing efficiency of dust aerosols over India and adjacent continents
inferred using satellite remote sensing, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL022091,
2005.
Di Girolamo, L., Bond, T. C., Bramer, D., Diner, D. J., Fettinger, F., Kahn,
R. A., Martonchik, J. V., Ramana, M. V., Ramanathan, V., and Rasch, P. J.:
Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical
depths over greater India during winter 2001–2004, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL021273, 2004.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck,
T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties
retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance
measurements, J. Geophys. Res.-Atmos., 105, 9791–9806,
2000.
Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H.,
Chatenet, B., Li, Z., Singh, R. P., and Tripathi, S. N.: Climatological
aspects of the optical properties of fine/coarse mode aerosol mixtures,
J. Geophys. Res.-Atmos., 115, D19, https://doi.org/10.1029/2010JD014002, 2010.
Eswaran, K., Satheesh, S. K., and Srinivasan, J.: Multi-satellite retrieval of single scattering albedo using the OMI–MODIS algorithm, Atmos. Chem. Phys., 19, 3307–3324, https://doi.org/10.5194/acp-19-3307-2019, 2019.
Feng, Y., Kotamarthi, V. R., Coulter, R., Zhao, C., and Cadeddu, M.: Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia, Atmos. Chem. Phys., 16, 247–264, https://doi.org/10.5194/acp-16-247-2016, 2016.
Franke, K., Ansmann, A., Müller, D., Althausen, D., Wagner, F., and
Scheele, R.: One-year observations of particle lidar ratio over the tropical
Indian Ocean with Raman lidar, Geophys. Res. Lett., 28,
4559–4562, 2001.
Franke, K., Ansmann, A., Müller, D., Althausen, D., Venkataraman, C.,
Reddy, M. S., Wagner, F., and Scheele, R.: Optical properties of the
Indo-Asian haze layer over the tropical Indian Ocean, J. Geophys.
Res.-Atmos., 108, D2, https://doi.org/10.1029/2002JD002473, 2003.
Gadi, R., Kulshrestha, U. C., Sarkar, A. K., Garg, S. C., and Parashar, D.
C.: Emissions of SO2 and NOx from biofuels in India, Tellus B, 55, 787–795, 2011.
Garg, A., Shukla, P. R., Bhattacharya, S., and Dadhwal, V. K.: Sub-region
(district) and sector level SO2 and NOx emissions for India: assessment of
inventories and mitigation flexibility, Atmos. Environ., 35,
703–713, 2001.
Gautam, R., Liu, Z., Singh, R. P., and Hsu, N. C.: Two contrasting
dust-dominant periods over India observed from MODIS and CALIPSO data,
Geophys. Res. Lett., 36, https://doi.org/10.1029/2008GL036967, 2009.
Gautam, R., Hsu, N. C., and Lau, K. M.: Premonsoon aerosol characterization
and radiative effects over the Indo-Gangetic Plains: Implications for
regional climate warming, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2010JD013819,
2010.
Ghan, S. J., Liu, X., Easter, R. C., Zaveri, R., Rasch, P. J., Yoon, J.-H.,
and Eaton, B.: Toward a minimal representation of aerosols in climate
models: Comparative decomposition of aerosol direct, semidirect, and
indirect radiative forcing, J. Clim., 25, 6461–6476, 2012.
Giles, D. M., Holben, B. N., Tripathi, S. N., Eck, T. F., Newcomb, W. W.,
Slutsker, I., Dickerson, R. R., Thompson, A. M., Mattoo, S., and Wang, S.
H.: Aerosol properties over the Indo-Gangetic Plain: A mesoscale perspective
from the TIGERZ experiment, J. Geophys. Res.-Atmos.,
116, D18, https://doi.org/10.1029/2011JD015809, 2011.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev.
Geophys., 50, https://doi.org/10.1029/2012RG000388, 2012.
Goto, D., Takemura, T., Nakajima, T., and Badarinath, K. V. S.: Global
aerosol model-derived black carbon concentration and single scattering
albedo over Indian region and its comparison with ground observations,
Atmos. Environ., 45, 3277–3285, https://doi.org/10.1016/j.atmosenv.2011.03.037,
2011.
Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M.,
Ansmann, A., Althausen, D., and Seefeldner, M.: Characterization of Saharan
dust, marine aerosols and mixtures of biomass-burning aerosols and dust by
means of multi-wavelength depolarization and Raman lidar measurements during
SAMUM 2, Tellus B, 63, 706–724, 2011.
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: The software package OPAC, Bull. Am. Meteorol.
Soc., 79, 831–844, 1998.
Hofer, J., Althausen, D., Abdullaev, S. F., Makhmudov, A. N., Nazarov, B. I., Schettler, G., Engelmann, R., Baars, H., Fomba, K. W., Müller, K., Heinold, B., Kandler, K., and Ansmann, A.: Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies, Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, 2017.
Hofer, J., Ansmann, A., Althausen, D., Engelmann, R., Baars, H., Fomba, K. W., Wandinger, U., Abdullaev, S. F., and Makhmudov, A. N.: Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm, Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, 2020.
Hu, Q., Wang, H., Goloub, P., Li, Z., Veselovskii, I., Podvin, T., Li, K., and Korenskiy, M.: The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China, Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, 2020.
Jin, Q., Wei, J., and Yang, Z. L.: Positive response of Indian summer
rainfall to Middle East dust, Geophys. Res. Lett., 41, 4068–4074,
2014.
Kala, N. K., Anand, N. S., Manoj, M. R., Pathak, H. S., Moorthy, K. K., and Satheesh, S. K.: ACP-2021-740, figshare [data set], https://doi.org/10.6084/m9.figshare.19572889.v2, 2022
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge University Press, 2003.
Kedia, S., Ramachandran, S., Holben, B. N., and Tripathi, S. N.:
Quantification of aerosol type, and sources of aerosols over the
Indo-Gangetic Plain, Atmos. Environ., 98, 607–619,
https://doi.org/10.1016/j.atmosenv.2014.09.022, 2014.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K.: What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, 2016.
Koffi, B., Schulz, M., Bréon, F. M., Griesfeller, J., Winker, D.,
Balkanski, Y., Bauer, S., Berntsen, T., Chin, M., and Collins, W. D.:
Application of the CALIOP layer product to evaluate the vertical
distribution of aerosols estimated by global models: AeroCom phase I
results, J. Geophys. Res.-Atmos., 117, D10, https://doi.org/10.1029/2011JD016858, 2012.
Koffi, B., Schulz, M., Bréon, F. M., Dentener, F., Steensen, B. M.,
Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S. E., and Bellouin, N.:
Evaluation of the aerosol vertical distribution in global aerosol models
through comparison against CALIOP measurements: AeroCom phase II results,
J. Geophys. Res.-Atmos., 121, 7254–7283, 2016.
Kompalli, S. K., Babu, S. N. S., Moorthy, K. K., Satheesh, S. K., Gogoi, M. M., Nair, V. S., Jayachandran, V. N., Liu, D., Flynn, M. J., and Coe, H.: Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter, Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, 2021.
Kumar, A., Sudheer, A. K., and Sarin, M. M.: Chemical characteristics of
aerosols in MABL of Bay of Bengal and Arabian Sea during spring
inter-monsoon: a comparative study, J. Earth Syst. Sci., 117,
325–332, 2008.
Lakshmi, N. B., Nair, V. S., and Babu, S. S.: Vertical structure of aerosols
and mineral dust over the Bay of Bengal from multisatellite observations,
J. Geophys. Res.-Atmos., 122, 812845–812861, https://doi.org/10.1002/2017JD027643, 2017.
Lau, K. M., Kim, M. K., and Kim, K. M.: Asian summer monsoon anomalies
induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dynam., 26, 855–864, 2006.
Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J., Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response, Atmos. Chem. Phys., 12, 3349–3362, https://doi.org/10.5194/acp-12-3349-2012, 2012.
Léon, J. F., Chazette, P., Dulac, F., Pelon, J., Flamant, C., Bonazzola,
M., Foret, G., Alfaro, S. C., Cachier, H., Cautenet, S., and Hamonou, E.:
Large-scale advection of continental aerosols during INDOEX, J. Geophys. Res.-Atmos., 106, 28427–28439, 2001.
