Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-1811-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1811-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility
Zhiyuan Gao
Centre for Earth Observation Science, and Department of Environment
and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Nicolas-Xavier Geilfus
Centre for Earth Observation Science, and Department of Environment
and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Alfonso Saiz-Lopez
Department of Atmospheric Chemistry and Climate, Institute of Physical
Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
Centre for Earth Observation Science, and Department of Environment
and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Related authors
No articles found.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025, https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in the central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found enhancements in O3 and NOy (mostly peroxyacetyl nitrate) concentrations in the Arctic due to northern boreal wildfires, particularly at higher altitudes.
Juan A. Añel, Juan-Carlos Antuña-Marrero, Antonio Cid Samamed, Celia Pérez-Souto, Laura de la Torre, Maria Antonia Valente, Yuri Brugnara, Alfonso Saiz-Lopez, and Luis Gimeno
Earth Syst. Sci. Data, 17, 2437–2446, https://doi.org/10.5194/essd-17-2437-2025, https://doi.org/10.5194/essd-17-2437-2025, 2025
Short summary
Short summary
Ozone (discovered in 1837) was first measured in 1847 using paper strips that reacted with ozone, providing an indication of its concentration based on colour changes. Here, we present the data, covering over 60 years of daily observations conducted along the eastern Atlantic coast, spanning from the tropics to the northern extratropics.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Anoop S. Mahajan, Mriganka S. Biswas, Steffen Beirle, Thomas Wagner, Anja Schönhardt, Nuria Benavent, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 11829–11842, https://doi.org/10.5194/acp-21-11829-2021, https://doi.org/10.5194/acp-21-11829-2021, 2021
Short summary
Short summary
Iodine plays a vital role in oxidation chemistry over Antarctica, with past observations showing highly elevated levels of iodine oxide (IO) leading to severe depletion of boundary layer ozone. We present IO observations over three summers (2015–2017) at the Indian Antarctic bases of Bharati and Maitri. IO was observed during all campaigns with mixing ratios below 2 pptv, which is lower than the peak levels observed in West Antarctica, showing the differences in regional chemistry and emissions.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
David Garcia-Nieto, Nuria Benavent, Rafael Borge, and Alfonso Saiz-Lopez
Atmos. Meas. Tech., 14, 2941–2955, https://doi.org/10.5194/amt-14-2941-2021, https://doi.org/10.5194/amt-14-2941-2021, 2021
Short summary
Short summary
Trace gases play a key role in the chemistry of urban atmospheres. Therefore, knowledge about their spatial distribution is needed to fully characterize the air quality in urban areas. Using a new Multi-AXis Differential Optical Absorption Spectroscopy two-dimensional (MAXDOAS-2D) instrument, along with inversion algorithms, we report for the first time two-dimensional maps of NO2 concentrations in the city of Madrid, Spain.
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Thomas R. Lewis, Juan Carlos Gómez Martín, Mark A. Blitz, Carlos A. Cuevas, John M. C. Plane, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 10865–10887, https://doi.org/10.5194/acp-20-10865-2020, https://doi.org/10.5194/acp-20-10865-2020, 2020
Short summary
Short summary
Iodine-bearing gasses emitted from the sea surface are chemically processed in the atmosphere, leading to iodine accumulation in aerosol and transport to continental ecosystems. Such processing involves light-induced break-up of large, particle-forming iodine oxides into smaller, ozone-depleting molecules. We combine experiments and theory to report the photolysis efficiency of iodine oxides required to assess the impact of iodine on ozone depletion and particle formation.
Cited articles
Abbatt, J., Oldridge, N., Symington, A., Chukalovskiy, V., McWhinney, R. D.,
Sjostedt, S., and Cox, R. A.: Release of gas-phase halogens by photolytic
generation of OH in frozen halide-nitrate solutions: An active halogen
formation mechanism? J. Phys. Chem. A, 114, 6527–6533,
https://doi.org/10.1021/jp102072t, 2010.
Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012.
Aguzzi, A. and Rossi, M. J.: Heterogeneous hydrolysis and reaction of
BrONO2 and Br2O on pure ice and ice doped with HBr, J. Phys. Chem.
A, 106, 5891–5901, https://doi.org/10.1021/jp014383e, 2002.
