Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11155-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-11155-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling approaches for atmospheric ion–dipole collisions: all-atom trajectory simulations and central field methods
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
Hanna Vehkamäki
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Bernhard Reischl
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Related authors
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2022-1449, https://doi.org/10.5194/egusphere-2022-1449, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, that accounts for long-range interactions. The model is verified against atomistic simulations of typical acid-base clusters participating in atmospheric new particle formation. Results show that accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such forces in atmospheric new particle formation modelling.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2022-1449, https://doi.org/10.5194/egusphere-2022-1449, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, that accounts for long-range interactions. The model is verified against atomistic simulations of typical acid-base clusters participating in atmospheric new particle formation. Results show that accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such forces in atmospheric new particle formation modelling.
Golnaz Roudsari, Olli H. Pakarinen, Bernhard Reischl, and Hanna Vehkamäki
Atmos. Chem. Phys., 22, 10099–10114, https://doi.org/10.5194/acp-22-10099-2022, https://doi.org/10.5194/acp-22-10099-2022, 2022
Short summary
Short summary
We use atomistic simulations to study heterogeneous ice nucleation on silver iodide surfaces in slit and wedge geometries at low supercooling which serve as a model of irregularities on real atmospheric aerosol particle surfaces. The revealed microscopic ice nucleation mechanisms in confined geometries strongly support the experimental evidence for the importance of surface features such as cracks or pits functioning as active sites for ice nucleation in the atmosphere.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Shahzad Gani, Lukas Kohl, Rima Baalbaki, Federico Bianchi, Taina M. Ruuskanen, Olli-Pekka Siira, Pauli Paasonen, and Hanna Vehkamäki
Geosci. Commun., 4, 507–516, https://doi.org/10.5194/gc-4-507-2021, https://doi.org/10.5194/gc-4-507-2021, 2021
Short summary
Short summary
In this article, we present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Our practical approach promotes fair authorship practices and, by focusing on clear, transparent, and timely communication, helps avoid late-stage authorship conflict.
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021, https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Short summary
The study of climate change relies on climate models, which require an understanding of aerosol formation. We train a machine-learning model to predict the partitioning coefficients of atmospheric molecules, which govern condensation into aerosols. The model can make instant predictions based on molecular structures with accuracy surpassing that of standard computational methods. This will allow the screening of low-volatility molecules that contribute most to aerosol formation.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Tommaso Zanca, Jakub Kubečka, Evgeni Zapadinsky, Monica Passananti, Theo Kurtén, and Hanna Vehkamäki
Atmos. Meas. Tech., 13, 3581–3593, https://doi.org/10.5194/amt-13-3581-2020, https://doi.org/10.5194/amt-13-3581-2020, 2020
Short summary
Short summary
In this paper we quantify (using a statistical model) the probability of decomposition of a representative class of HOM clusters in an APi-TOF mass spectrometer. This is important because it quantifies the systematic error of measurements in a APi-TOF MS due to cluster decomposition. The results (specific for our selected clusters) show that decomposition is negligible, provided their bonding energy is large enough to allow formation in the atmosphere in the first place.
Roope Halonen, Evgeni Zapadinsky, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 19, 13355–13366, https://doi.org/10.5194/acp-19-13355-2019, https://doi.org/10.5194/acp-19-13355-2019, 2019
Short summary
Short summary
The rate of collisions between molecules or clusters is used to determine particle formation in the atmosphere. The basic approach is to treat the colliding particles as noninteracting hard spheres. By using atomistic simulations with a realistic force field and theoretical approaches, we showed that the actual collision rate of two sulfuric acid molecules is more than twice as high as that for hard spheres. The results of this study will improve models of atmospheric particle growth.
Elham Baranizadeh, Benjamin N. Murphy, Jan Julin, Saeed Falahat, Carly L. Reddington, Antti Arola, Lars Ahlm, Santtu Mikkonen, Christos Fountoukis, David Patoulias, Andreas Minikin, Thomas Hamburger, Ari Laaksonen, Spyros N. Pandis, Hanna Vehkamäki, Kari E. J. Lehtinen, and Ilona Riipinen
Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016, https://doi.org/10.5194/gmd-9-2741-2016, 2016
Short summary
Short summary
The molecular mechanisms through which new ultrafine (< 100 nm) aerosol particles are formed in the atmosphere have puzzled the scientific community for decades. In the past few years, however, significant progress has been made in unraveling these processes through laboratory studies and computational efforts. In this work we have implemented these new developments to an air quality model and study the implications of anthropogenically driven particle formation for European air quality.