Lewis, J. M., Lakshmivarahan, S., and Dhall, S.: Dynamic data assimilation:
a least squares approach, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511526480, 2006.
Li, F. and Ramanathan, V.: Winter to summer monsoon variation of aerosol
optical depth over the tropical Indian Ocean, J. Geophys. Res.-Atmos., 107, D16, https://doi.org/10.1029/2001JD000949, 2002.
Liou, K.-N.: An introduction to atmospheric radiation, Elsevier, Vol. 84, ISBN 9780124514508, ISBN 9780080954592, 2002.
Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R.,
Omar, A., Powell, K., Trepte, C., and Hostetler, C.: The CALIPSO lidar cloud
and aerosol discrimination: Version 2 algorithm and initial assessment of
performance, J. Atmos. Ocean. Technol., 26, 1198–1213,
2009.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J., Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and Winker, D.: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, 2019.
Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H.-C., Swietlicki, E., and Henzing, J. S.: Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, 2014.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M., and Babu, S.
S.: Decreasing trend in black carbon aerosols over the Indian region,
Geophys. Res. Lett., 46, 2903–2910, 2019.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., and Coe, H.: Vertical profiles of submicron aerosol single scattering albedo over the Indian region immediately before monsoon onset and during its development: research from the SWAAMI field campaign, Atmos. Chem. Phys., 20, 4031–4046, https://doi.org/10.5194/acp-20-4031-2020, 2020.
Mishra, A. K. and Shibata, T.: Climatological aspects of seasonal variation
of aerosol vertical distribution over central Indo-Gangetic belt (IGB)
inferred by the space-borne lidar CALIOP, Atmos. Environ., 57,
205–218, 2012.
Moorthy, K. K. and Saha, A.: Aerosol study during INDOEX: Observation of
enhanced aerosol activity over the mid Arabian Sea during the northern
winter, J. Atmos. Sol.-Terr. Phys., 62, 65–72,
2000.
Moorthy, K. K., Babu, S. S., Sunilkumar, S. V., Gupta, P. K., and Gera, B.
S.: Altitude profiles of aerosol BC, derived from aircraft measurements over
an inland urban location in India, Geophys. Res. Lett., 31, 2004.
Moorthy, K. K., Sunilkumar, S. V., Pillai, P. S., Parameswaran, K., Nair, P.
R., Ahmed, Y. N., Ramgopal, K., Narasimhulu, K., Reddy, R. R., and Vinoj,
V.: Wintertime spatial characteristics of boundary layer aerosols over
peninsular India, J. Geophys. Res.-Atmos., 110, D8, https://doi.org/10.1029/2004JD005520, 2005a.
Moorthy, K. K., Babu, S. S., and Satheesh, S. K.: Aerosol characteristics
and radiative impacts over the Arabian Sea during the intermonsoon season:
Results from ARMEX field campaign, J. Atmos. Sci.,
62, 192–206, 2005b.
Moorthy, K. K., Babu, S. S., Satheesh, S. K., Srinivasan, J., and Dutt, C.
B. S.: Dust absorption over the “Great Indian Desert” inferred using
ground-based and satellite remote sensing, J. Geophys. Res.-Atmos., 112, D9, https://doi.org/10.1029/2006JD007690, 2007.
Moorthy, K. K., Satheesh, S. K., Babu, S. S., and Dutt, C. B. S.: Integrated
campaign for aerosols, gases and radiation budget (ICARB): an overview,
J. Earth Syst. Sci., 117, 243–262, 2008.
Moorthy, K. K., Nair, V. S., Babu, S. S., and Satheesh, S. K.: Spatial and
vertical heterogeneities in aerosol properties over oceanic regions around
India: Implications for radiative forcing, Q. J. Roy.
Meteor. Soc., 135, 2131–2145, 2009.
Müller, D., Franke, K., Wagner, F., Althausen, D., Ansmann, A., and
Heintzenberg, J.: Vertical profiling of optical and physical particle
properties over the tropical Indian Ocean with six-wavelength lidar: 1.
Seasonal cycle, J. Geophys. Res., 106, 28567–28575,
2001a.