Angle, R. P. and Sandhu, H. S.: Urban and rural ozone concentrations in
Alberta, Canada, Atmos. Environ., 23, 215–221,
https://doi.org/10.1016/0004-6981(89)90113-3, 1989.
Barber, D. G. and Nghiem, S. V.: The role of snow on the thermal dependence
of microwave backscatter over sea ice, J. Geophys. Res.-Oceans, 104,
25789–25803, https://doi.org/10.1029/1999jc900181, 1999.
Barrie, L. and Platt, U.: Arctic tropospheric chemistry: An overview, Tellus
B, 49, 450–454, https://doi.org/10.3402/tellusb.v49i5.15984, 1997.
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and
Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar
sunrise in the lower Arctic atmosphere, Nature, 334, 138–141,
https://doi.org/10.1038/334138a0, 1988.
Bognar, K., Zhao, X., Strong, K., Chang, R. Y. W., Frieß, U., Hayes, P.
L., McClure-Begley, A., Morris, S., Tremblay, S., and Vicente-Luis, A.:
Measurements of tropospheric bromine monoxide over four halogen activation
seasons in the Canadian High Arctic, J. Geophys. Res.-Atmos., 125, 1–23,
https://doi.org/10.1029/2020JD033015, 2020.
Bottenheim, J. W., Gallant, A. G., and Brice, K. A.: Measurements of NOY
species and O3 at 82∘ N latitude, Geophys. Res. Lett., 13,
113–116, https://doi.org/10.1029/GL013i002p00113, 1986.
Burd, J. A., Peterson, P. K., Nghiem, S. V., Perovich, D. K., and Simpson, W.
R.: Snowmelt onset hinders bromine monoxide heterogeneous recycling in the
Arctic, J. Geophys. Res.-Atmos, 122, 8297–8309, https://doi.org/10.1002/2017JD026906,
2017.
Geilfus, N.-X., Galley, R. J., Else, B. G. T., Campbell, K., Papakyriakou, T., Crabeck, O., Lemes, M., Delille, B., and Rysgaard, S.: Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm, The Cryosphere, 10, 2173–2189, https://doi.org/10.5194/tc-10-2173-2016, 2016.
Gran, G.: Determination of the equivalence point in potentiometric
titrations, Part II, Analyst, 77, 661–670,
https://doi.org/10.1039/AN9527700661, 1952.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
3rd Edn., Wiley-VCH, Weinheim, https://doi.org/10.1002/9783527613984, 2007.
Halfacre, J. W., Shepson, P. B., and Pratt, K. A.: pH-dependent production of molecular chlorine, bromine, and iodine from frozen saline surfaces, Atmos. Chem. Phys., 19, 4917–4931, https://doi.org/10.5194/acp-19-4917-2019, 2019.
Hare, A. A., Wang, F., Barber, D., Geilfus, N. X., Galley, R. J., and
Rysgaard, S.: pH evolution in sea ice grown at an outdoor experimental
facility, Mar. Chem., 154, 46–54,
https://doi.org/10.1016/j.marchem.2013.04.007, 2013.
Hu, Y. B., Wang, F., Boone, W., Barber, D., and Rysgaard, S.: Assessment and
improvement of the sea ice processing for dissolved inorganic carbon
analysis, Limnol. Oceanogr. Meth., 16, 83–91,
https://doi.org/10.1002/lom3.10229, 2018.
Huff, A. K. and Abbatt, J. P. D.: Kinetics and product yields in the
heterogeneous reactions of HOBr with ice surfaces containing NaBr and NaCl,
J. Phys. Chem. A, 106, 5279–5287, https://doi.org/10.1021/jp014296m,
2002.
Kalnajs, L. E. and Avallone, L. M.: Frost flower influence on
springtime boundary-layer ozone depletion events and atmospheric bromine
levels, Geophys. Res. Lett., 33, L10810, https://doi.org/10.1029/2006GL025809, 2006.
Khiri, D., Louis, F., Černušák, I., and Dibble, T. S.: BrHgO +
CO: Analogue of OH + CO and reduction path for Hg(II) in the atmosphere,
ACS Earth Space Chem., 4, 1777–1784, https://doi.org/10.1021/acsearthspacechem.0c00171,
2020.