Jenni Kontkanen, Tinja Olenius, Katrianne Lehtipalo, Hanna Vehkamäki, Markku Kulmala, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 16, 5545–5560, https://doi.org/10.5194/acp-16-5545-2016, https://doi.org/10.5194/acp-16-5545-2016, 2016
K. Ruusuvuori, P. Hietala, O. Kupiainen-Määttä, T. Jokinen, H. Junninen, M. Sipilä, T. Kurtén, and H. Vehkamäki
Atmos. Meas. Tech., 8, 2577–2588, https://doi.org/10.5194/amt-8-2577-2015, https://doi.org/10.5194/amt-8-2577-2015, 2015
Short summary
Short summary
Ionization reagents suitable for accurate measurements of the atmospheric gas-phase amine vapour concentrations are needed. Based on computational results, acetone is a viable option for use as an ionization reagent in CI-APi-TOF measurements on atmospheric dimethylamine. However, comparison between the computational and experimental results revealed notable discrepancies. Further study is still required before the acetone CI-APi-TOF can be considered a viable option in practice.
N. T. Tsona, N. Bork, and H. Vehkamäki
Atmos. Chem. Phys., 15, 495–503, https://doi.org/10.5194/acp-15-495-2015, https://doi.org/10.5194/acp-15-495-2015, 2015
N. Bork, J. Elm, T. Olenius, and H. Vehkamäki
Atmos. Chem. Phys., 14, 12023–12030, https://doi.org/10.5194/acp-14-12023-2014, https://doi.org/10.5194/acp-14-12023-2014, 2014
I. K. Ortega, T. Olenius, O. Kupiainen-Määttä, V. Loukonen, T. Kurtén, and H. Vehkamäki
Atmos. Chem. Phys., 14, 7995–8007, https://doi.org/10.5194/acp-14-7995-2014, https://doi.org/10.5194/acp-14-7995-2014, 2014
K. Ruusuvuori, T. Kurtén, I. K. Ortega, J. Faust, and H. Vehkamäki
Atmos. Chem. Phys., 13, 10397–10404, https://doi.org/10.5194/acp-13-10397-2013, https://doi.org/10.5194/acp-13-10397-2013, 2013
N. Bork, T. Kurtén, and H. Vehkamäki
Atmos. Chem. Phys., 13, 3695–3703, https://doi.org/10.5194/acp-13-3695-2013, https://doi.org/10.5194/acp-13-3695-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Evaluation and bias correction of probabilistic volcanic ash forecasts
The representation of the trade winds in ECMWF forecasts and reanalyses during EUREC4A
Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
The Sun's role in decadal climate predictability in the North Atlantic
Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
The foehn effect during easterly flow over Svalbard
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Convective self–aggregation in a mean flow
The potential for geostationary remote sensing of NO2 to improve weather prediction
Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics
Parameterizing the vertical downward dispersion of ship exhaust gas in the near field
Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models
Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model
Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions
The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America
Very long-period oscillations in the atmosphere (0–110 km)
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
The “urban meteorology island”: a multi-model ensemble analysis
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations
Ceilometers as planetary boundary layer height detectors and a corrective tool for COSMO and IFS models
Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season
On the climate sensitivity and historical warming evolution in recent coupled model ensembles
Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling
Hadley cell expansion in CMIP6 models
Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline
Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data
Characterization of the air–sea exchange mechanisms during a Mediterranean heavy precipitation event using realistic sea state modelling
Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023, https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Short summary
In this study, SSH-aerosol, a modular box model that simulates the evolution of gas, primary, and secondary aerosols, is coupled with the computational fluid dynamics (CFD) software, OpenFOAM and Code_Saturne. The transient dispersion of pollutants emitted from traffic in a street canyon of Greater Paris is simulated. The coupled model achieved better agreement in NO2 and PM10 with measurement data than the conventional CFD simulation which regards pollutants as passive scalars.
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023, https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary
Short summary
Local winds in four valleys located in the Nepal Himalayas are studied by means of high-resolution meteorological modelling. Well-defined daytime up-valley winds are simulated in all of the valleys with some variation in the flow depth and strength among the valleys and their parts. Parts of the valleys with a steep valley floor inclination (2–5°) are associated with weaker and shallower daytime up-valley winds compared with the parts that have nearly flat valley floors (< 1°).
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023, https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Short summary
Thunderstorm systems play an important role in the dynamics of the Earth’s atmosphere, and some of them form a well-organised line: squall lines. Simulations of such squall lines with very small initial perturbations are compared to a reference simulation. The evolution of perturbations and processes amplifying them are analysed. It is shown that the formation of new secondary thunderstorm cells (after the initial primary cells) directly ahead of the line affects the spread strongly.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Alessandro Carlo Maria Savazzi, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold
Atmos. Chem. Phys., 22, 13049–13066, https://doi.org/10.5194/acp-22-13049-2022, https://doi.org/10.5194/acp-22-13049-2022, 2022
Short summary
Short summary
Winds are of great importance for the transport of energy and moisture in the atmosphere. In this study we use measurements from the EUREC4A field campaign and several model experiments to understand the wind bias in the forecasts produced by the European Centre for Medium-Range Weather Forecasts. We are able to link the model errors to heights above 2 km and to the representation of the diurnal cycle of winds: the model makes the winds too slow in the morning and too strong in the evening.