Müller, D., Franke, K., Wagner, F., Althausen, D., Ansmann, A., and
Heintzenberg, J.: Vertical profiling of optical and physical particle
properties over the tropical Indian Ocean with six-wavelength lidar: 2. Case
studies, J. Geophys. Res., 106, 28577–28595, 2001b.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., and Tripathi, S.
N.: Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP):
Impacts of local boundary layer processes and long-range transport, J. Geophys. Res.-Atmos., 112, D13, https://doi.org/10.1029/2006JD008099, 2007.
Nair, V. S., Babu, S. S., and Moorthy, K. K.: Spatial distribution and
spectral characteristics of aerosol single scattering albedo over the Bay of
Bengal inferred from shipborne measurements, Geophys. Res. Lett.,
35, https://doi.org/10.1029/2008GL033687, 2008a.
Nair, V. S., Babu, S. S., and Moorthy, K. K.: Aerosol characteristics in the
marine atmospheric boundary layer over the Bay of Bengal and Arabian Sea
during ICARB: Spatial distribution and latitudinal and longitudinal
gradients, J. Geophys. Res.-Atmos., 113, D15208,
https://doi.org/10.1029/2008jd009823, 2008b.
Nair, V. S., Babu, S. S., Moorthy, K. K., Sharma, A. K., Marinoni, A., and
Ajai: Black carbon aerosols over the Himalayas: direct and surface albedo
forcing, Tellus B, 65, 19738, https://doi.org/10.3402/tellusb.v65i0.19738, 2013.
Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., and Sehatkashani,
S.: Impacts of climate and synoptic fluctuations on dust storm activity over
the Middle East, Atmos. Environ., 173, 265–276,
https://doi.org/10.1016/j.atmosenv.2017.11.016, 2018.
Niranjan, K., Sreekanth, V., Madhavan, B. L., and Moorthy, K. K.: Aerosol
physical properties and Radiative forcing at the outflow region from the
Indo-Gangetic plains during typical clear and hazy periods of wintertime,
Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL031224, 2007.
Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P.
C. S., and Pinker, R. T.: Aerosol radiative forcing during dust events over
New Delhi, India, J. Geophys. Res.-Atmos., 113, D13, https://doi.org/10.1029/2008JD009804, 2008.
Patel, P. and Shukla, A. K.: Aerosol optical properties over marine and
continental sites of India during pre-monsoon season, Curr. Sci., 108,
666–676, 2015.
Pathak, B. and Bhuyan, P. K.: Absorbing and scattering properties of
boundary layer aerosols over Dibrugarh, Northeast India, Int.
J. Remote Sens., 35, 5527–5543, 2014.
Pathak, H. S., Satheesh, S. K., Nanjundiah, R. S., Moorthy, K. K., Lakshmivarahan, S., and Babu, S. N. S.: Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent, Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019, 2019.
Pöschl, U.: Atmospheric aerosols: composition, transformation, climate
and health effects, Angew. Chem. Int. Edit., 44, 7520–7540,
2005.
Pozzer, A., de Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., and Astitha, M.: AOD trends during 2001–2010 from observations and model simulations, Atmos. Chem. Phys., 15, 5521–5535, https://doi.org/10.5194/acp-15-5521-2015, 2015.
Prasad, A. K. and Singh, R. P.: Changes in aerosol parameters during major
dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET
and MODIS data, J. Geophys. Res.-Atmos., 112, D9, https://doi.org/10.1029/2006JD007778, 2007.
Prasad, A. K., Singh, R. P., and Kafatos, M.: Influence of coal based
thermal power plants on aerosol optical properties in the Indo-Gangetic
basin, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL023801, 2006.
Prasad, P., Raman, M. R., Ratnam, M. V., Ravikiran, V., Madhavan, B. L., and
Rao, S. V. B.: Nocturnal, seasonal and intra-annual variability of
tropospheric aerosols observed using ground-based and space-borne lidars
over a tropical location of India, Atmos. Environ., 213, 185–198,
2019.
Prijith, S. S., Aloysius, M., Mohan, M., Beegum, N., and Moorthy, K. K.:
Role of circulation parameters in long range aerosol transport: evidence
from Winter-ICARB, J. Atmos. Sol.-Terr. Phys., 77,
144–151, 2012.