Krnavek, L., Simpson, W. R., Carlson, D., Domine, F., Douglas, T. A., and
Sturm, M.: The chemical composition of surface snow in the Arctic: Examining
marine, terrestrial, and atmospheric influences, Atmos. Environ., 50,
349–359, https://doi.org/10.1016/j.atmosenv.2011.11.033, 2012.
Millero, F. J.: Chemical Oceanography, 4th Edn., CRC Press, Boca
Raton, https://doi.org/10.1201/b14753, 2013.
Moore, C. W., Obrist, D., Steffen, A., Staebler, R. M., Douglas, T. A.,
Richter, A., and Nghiem, S. V.: Convective forcing of mercury and ozone in
the Arctic boundary layer induced by leads in sea ice, Nature, 506, 81–84,
https://doi.org/10.1038/nature12924, 2014.
Nakayama, M., Zhu, C., Hirokawa, J., Irino, T., and Yoshikawa-Inoue, H.:
Ozone depletion in the interstitial air of the seasonal snowpack in northern
Japan, Tellus B, 67, 24934, https://doi.org/10.3402/tellusb.v67.24934, 2015.
Oltmans, S. J. and Komhyr, W. D.: Surface ozone distributions and variations
from 1973–1984: Measurements at the NOAA geophysical monitoring for
climatic change baseline observatories, J. Geophys. Res., 91,
5229–5236, https://doi.org/10.1029/jd091id04p05229, 1986.
Oltmans, S. J., Schnell, R. C., Sheridan, P. J., Peterson, R. E., Li, S. M.,
Winchester, J. W., Tans, P. P., Sturges, W. T., Kahl, J. D., and Barrie, L.
A.: Seasonal surface ozone and filterable bromine relationship in the high
Arctic, Atmos. Environ., 23, 2431–2441,
https://doi.org/10.1016/0004-6981(89)90254-0, 1989.
Peterson, P. K., Hartwig, M., May, N. W., Schwartz, E., Rigor, I., Ermold,
W., Steele, M., Morison, J. H., Nghiem, S. V., and Pratt, K. A.: Snowpack
measurements suggest role for multi-year sea ice regions in Arctic
atmospheric bromine and chlorine chemistry, Elementa, 7, 045007,
https://doi.org/10.1525/elementa.352, 2019.
Platt, U. and Hausmann, M.: Spectroscopic measurement of the free radicals
NO3, BrO, IO, and OH in the troposphere, Res. Chem. Intermed., 20,
557–578, https://doi.org/10.1163/156856794X00450, 1994.
Pratt, K. A., Custard, K. D., Shepson, P. B., Douglas, T. A., Pöhler,
D., General, S., Zielcke, J., Simpson, W. R., Platt, U., Tanner, D. J.,
Gregory Huey, L., Carlsen, M., and Stirm, B. H.: Photochemical production of
molecular bromine in Arctic surface snowpacks, Nat. Geosci., 6, 351–356,
https://doi.org/10.1038/ngeo1779, 2013.
Raddatz, R. L. and Cummine, J. D.: Temporal surface ozone patterns in urban
Manitoba, Canada, Bound.-Lay. Meteorol., 99, 411–428,
https://doi.org/10.1023/A:1018983012168, 2001.
Saiz-Lopez, A. and von Glasow, G.: Reactive halogen chemistry in the
troposphere, Chem. Soc. Rev., 41, 6448–6472,
https://doi.org/10.1039/c2cs35208g, 2012.
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-sanjuán, D., Oliva-enrich, J.
M., Dávalos, J. Z., Notario, R., Jiskra, M., Xu, Y., Wang, F., Thackray,
C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O., Cuevas, C. A.,
Acuña, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E., and Sonke, J.
E.: Photoreduction of gaseous oxidized mercury changes global atmospheric
mercury speciation, transport and deposition, Nat. Commun., 9, 4796,
https://doi.org/10.1038/s41467-018-07075-3, 2018.