Alice Maison, Cédric Flageul, Bertrand Carissimo, Yunyi Wang, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 22, 9369–9388, https://doi.org/10.5194/acp-22-9369-2022, https://doi.org/10.5194/acp-22-9369-2022, 2022
Short summary
Short summary
This paper presents a parameterization of the tree crown effect on air flow and pollutant dispersion in a street network model used to simulate air quality at the street level. The new parameterization is built using a finer-scale model (computational fluid dynamics). The tree effect increases with the leaf area index and the crown volume fraction of the trees; the street horizontal velocity is reduced by up to 68 % and the vertical transfer into or out of the street by up to 23 %.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022, https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters describing the characteristics of volcanic plumes. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method using satellite data to refine a series of volcanic ash dispersion forecasts and quantify these uncertainties. We show how we can improve forecast accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021, https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
Short summary
The wind shear generated on a local scale by the diversified relief’s impact can be a factor which significantly modifies the spatial pattern of PM10 concentration. The vertical profile of PM10 over a city located in a large valley during the events with high surface-level PM10 concentrations may show a sudden decrease with height not only due to the increase in wind speed, but also due to the change in wind direction alone. Vertical aerosanitary urban zones can be distinguished.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021, https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary
Short summary
We analyze the behavior of organized convection in a large-scale flow by imposing a mean flow to idealized simulations. In the mean flow, organized convection initially propagates slower than the mean wind speed and becomes stationary. The initial upstream and downstream difference in surface fluxes becomes symmetric as the surface momentum flux acts as a drag, resulting in the stationarity. Meanwhile, the surface enthalpy flux has a minor role in the propagation of the convection.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021, https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary
Short summary
Observations of winds in the planetary boundary layer remain sparse, making it challenging to simulate and predict the atmospheric conditions that are most important for describing and predicting urban air quality. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Taufiq Hassan, Robert J. Allen, Wei Liu, and Cynthia A. Randles
Atmos. Chem. Phys., 21, 5821–5846, https://doi.org/10.5194/acp-21-5821-2021, https://doi.org/10.5194/acp-21-5821-2021, 2021
Short summary
Short summary
State-of-the-art climate models yield robust, externally forced changes in the Atlantic meridional overturning circulation (AMOC), the bulk of which are due to anthropogenic aerosol perturbations to net surface shortwave radiation and sea surface temperature. AMOC-related feedbacks act to reinforce this aerosol-forced response, largely due to changes in sea surface salinity (and hence sea surface density), with temperature- and cloud-related feedbacks acting to mute the initial response.
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605, https://doi.org/10.5194/acp-21-3593-2021, https://doi.org/10.5194/acp-21-3593-2021, 2021
Short summary
Short summary
The aims here are to assess the role of aerosols in India's monsoon precipitation and to determine the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to spatial shifts in convection over the region. A significant increase in precipitation (up to ~ 20 %) is found only when both Indian and Chinese sulfate emissions are regulated.
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021, https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Short summary
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to 110 km. They are also seen in computer models (GCMs) of the atmospheric. They are often attributed to external influences from the sun, from the oceans, or from atmospheric constituents. This is difficult to verify as the atmosphere cannot be manipulated in an experiment. However, a GCM can be changed arbitrarily. Doing so, we find that long-period oscillations may be excited internally in the atmosphere.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020, https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Short summary
Cities are characterized by their impact on various meteorological variables. Our study aims to generalize these modifications into a single phenomenon – the urban meteorology island (UMI). A wide ensemble of Weather Research and Forecasting (WRF) and Regional Climate Model (RegCM) simulations investigated urban-induced modifications as individual UMI components. Significant changes are found in most of the discussed meteorological variables with a strong impact of specific model simulations.
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020, https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Short summary
Reanalysis products are an invaluable tool for representing variability and long-term trends in regions with limited in situ data. However, validation of these products is difficult because of that lack of station data. Here we present a novel assessment of eight reanalyses over the polar Southern Ocean, leveraging the close relationship between trends in sea ice cover and surface air temperature, that provides clear guidance on the most reliable product for Antarctic research.
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020, https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary
Short summary
The recent increasing trend of "warm Arctic, cold continents" has attracted much attention, but it remains debatable as to what forces are behind this phenomenon. Sea surface temperature (SST) over the central North Pacific and the North Atlantic oceans influences the trend. On an interdecadal timescale, the recent increase in the occurrences of the warm Arctic–cold Eurasia pattern is a fragment of the interdecadal variability of SST over the Atlantic Ocean and over the central Pacific Ocean.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Leenes Uzan, Smadar Egert, Pavel Khain, Yoav Levi, Elyakom Vadislavsky, and Pinhas Alpert
Atmos. Chem. Phys., 20, 12177–12192, https://doi.org/10.5194/acp-20-12177-2020, https://doi.org/10.5194/acp-20-12177-2020, 2020
Short summary
Short summary
Detection of the planetary boundary layer (PBL) height is crucial to various fields, from air pollution assessment to weather prediction. We examined the diurnal summer PBL height by eight ceilometers in Israel, radiosonde profiles, the global IFS, and regional COSMO models. Our analysis utilized the bulk Richardson number method, the parcel method, and the wavelet covariance transform method. A novel correction tool to improve model results against in-situ ceilometer measurements is introduced.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Bernard Legras and Silvia Bucci
Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, https://doi.org/10.5194/acp-20-11045-2020, 2020
Short summary
Short summary
The Asian monsoon is the most active region bringing surface compounds by convection to the stratosphere during summer. We study the transport pathways and the trapping within the upper-layer anticyclonic circulation. Above 15 km, the confinement can be represented by a uniform ascent over continental Asia of about 200 m per day and a uniform loss to other regions with a characteristic time of 2 weeks. We rule out the presence of a
chimneyproposed in previous studies over the Tibetan Plateau.