Prijith, S. S., Babu, S. S., Lakshmi, N. B., Satheesh, S. K., and Moorthy,
K. K.: Meridional gradients in aerosol vertical distribution over Indian
Mainland: Observations and model simulations, Atmos. Environ., 125,
337–345, 2016.
Ramana, M. V., Ramanathan, V., Podgorny, I. A., Pradhan, B. B., and
Shrestha, B.: The direct observations of large aerosol radiative forcing in
the Himalayan region, Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL018824, 2004.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,
climate, and the hydrological cycle, Science, 294, 2119–2124, 2001.
Ratnam, M. V., Prasad, P., Roja Raman, M., Ravikiran, V., Bhaskara Rao, S.
V., Krishna Murthy, B. V., and Jayaraman, A.: Role of dynamics on the
formation and maintenance of the elevated aerosol layer during monsoon
season over south-east peninsular India, Atmos. Environ., 188,
43–49, https://doi.org/10.1016/j.atmosenv.2018.06.023, 2018.
Ratnam, M. V., Prasad, P., Raj, S. T. A., Raman, M. R., and Basha, G.:
Changing patterns in aerosol vertical distribution over South and East Asia,
Sci. Rep., 11, 1–11, 2021.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India: I – Fossil fuel combustion, Atmos. Environ.,
36, 677–697, 2002.
Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., and Chu, D. A.:
Coauthors, 2005: The MODIS algorithm, products, and validation, J.
Atmos. Sci., 62, 947–973, 2005.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., and Yu, H.: Global
aerosol climatology from the MODIS satellite sensors, J. Geophys. Res.-Atmos., 113, D14, https://doi.org/10.1029/2007JD009661, 2008.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A research and
teaching software tool for plane-parallel radiative transfer in the Earth's
atmosphere, Bull. Am. Meteorol. Soc., 79, 2101–2114,
1998.
Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., and Zhang, K.: Black carbon vertical profiles strongly affect its radiative forcing uncertainty, Atmos. Chem. Phys., 13, 2423–2434, https://doi.org/10.5194/acp-13-2423-2013, 2013.
Satheesh, S. K.: Radiative forcing by aerosols over Bay of Bengal region,
Geophys. Res. Lett, 29, https://doi.org/10.1029/2002GL015334, 2002.
Satheesh, S. K., Vinoj, V., and Moorthy, K. K.: Vertical distribution of
aerosols over an urban continental site in India inferred using a micro
pulse lidar, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027729, 2006.
Satheesh, S. K., Moorthy, K. K., Babu, S. S., Vinoj, V., and Dutt, C. B. S.:
Climate implications of large warming by elevated aerosol over India,
Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL034944, 2008.
Satheesh, S. K., Vinoj, V., Suresh Babu, S., Krishna Moorthy, K., and Nair, V. S.: Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements, Ann. Geophys., 27, 4157–4169, https://doi.org/10.5194/angeo-27-4157-2009, 2009a.
Satheesh, S. K., Torres, O., Remer, L. A., Babu, S. S., Vinoj, V., Eck, T.
F., Kleidman, R. G., and Holben, B. N.: Improved assessment of aerosol
absorption using OMI-MODIS joint retrieval, J. Geophys. Res.-Atmos., 114, D5, https://doi.org/10.1029/2008JD011024, 2009b.
Satheesh, S. K., Moorthy, K. K., Suresh Babu, S., Vinoj, V., Nair, V. S.,
Naseema Beegum, S., Dutt, C. B. S., Alappattu, D. P., and Kunhikrishnan, P.
K.: Vertical structure and horizontal gradients of aerosol extinction
coefficients over coastal India inferred from airborne lidar measurements
during the Integrated Campaign for Aerosol, Gases and Radiation Budget
(ICARB) field campaign, J. Geophys. Res.-Atmos.,
114, D5, https://doi.org/10.1029/2008JD011033, 2009c.
Satheesh, S. K., Vinoj, V., and Krishnamoorthy, K.: Assessment of aerosol
radiative impact over oceanic regions adjacent to Indian subcontinent using
multisatellite analysis, Adv. Meteorol., 2010, https://doi.org/10.1155/2010/139186, 2010.