Saiz-Lopez, A., Acuña, A. U., Trabelsi, T., Carmona-García, J.,
Dávalos, J. Z., Rivero, D., Cuevas, C. A., Kinnison, D. E., Sitkiewicz,
S. P., Roca-Sanjuán, D., and Francisco, J. S.: Gas-Phase Photolysis of
Hg(I) Radical Species: A New Atmospheric Mercury Reduction Process, J. Am.
Chem. Soc., 141, 8698–8702, https://doi.org/10.1021/jacs.9b02890, 2019.
Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A.,
Schneeberger, D. R., and Berg, T.: Arctic springtime depletion of mercury,
Nature, 394, 331–332, https://doi.org/10.1038/28530, 1998.
Simpson, W. R., Carlson, D., Hönninger, G., Douglas, T. A., Sturm, M., Perovich, D., and Platt, U.: First-year sea-ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact, Atmos. Chem. Phys., 7, 621–627, https://doi.org/10.5194/acp-7-621-2007, 2007a.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007b.
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and von
Glasow, R.: Tropospheric halogen chemistry: sources, cycling, and impacts,
Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
Sjostedt, S. J. and Abbatt, J. P. D.: Release of gas-phase halogens from
sodium halide substrates: Heterogeneous oxidation of frozen solutions and
desiccated salts by hydroxyl radicals, Environ. Res. Lett., 3, 045007,
https://doi.org/10.1088/1748-9326/3/4/045007, 2008.
Steffen, A., Schroeder, W., Macdonald, R., Poissant, L., and Konoplev, A.:
Mercury in the Arctic atmosphere: An analysis of eight years of measurements
of GEM at Alert (Canada) and a comparison with observations at Amderma
(Russia) and Kuujjuarapik (Canada), Sci. Total Environ., 342, 185–198,
https://doi.org/10.1016/j.scitotenv.2004.12.048, 2005.
Thomas, J. L., Stutz, J., Lefer, B., Huey, L. G., Toyota, K., Dibb, J. E., and von Glasow, R.: Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results, Atmos. Chem. Phys., 11, 4899–4914, https://doi.org/10.5194/acp-11-4899-2011, 2011.
Wang, F., Pućko, M., and Stern, G.: Transport and transformation of
contaminants in sea ice, in Sea Ice, 3rd Edn., edited by: Thomas, D. N.,
John Wiley & Sons, 472–491,
https://doi.org/10.1002/9781118778371.ch19, 2017.
Wang, S. and Pratt, K. A.: Molecular Halogens Above the Arctic Snowpack:
Emissions, Diurnal Variations, and Recycling Mechanisms, J. Geophys. Res.-Atmos., 122, 11991–12007, https://doi.org/10.1002/2017JD027175, 2017.
Wang, S., McNamara, S. M., Moore, C. W., Obrist, D., Steffen, A., Shepson,
P. B., Staebler, R. M., Raso, A. R. W., and Pratt, K. A.: Direct detection of
atmospheric atomic bromine leading to mercury and ozone depletion, P.
Natl. Acad. Sci. USA, 116, 14479–14484,
https://doi.org/10.1073/pnas.1900613116, 2019.
Wren, S. N., Donaldson, D. J., and Abbatt, J. P. D.: Photochemical chlorine and bromine activation from artificial saline snow, Atmos. Chem. Phys., 13, 9789–9800, https://doi.org/10.5194/acp-13-9789-2013, 2013.
Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and
Rind, D.: Why are there large differences between models in global budgets
of tropospheric ozone? J. Geophys. Res.-Atmos., 112, 1–18,
https://doi.org/10.1029/2006JD007801, 2007.
Xu, W., Tenuta, M., and Wang, F.: Bromide and chloride distribution across
the snow-sea ice-ocean interface: A comparative study between an Arctic
coastal marine site and an experimental sea ice mesocosm, J. Geophys. Res.-Oceans, 121, 5535–5548, https://doi.org/10.1002/2015JC011409, 2016.
Zhao, X., Strong, K., Adams, C., Schofield, R., Yang, X., Richter, A.,
Friess, U., Blechschmidt, A. M., and Koo, J. H.: A case study of a
transported bromine explosion event in the Canadian high arctic, J. Geophys.
Res.-Atmos., 121, 457–477, https://doi.org/10.1002/2015JD023711, 2016.
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean,...
Altmetrics
Final-revised paper
Preprint