Clare Marie Flynn and Thorsten Mauritsen
Atmos. Chem. Phys., 20, 7829–7842, https://doi.org/10.5194/acp-20-7829-2020, https://doi.org/10.5194/acp-20-7829-2020, 2020
Short summary
Short summary
The range of climate sensitivity of models participating in CMIP6 has increased relative to models participating in CMIP5 due to decreases in the total feedback parameter. This is caused by increases in the shortwave all-sky and clear-sky feedbacks, particularly over the Southern Ocean. These shifts between CMIP6 and CMIP5 did not arise by chance. Both CMIP5 and CMIP6 models are found to exhibit aerosol forcing that is too strong, causing too much cooling relative to observations.
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020, https://doi.org/10.5194/acp-20-6861-2020, 2020
Short summary
Short summary
A coupled, kilometre-scale simulation of a medicane is used to assess the impact of the ocean feedback and role of surface fluxes. Sea surface temperature (SST) drop is much weaker than for tropical cyclones, resulting in no impact on the cyclone. Surface fluxes depend mainly on wind and SST for evaporation and on air temperature for sensible heat. Processes in the Mediterranean, like advection of continental air, rain evaporation and dry air intrusion, play a role in cyclone development.
Kevin M. Grise and Sean M. Davis
Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020, https://doi.org/10.5194/acp-20-5249-2020, 2020
Short summary
Short summary
As Earth's climate warms, the tropical overturning circulation (Hadley circulation) is projected to expand, potentially pushing subtropical dry zones further poleward. This study examines projections of the Hadley circulation from the latest generation of computer models and finds several notable differences from older models. For example, the Northern Hemisphere circulation has expanded northward at a greater rate in recent decades than would be expected from increasing greenhouse gases alone.
Yufei Zou, Yuhang Wang, Zuowei Xie, Hailong Wang, and Philip J. Rasch
Atmos. Chem. Phys., 20, 4999–5017, https://doi.org/10.5194/acp-20-4999-2020, https://doi.org/10.5194/acp-20-4999-2020, 2020
Short summary
Short summary
We analyze the relationship between winter air stagnation and pollution extremes over eastern China and preceding Arctic sea ice loss based on climate modeling and dynamic diagnoses. We find significant increases in both the probability and intensity of air stagnation extremes in the modeling result driven by regional sea ice and sea surface temperature changes over the Pacific sector of the Arctic. We reveal the considerable impact of the Arctic climate change on mid-latitude weather extremes.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020, https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary
Short summary
Air–sea exchanges during Mediterranean heavy precipitation events are key and their representation must be improved for high-resolution weather forecasts. This study investigates the mechanisms acting at the air–sea interface during a case that occurred in southern France. To focus on the impact of sea state, we developed and used an original coupled air–wave model. Results show modifications of the forecast for the air–sea fluxes, the near-surface wind and the location of precipitation.
Michal T. Filus, Elliot L. Atlas, Maria A. Navarro, Elena Meneguz, David Thomson, Matthew J. Ashfold, Lucy J. Carpenter, Stephen J. Andrews, and Neil R. P. Harris
Atmos. Chem. Phys., 20, 1163–1181, https://doi.org/10.5194/acp-20-1163-2020, https://doi.org/10.5194/acp-20-1163-2020, 2020
Short summary
Short summary
The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important unknown in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model.
