Articles | Volume 22, issue 9
Atmos. Chem. Phys., 22, 6067–6085, 2022
https://doi.org/10.5194/acp-22-6067-2022
Atmos. Chem. Phys., 22, 6067–6085, 2022
https://doi.org/10.5194/acp-22-6067-2022
Research article
09 May 2022
Research article | 09 May 2022

Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects

Nair K. Kala et al.

Related authors

Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022,https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Is the Atlantic Ocean driving the recent variability in South Asian dust?
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021,https://doi.org/10.5194/acp-21-17665-2021, 2021
Short summary
ESTIMATING CONTRIBUTION OF WATER FLOW COMPONENTS TO KAMENG RIVER BASIN USING HYDROLOGICAL MODELLING
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021,https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Measurement report: Altitudinal variation of cloud condensation nuclei activation across the Indo-Gangetic Plain prior to monsoon onset and during peak monsoon periods: results from the SWAAMI field campaign
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021,https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Wintertime Saharan dust transport towards the Caribbean: an airborne lidar case study during EUREC4A
Manuel Gutleben, Silke Groß, Christian Heske, and Martin Wirth
Atmos. Chem. Phys., 22, 7319–7330, https://doi.org/10.5194/acp-22-7319-2022,https://doi.org/10.5194/acp-22-7319-2022, 2022
Short summary
Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022,https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022,https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
The characterization of long-range transported North American biomass burning plumes: what can a multi-wavelength Mie–Raman-polarization-fluorescence lidar provide?
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, and Thierry Podvin
Atmos. Chem. Phys., 22, 5399–5414, https://doi.org/10.5194/acp-22-5399-2022,https://doi.org/10.5194/acp-22-5399-2022, 2022
Short summary
Fluorescence lidar observations of wildfire smoke inside cirrus: a contribution to smoke–cirrus interaction research
Igor Veselovskii, Qiaoyun Hu, Albert Ansmann, Philippe Goloub, Thierry Podvin, and Mikhail Korenskiy
Atmos. Chem. Phys., 22, 5209–5221, https://doi.org/10.5194/acp-22-5209-2022,https://doi.org/10.5194/acp-22-5209-2022, 2022
Short summary

Cited articles

Anderson, T. L., Masonis, S. J., Covert, D. S., Ahlquist, N. C., Howell, S. G., Clarke, A. D., and McNaughton, C. S.: Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia, J. Geophys. Res.-Atmos., 108, D23, https://doi.org/10.1029/2002JD003247, 2003. 
Ansmann, A., Althausen, D., Wandinger, U., Franke, K., Müller, D., Wagner, F., and Heintzenberg, J.: Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: A first case study, Geophys. Res. Lett., 27, 963–966, 2000. 
Babu, S. S., Satheesh, S. K., and Moorthy, K. K.: Aerosol radiative forcing due to enhanced black carbon at an urban site in India, Geophys. Res. Lett., 29, 27 pp., 2002. 
Babu, S. S., Moorthy, K. K., and Satheesh, S. K.: Vertical and horizontal gradients in aerosol black carbon and its mass fraction to composite aerosols over the east coast of Peninsular India from Aircraft measurements, Adv. Meteorol., 2010, https://doi.org/10.1155/2010/812075, 2010. 
Babu, S. S., Moorthy, K. K., Manchanda, R. K., Sinha, P. R., Satheesh, S. K., Vajja, D. P., Srinivasan, S., and Kumar, V. H. A.: Free tropospheric black carbon aerosol measurements using high altitude balloon: Do BC layers build “their own homes” up in the atmosphere?, Geophys. Res. Lett., 38, 8, https://doi.org/10.1029/2011GL046654, 2011. 
Download
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Altmetrics
Final-revised paper
Preprint