Sathyanadh, A., Prabhakaran, T., Patil, C., and Karipot, A.: Planetary
boundary layer height over the Indian subcontinent: Variability and controls
with respect to monsoon, Atmos. Res., 195, 44–61, 2017.
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-2006, 2006.
Solmon, F., Nair, V. S., and Mallet, M.: Increasing Arabian dust activity and the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051–8064, https://doi.org/10.5194/acp-15-8051-2015, 2015.
Srinivas, B. and Sarin, M. M.: Atmospheric dry-deposition of mineral dust
and anthropogenic trace metals to the Bay of Bengal, J. Mar.
Syst., 126, 56–68, 2013.
Srivastava, A. K., Ram, K., Pant, P., Hegde, P., and Joshi, H.: Black carbon
aerosols over Manora Peak in the Indian Himalayan foothills: implications
for climate forcing, Environ. Res. Lett., 7, 014002, https://doi.org/10.1088/1748-9326/7/1/014002, 2012.
Srivastava, R., Ramachandran, S., Rajesh, T. A., and Kedia, S.: Aerosol
radiative forcing deduced from observations and models over an urban
location and sensitivity to single scattering albedo, Atmos. Environ., 45, 6163–6171, https://doi.org/10.1016/j.atmosenv.2011.08.015, 2011.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2509, 1988.
Vaishya, A., Babu, S. N. S., Jayachandran, V., Gogoi, M. M., Lakshmi, N. B., Moorthy, K. K., and Satheesh, S. K.: Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign, Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, 2018.
Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A., Kuehn, R.
E., Hunt, W. H., Getzewich, B. J., Young, S. A., Liu, Z., and McGill, M. J.:
Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar
Measurements, J. Atmos. Ocean. Technol., 26, 2034–2050,
https://doi.org/10.1175/2009JTECHA1228.1, 2009.
Verma, S., Payra, S., Gautam, R., Prakash, D., Soni, M., Holben, B., and
Bell, S.: Dust events and their influence on aerosol optical properties over
Jaipur in Northwestern India, Environ. Monit. Assess., 185,
7327–7342, https://doi.org/10.1007/s10661-013-3103-9, 2013.
Vinoj, V., Babu, S. S., Satheesh, S. K., Moorthy, K., and Kaufman, Y. J.:
Radiative forcing by aerosols over the Bay of Bengal region derived from
shipborne, island-based, and satellite (Moderate-Resolution Imaging
Spectroradiometer) observations, J. Geophys. Res.-Atmos., 109, D5, https://doi.org/10.1029/2003JD004329, 2004.
Vinoj, V., Rasch, P. J., Wang, H., Yoon, J.-H., Ma, P.-L., Landu, K., and
Singh, B.: Short-term modulation of Indian summer monsoon rainfall by West
Asian dust, Nat. Geosci., 7, 308–313, 2014.
Wei, J., Peng, Y., Guo, J., and Sun, L.: Performance of MODIS Collection 6.1
Level 3 aerosol products in spatial-temporal variations over land,
Atmos. Environ., 206, 30–44, 2019.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Technol.,
26, 2310–2323, 2009.
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013.
Yoon, J., Burrows, J. P., Vountas, M., von Hoyningen-Huene, W., Chang, D. Y., Richter, A., and Hilboll, A.: Changes in atmospheric aerosol loading retrieved from space-based measurements during the past decade, Atmos. Chem. Phys., 14, 6881–6902, https://doi.org/10.5194/acp-14-6881-2014, 2014.
Young, S. A., Vaughan, M. A., Garnier, A., Tackett, J. L., Lambeth, J. D., and Powell, K. A.: Extinction and optical depth retrievals for CALIPSO's Version 4 data release, Atmos. Meas. Tech., 11, 5701–5727, https://doi.org/10.5194/amt-11-5701-2018, 2018.
Yu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., and
Diehl, T.: Global view of aerosol vertical distributions from CALIPSO lidar
measurements and GOCART simulations: Regional and seasonal variations,
J. Geophys. Res.-Atmos., 115, D4, https://doi.org/10.1029/2009JD013364, 2010.
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect...
Altmetrics
Final-revised paper
Preprint