Cited articles
Amelynck, C., Schoon, N., Kuppens, T., Bultinck, P., and Arijs, E.: A selected
ion flow tube study of the reactions of H3O+, NO+ and with
some oxygenated biogenic volatile organic compounds, Int. J. Mass Spectrom.,
247, 1–9, https://doi.org/10.1016/j.ijms.2005.08.010, 2005. a
Barducci, A., Bussi, G., and Parrinello, M.: Well-Tempered Metadynamics: A
Smoothly Converging and Tunable Free-Energy Method, Phys. Rev. Lett., 100,
020603, https://doi.org/10.1103/PhysRevLett.100.020603, 2008. a
Chai, J.-D. and Head-Gordon, M.: Long-range corrected hybrid density
functionals with damped atom–atom dispersion corrections,
Phys. Chem. Chem. Phys., 10, 6615–6620, https://doi.org/10.1039/B810189B, 2008. a, b
Chesnavich, W. J., Su, T., and Bowers, M. T.: Ion-dipole collisions: recent
theoretical advances, in: Kinetics of Ion-Molecule Reactions, edited by:
Ausloos, P. J., 31–53, Springer, https://doi.org/10.1007/978-1-4613-2931-2, 1979. a, b
Chesnavich, W. J., Su, T., and Bowers, M. T.: Collisions in a noncentral field:
a variational and trajectory investigation of ion–dipole capture,
J. Chem. Phys., 72, 2641–2655, https://doi.org/10.1063/1.439409, 1980. a, b
Clary, D. C.: Fast Chemical Reactions: Theory Challenges Experiment,
Ann. Rev. Phys. Chem., 41, 61–90, https://doi.org/10.1146/annurev.pc.41.100190.000425,
1990. a, b
Dugan Jr., J. V. and Magee, J. L.: Capture collisions between ions and polar
molecules, J. Chem. Phys., 47, 3103–3112, https://doi.org/10.1063/1.1712359, 1967. a
Elm, J.: Toward a Holistic Understanding of the Formation and Growth of
Atmospheric Molecular Clusters: A Quantum Machine Learning Perspective,
J. Phys. Chem. A, 125, 895–902, https://doi.org/10.1021/acs.jpca.0c09762, 2020. a
Elm, J., Kubečka, J., Besel, V., Jääskeläinen, M. J.,
Halonen, R., Kurtén, T., and Vehkamäki, H.: Modeling the formation
and growth of atmospheric molecular clusters: A review, J. Aerosol Sci., 149,
105621, https://doi.org/10.1016/j.jaerosci.2020.105621, 2020. a, b, c
Falcon-Rodriguez, C. I., Osornio-Vargas, A. R., Sada-Ovalle, I., and
Segura-Medina, P.: Aeroparticles, Composition, and Lung Diseases, Front.
Immunol., 7, 3, https://doi.org/10.3389/fimmu.2016.00003, 2016. a
Fernández-Ramos, A., Miller, J. A., Klippenstein, S. J., and Truhlar,
D. G.: Modeling the Kinetics of Bimolecular Reactions, Chem. Rev., 106,
4518–4584, https://doi.org/10.1021/cr050205w, 2006. a
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,
Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H.,
Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts,
R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F.,
Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F.,
Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski,
V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota,
K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O.,
Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J. A., Peralta,
J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin,
K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J.,
Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J.,
Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W.,
Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., and Fox, D. J.:
Gaussian 16 Revision C.01, gaussian Inc. Wallingford CT, 2016. a, b
Georgievskii, Y. and Klippenstein, S. J.: Long-range transition state theory,
J. Chem. Phys., 122, 194103, https://doi.org/10.1063/1.1899603, 2005. a, b
Gopalakrishnan, R. and Hogan Jr., C. J.: Determination of the Transition Regime
Collision Kernel from Mean First Passage Times, Aerosol Sci. Technol., 45,
1499–1509, https://doi.org/10.1080/02786826.2011.601775, 2011. a
Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M.,
Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy,
J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle,
C. R., Kulmala, M., Kürten, A., Lehtipalo, K., Makhmutov, V., Molteni,
U., Rissanen, M. P., Stozkhov, Y., Tröstl, J., Tsagkogeorgas, G., Wagner,
R., Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.:
Causes and importance of new particle formation in the present-day and
preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739–8760,
https://doi.org/10.1002/2017JD026844, 2017. a, b
Goudeli, E., Lee, J., and Hogan Jr., C. J.: Silica nanocluster binding rate
coefficients from molecular dynamics trajectory calculations, J. Aerosol
Sci., 146, 105558, https://doi.org/10.1016/j.jaerosci.2020.105558, 2020. a
Grimme, S., Bannwarth, C., and Shushkov, P.: A Robust and Accurate
Tight-Binding Quantum Chemical Method for Structures, Vibrational
Frequencies, and Noncovalent Interactions of Large Molecular Systems
Parametrized for All spd-Block Elements (Z=1–86), J. Chem.
Theor. Comput., 13, 1989–2009, https://doi.org/10.1021/acs.jctc.7b00118, 2017. a
Halonen, R., Zapadinsky, E., Kurtén, T., Vehkamäki, H., and Reischl, B.:
Rate enhancement in collisions of sulfuric acid molecules due to long-range
intermolecular forces, Atmos. Chem. Phys., 19, 13355–13366,
https://doi.org/10.5194/acp-19-13355-2019, 2019. a, b, c
Halonen, R., Neefjes, I., and Reischl, B.: Technical note on the efficiency of
different thermostats for equilibrating molecules in the gas phase, in
preparation, 2022. a
He, X.-C., Iyer, S., Sipilä, M., Ylisirniö, A., Peltola, M., Kontkanen,
J., Baalbaki, R., Simon, M., Kürten, A., Tham, Y. J., Pesonen, J.,
Ahonen, L. R., Amanatidis, S., Amorim, A., Baccarini, A., Beck, L., Bianchi,
F., Brilke, S., Chen, D., Chiu, R., Curtius, J., Dada, L., Dias, A., Dommen,
J., Donahue, N. M., Duplissy, J., Haddad, I. E., Finkenzeller, H., Fischer,
L., Heinritzi, M., Hofbauer, V., Kangasluoma, J., Kim, C., Koenig, T. K.,
Kubečka, J., Kvashnin, A., Lamkaddam, H., Lee, C. P., Leiminger, M., Li,
Z., Makhmutov, V., Xiao, M., Marten, R., Nie, W., Onnela, A., Partoll, E.,
Petäjä, T., Salo, V.-T., Schuchmann, S., Steiner, G., Stolzenburg,
D., Stozhkov, Y., Tauber, C., Tomé, A., Väisänen, O.,
Vazquez-Pufleau, M., Volkamer, R., Wagner, A. C., Wang, M., Wang, Y., Wimmer,
D., Winkler, P. M., Worsnop, D. R., Wu, Y., Yan, C., Ye, Q., Lehtinen, K.,
Nieminen, T., Manninen, H. E., Rissanen, M., Schobesberger, S., Lehtipalo,
K., Baltensperger, U., Hansel, A., Kerminen, V.-M., Flagan, R. C., Kirkby,
J., Kurtén, T., and Kulmala, M.: Determination of the collision rate
coefficient between charged iodic acid clusters and iodic acid using the
appearance time method, Aerosol Sci. Technol., 55, 1–12,
https://doi.org/10.1080/02786826.2020.1839013, 2020. a, b
Jiang, S., Liu, Y.-R., Huang, T., Feng, Y.-J., Wang, C.-Y., Wang, Z.-Q., Ge,
B.-J., Liu, Q.-S., Guang, W.-R., and Huang, W.: A universal deep
learning-based framework towards fully ab initio simulation of atmospheric
aerosol nucleation, Research Square [preprint],
https://doi.org/10.21203/rs.3.rs-1191188/v1, 2022. a
Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J.: Development and Testing
of the OPLS All-Atom Force Field on Conformational Energetics and Properties
of Organic Liquids, J. Am. Chem. Soc., 118, 11225–11236,
https://doi.org/10.1021/ja9621760, 1996. a
Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C.,
Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T.,
Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A.-K.,
Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A.,
Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J.,
Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M.,
Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,
Molteni, U., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T.,
Praplan, A. P., Pringle, K., Rap, A., Richards, N. A. D., Riipinen, I.,
Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E.,
Seinfeld, J. H., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F.,
Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E.,
Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A.,
Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M.,
Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic
particles, Nature, 533, 521–526, https://doi.org/10.1038/nature17953, 2016. a
Kubečka, J., Besel, V., Kurtén, T., Myllys, N., and Vehkamäki, H.:
Configurational Sampling of Noncovalent (Atmospheric) Molecular Clusters:
Sulfuric Acid and Guanidine, J. Phys. Chem. A, 123, 6022–6033,
https://doi.org/10.1021/acs.jpca.9b03853, 2019. a
Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N., Junninen,
H., Adamov, A., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M.,
Dommen, J., Donahue, N. M., Duplissy, J., Ehrhart, S., Flagan, R. C.,
Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Hutterli, M.,
Kangasluoma, J., Kirkby, J., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T., Praplan, A. P.,
Riccobono, F., Rissanen, M. P., Rondo, L., Schobesberger, S., Seinfeld,
J. H., Steiner, G., Tomé, A., Tröstl, J., Winkler, P. M., Williamson,
C., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K. S., Kulmala, M.,
Worsnop, D. R., and Curtius, J.: Neutral molecular cluster formation of
sulfuric acid–dimethylamine observed in real time under atmospheric
conditions, P. Natl. Acad. Sci. USA, 111, 15019–15024,
https://doi.org/10.1073/pnas.1404853111, 2014. a, b
Kurtén, T., Kulmala, M., Dal Maso, M., Suni, T., Reissell, A.,
Vehkamäki, H., Hari, P., Laaksonen, A., Viisanen, Y., and Vesala, T.:
Estimation of different forest-related contributions to the radiative balance
using observations in southern Finland, Boreal Environ. Res., 8, 275–285,
2003. a
Liakos, D. G., Sparta, M., Kesharwani, M. K., Martin, J. M. L., and Neese, F.:
Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster
Theory, J. Chem. Theory Comput., 11, 1525–1539, https://doi.org/10.1021/ct501129s,
2015. a
Loukonen, V., Bork, N., and Vehkamäki, H.: From collisions to clusters:
first steps of sulphuric acid nanocluster formation dynamics, Mol. Phys.,
112, 1979–1986, https://doi.org/10.1080/00268976.2013.877167, 2014. a
Maergoiz, A., Nikitin, E., Troe, J., and Ushakov, V.: Classical trajectory and
adiabatic channel study of the transition from adiabatic to sudden capture
dynamics, I. Ion–dipole capture, J. Chem. Phys., 105, 6263–6269,
https://doi.org/10.1063/1.472480, 1996a. a, b
Maergoiz, A., Nikitin, E., Troe, J., and Ushakov, V.: Classical trajectory and
adiabatic channel study of the transition from adiabatic to sudden capture
dynamics, II. Ion–quadrupole capture, J. Chem. Phys., 105, 6270–6276,
https://doi.org/10.1063/1.472468, 1996b. a
Maergoiz, A., Nikitin, E., Troe, J., and Ushakov, V.: Classical trajectory and
adiabatic channel study of the transition from adiabatic to sudden capture
dynamics. III. Dipole–dipole capture, J. Chem. Phys., 105, 6277–6284,
https://doi.org/10.1063/1.472481, 1996c. a
McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P.,
Kurtén, T., Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster
Dynamics Code: a flexible method for solution of the birth-death equations,
Atmos. Chem. Phys., 12, 2345–2355, https://doi.org/10.5194/acp-12-2345-2012, 2012. a
Midey, A. J., Williams, S., and Viggiano, A. A.: Reactions of NO+ with
Isomeric Butenes from 225 to 500 K, J. Phys. Chem. A, 105, 1574–1578,
https://doi.org/10.1021/jp0019005, 2001. a
Moran, T. F. and Hamill, W. H.: Cross Sections of Ion–Permanent-Dipole
Reactions by Mass Spectrometry, J. Chem. Phys., 39, 1413–1422,
https://doi.org/10.1063/1.1734457, 1963. a
Mosallanejad, S., Oluwoye, I., Altarawneh, M., Gore, J., and Dlugogorski,
B. Z.: Interfacial and bulk properties of concentrated solutions of ammonium
nitrate, Phys. Chem. Chem. Phys., 22, 27698–27712,
https://doi.org/10.1039/D0CP04874G, 2020. a
Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics,
J. Comp. Phys., 117, 1–19, https://doi.org/10.1006/jcph.1995.1039, 1995. a, b, c
Riplinger, C. and Neese, F.: An efficient and near linear scaling pair natural
orbital based local coupled cluster method, J. Chem. Phys., 138, 034 106,
https://doi.org/10.1063/1.4773581, 2013. a
Riplinger, C., Sandhoefer, B., Hansen, A., and Neese, F.: Natural triple
excitations in local coupled cluster calculations with pair natural orbitals,
J. Chem. Phys., 139, 134101, https://doi.org/10.1063/1.4821834, 2013. a
Strekowski, R. S., Alvarez, C., Petrov-Stojanović, J., Hagebaum-Reignier, D.,
and Wortham, H.: Theoretical chemical ionization rate constants of the
concurrent reactions of hydronium ions (H3O+) and oxygen ions (O) with
selected organic iodides, J. Mass Spectrom., 54, 422–428,
https://doi.org/10.1002/jms.4349, 2019. a
Su, T. and Bowers, M. T.: Theory of ion-polar molecule collisions. Comparison
with experimental charge transfer reactions of rare gas ions to geometric
isomers of difluorobenzene and dichloroethylene, J. Chem. Phys., 58,
3027–3037, https://doi.org/10.1063/1.1679615, 1973. a, b
Su, T., Su, E. C., and Bowers, M. T.: Ion–polar molecule collisions.
Conservation of angular momentum in the average dipole orientation theory.
The AADO theory, J. Chem. Phys., 69, 2243–2250, https://doi.org/10.1063/1.436783,
1978. a
Thajudeen, T., Gopalakrishnan, R., and Hogan Jr., C. J.: The Collision Rate of
Nonspherical Particles and Aggregates for all Diffusive Knudsen Numbers,
Aerosol Sci. Technol., 46, 1174–1186, https://doi.org/10.1080/02786826.2012.701353,
2012. a
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, G.:
Plumed 2: New feathers for an old bird, Comput. Phys. Commun., 185,
604–613, https://doi.org/10.1016/j.cpc.2013.09.018, 2014. a
Troe, J.: Statistical adiabatic channel model of ion-neutral dipole capture
rate constants, Chem. Phys. Lett., 122, 425–430,
https://doi.org/10.1016/0009-2614(85)87240-7, 1985. a
Troe, J.: Statistical adiabatic channel model for ion–molecule capture
processes, J. Chem. Phys., 87, 2773–2780, https://doi.org/10.1063/1.453701, 1987. a
Wagner, R., Yan, C., Lehtipalo, K., Duplissy, J., Nieminen, T., Kangasluoma,
J., Ahonen, L. R., Dada, L., Kontkanen, J., Manninen, H. E., Dias, A.,
Amorim, A., Bauer, P. S., Bergen, A., Bernhammer, A.-K., Bianchi, F., Brilke,
S., Mazon, S. B., Chen, X., Draper, D. C., Fischer, L., Frege, C., Fuchs, C.,
Garmash, O., Gordon, H., Hakala, J., Heikkinen, L., Heinritzi, M., Hofbauer,
V., Hoyle, C. R., Kirkby, J., Kürten, A., Kvashnin, A. N., Laurila, T.,
Lawler, M. J., Mai, H., Makhmutov, V., Mauldin III, R. L., Molteni, U.,
Nichman, L., Nie, W., Ojdanic, A., Onnela, A., Piel, F., Quéléver, L.
L. J., Rissanen, M. P., Sarnela, N., Schallhart, S., Sengupta, K., Simon, M.,
Stolzenburg, D., Stozhkov, Y., Tröstl, J., Viisanen, Y., Vogel, A. L.,
Wagner, A. C., Xiao, M., Ye, P., Baltensperger, U., Curtius, J., Donahue,
N. M., Flagan, R. C., Gallagher, M., Hansel, A., Smith, J. N., Tomé, A.,
Winkler, P. M., Worsnop, D., Ehn, M., Sipilä, M., Kerminen, V.-M.,
Petäjä, T., and Kulmala, M.: The role of ions in new particle formation
in the CLOUD chamber, Atmos. Chem. Phys., 17, 15181–15197,
https://doi.org/10.5194/acp-17-15181-2017, 2017. a
Williams, S., Knighton, W. B., Midey, A. J., Viggiano, A. A., Irle, S., Wang,
Q., and Morokuma, K.: Oxidation of Alkyl Ions in Reactions with O2 and
O3 in the Gas Phase, J. Phys. Chem. A, 108, 1980–1989,
https://doi.org/10.1021/jp031099+, 2004. a
Woon, D. and Herbst, E.: Quantum chemical predictions of the properties of
known and postulated neutral interstellar molecules, Astrophys, J. Suppl.
Ser., 185, 273–288, https://doi.org/10.1021/jp031099+, 2009.
a
Xiao, M., Hoyle, C. R., Dada, L., Stolzenburg, D., Kürten, A., Wang, M.,
Lamkaddam, H., Garmash, O., Mentler, B., Molteni, U., Baccarini, A., Simon,
M., He, X.-C., Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Bauer, P. S.,
Beck, L., Bell, D., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A.,
Duplissy, J., Finkenzeller, H., Gordon, H., Hofbauer, V., Kim, C., Koenig,
T. K., Lampilahti, J., Lee, C. P., Li, Z., Mai, H., Makhmutov, V., Manninen,
H. E., Marten, R., Mathot, S., Mauldin, R. L., Nie, W., Onnela, A., Partoll,
E., Petäjä, T., Pfeifer, J., Pospisilova, V., Quéléver, L. L. J.,
Rissanen, M., Schobesberger, S., Schuchmann, S., Stozhkov, Y., Tauber, C.,
Tham, Y. J., Tomé, A., Vazquez-Pufleau, M., Wagner, A. C., Wagner, R.,
Wang, Y., Weitz, L., Wimmer, D., Wu, Y., Yan, C., Ye, P., Ye, Q., Zha, Q.,
Zhou, X., Amorim, A., Carslaw, K., Curtius, J., Hansel, A., Volkamer, R.,
Winkler, P. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Kirkby, J.,
Donahue, N. M., Baltensperger, U., El Haddad, I., and Dommen, J.: The driving
factors of new particle formation and growth in the polluted boundary layer,
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021,
2021. a
Yang, H., Goudeli, E., and Hogan Jr., C. J.: Condensation and dissociation rates
for gas phase metal clusters from molecular dynamics trajectory calculations,
J. Chem. Phys., 148, 164304, https://doi.org/10.1063/1.5026689, 2018. a
Yu, F. and Luo, G.: Simulation of particle size distribution with a global
aerosol model: contribution of nucleation to aerosol and CCN number
concentrations, Atmos. Chem. Phys., 9, 7691–7710,
https://doi.org/10.5194/acp-9-7691-2009, 2009. a
Zapadinsky, E., Passananti, M., Myllys, N., Kurtén, T., and Vehkamäki, H.:
Modeling on fragmentation of clusters inside a mass spectrometer,
J. Phys. Chem. A, 123, 611–624, https://doi.org/10.1021/acs.jpca.8b10744, 2018. a
Zhang, J. and Dolg, M.: ABCluster: the artificial bee colony algorithm for
cluster global optimization, Phys. Chem. Chem. Phys., 17, 24173–24181,
https://doi.org/10.1039/C5CP04060D, 2015. a
Zhang, K., Feichter, J., Kazil, J., Wan, H., Zhuo, W., Griffiths, A. D.,
Sartorius, H., Zahorowski, W., Ramonet, M., Schmidt, M., Yver, C., Neubert,
R. E. M., and Brunke, E.-G.: Radon activity in the lower troposphere and its
impact on ionization rate: a global estimate using different radon emissions,
Atmos. Chem. Phys., 11, 7817–7838, https://doi.org/10.5194/acp-11-7817-2011, 2011. a
Zhao, J., Eisele, F. L., Titcombe, M., Kuang, C., and McMurry, P. H.: Chemical
ionization mass spectrometric measurements of atmospheric neutral clusters
using the cluster-CIMS, J. Geophys. Res.-Atmos., 115,
D08205,
https://doi.org/10.1029/2009JD012606, 2010. a
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Collisions between ionic and dipolar molecules and clusters facilitate the formation of...
Altmetrics
Final-revised paper
Preprint