Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4759-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4759-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model
Jun-Ichi Yano
CORRESPONDING AUTHOR
CNRM, UMR 3589 (CNRS), Météo-France, 31057 Toulouse CEDEX, France
Nils P. Wedi
European Centre for Medium-Range Weather Forecasts, Reading, UK
Related authors
Jun-Ichi Yano, Vincent E. Larson, and Vaughan T. J. Phillips
Atmos. Chem. Phys., 25, 9357–9386, https://doi.org/10.5194/acp-25-9357-2025, https://doi.org/10.5194/acp-25-9357-2025, 2025
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner when describing diverse processes. This paper presents a general formulation for addressing all these problems.
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
Jun-Ichi Yano, Vincent E. Larson, and Vaughan T. J. Phillips
Atmos. Chem. Phys., 25, 9357–9386, https://doi.org/10.5194/acp-25-9357-2025, https://doi.org/10.5194/acp-25-9357-2025, 2025
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner when describing diverse processes. This paper presents a general formulation for addressing all these problems.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
Christian Zeman, Nils P. Wedi, Peter D. Dueben, Nikolina Ban, and Christoph Schär
Geosci. Model Dev., 14, 4617–4639, https://doi.org/10.5194/gmd-14-4617-2021, https://doi.org/10.5194/gmd-14-4617-2021, 2021
Short summary
Short summary
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve their representation. We present an intercomparison between two distinct atmospheric models for 2 summer days with heavy thunderstorms over Europe. We show the dependence of precipitation and vertical wind speed on spatial and temporal resolution and also discuss the possible influence of the system of equations, numerical methods, and diffusion in the models.
Cited articles
Chang, C. P.: Viscous internal gravity waves and low-frequency oscillations in the tropics, J. Atmos. Sci., 34, 901–910, 1977.
Crueger, T. and Stevens, B.: The effect of atmospheric radiative heating by clouds on the Madden–Julian Oscillation, J. Adv. Model. Earth Sy., 7, 854–864, https://doi.org/10.1002/2015MS000434, 2015.
ECMWF: OpenIFS CY43R3 release notes, available at: https://confluence.ecmwf.int/display/OIFS/Release+notes+for+OpenIFS+43r3v1 (last access: 25 March 2021), 2020.
Emanuel, K. A.: An air–sea interaction model of intraseasonal oscillations in the tropics, J. Atmos. Sci., 44, 2324–2340, 1987.
Fuchs, Ž. and Raymond, D. J.: A simple model of intraseasonal oscillations, J. Adv. Model. Earth Sy., 9, 1195–1211, https://doi.org/10.1002/2017MS000963, 2017.
Gustafson Jr., W. I. and Weare, B. C.: MM5 modeling of the Madden–Julian oscillation in the Indian West Pacific Oceans: Model description and control run results, J. Climate, 17, 1320–1337, 2004.
Hall, N. M. J., Thibaut, S., and Marchesiello, P.: Impact of the observed extratropics on climatological simulations of the MJO in a tropical channel model, Clim. Dynam., 48, 2541–2555, https://doi.org/10.1007/s00382-016-3221-5, 2016.
Hayashi, Y.: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind, J. Meteorol. Soc. Jpn., 48, 140–160, 1970.
Hirons L. C., Inness, P., Vitart, F., and Bechtold, P.: Understanding advances in the simulation ofintraseasonal variability in the ECMWF model. Part I: The representation of the MJO, Q. J. Roy. Meteor. Soc., 139, 1417–1426. https://doi.org/10.1002/qj.2060, 2013a.
Hirons L. C., Inness, P., Vitart, F., and Bechtold, P.: Understanding advances in the simulation ofintraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics, Q. J. Roy. Meteor. Soc., 139, 1427–1444, https://doi.org/10.1002/qj.2059, 2013b.
Hsu, H.-H., Hoskins, B. J., and Jin, F.-F.: The 1985/86 intraseasonal oscillation and the role of the extratropics, J. Atmos. Sci., 47, 823–839, 1990.
Jiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P.,
Woolnough, S. J., Guan, B., Bellon, G., Crueger, T., DeMott, C., Hannay, C.,
Lin, H., Hu, W., Kim, D., Lappen, C.-L., Lu, M.-M., Ma, H.-Y., Miyakawa, T.,
Ridout, J. A., Schubert, S. D., Scinocca, J., Seo, K.-H., Shindo, E.,
Song, X., Stan, C., Tseng, W.-L., Wang, W., Wu, T., Wu, X., Wyser, K.,
Zhang, G. J., and Zhu, H.: Vertical structure and physical processes of the
Madden–Julian oscillation: Exploring key model physics in climate
simulations, J. Geophys. Res., 120, 2014JD022375, https://doi.org/10.1002/2014JD022375 , 2015.
Jiang, X., Adames, Á. F., Kim, D., Maloney, E. D., Lin, H., Kim, H.,
Zhang, C., DeMott, C. A., and Klingaman, N. P.: Fifty year of research on the Madden–Julian Oscillation: Recent progress, challenges, and perspectives, J. Geophys. Res., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911, 2020a.
Jiang, X., Maloney, E., and Su, H.: Large-scale controls of propagation of the
Madden–Julian Oscillation, Clim. Atmos. Sci., 3, 29,
https://doi.org/10.1038/s41612-020-00134-x, 2020b.
Kim, D., Sobel, A. H., and Kang, I.-S.: A mechanism denial study on the Madden–Julian Oscillation, J. Adv. Model. Earth Sy., 3, M12007, https://doi.org/10.1029/2011MS000081, 2011.
Kim, H.-M., Kim, D., Vitart, F., Toma, V. E., Kug, J.-S., and Webster, P. J.: MJO propagation across the Maritime Continent in the ECMWF Ensemble Prediction System, J. Climate, 29, 3973–3988, 2016.
Kim, H., Vitart, F., and Waliser, D. E.: Prediction of the Madden–Julian oscillation: A review, J. Climate, 31, 9425–9443, 2018.
Knutson, T. R. and Weickmann, K. M.: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies, Mon. Weather Rev., 115, 1407–1436, 1987.
Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z. P., Smolarkiewicz, P. K., Szmelter, J., and Wedi, N. P.: FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS, Geosci. Model Dev., 12, 651–676, https://doi.org/10.5194/gmd-12-651-2019, 2019.
Lindzen, R. S.: Wave-CISK in the tropics, J. Atmos. Sci., 31, 156–179, 1974.
Madden, R. A. and Julian, P. R.: Description of global-scale circulation cells in the tropics with a 40–50 day period, J. Atmos. Sci., 29, 1109–1123, 1972.
Ma, D. and Kuang, Z.: A mechanism-denial study on the Madden–Julian Oscillation with reduced interference from mean state changes, Geophys. Res. Lett., 43, 2989–2997, https://doi.org/10.1002/2016GL067702, 2016.
Majda, A. J. and Stechmann, S. N.: The skeleton of tropical intraseasonal
oscillations, P. Natl. Acad. Sci. USA, 106, 8417–8422, 2009.
Malardel, S. and Wedi, N. P.: How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models?, J. Geophys. Res, 121, 5395–5410, 2016.
Malardel, S., Wedi, N. P., Deconinck, W., Diamantakis, M., Kühnlein, C., Mozdzynski, G., Hamrud, M., and Smolarkiewicz, P. K.: A new grid for the IFS, ECMWF Newsletter, 146, 23–28, 2016.
Milliff, R. F. and Madden, R. A.: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere, J. Atmos. Sci., 53, 586–597, 1996.
Nakazawa, T.: Tropical Super clusters within intraseasonal variations over the western Pacific, J. Meteorol. Soc. Jpn., 66, 823–839, 1988.
Pilon, R., Zhang, C., and Dudhia, J.: Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales, J. Geophys. Res.-Atmos., 121, 10575–10600, https://doi.org/10.1002/2015JD024697, 2016.
Plant, R. S. and Yano, J.-I. (Eds): Parameterization of Atmospheric Convection, Volumes I and II, World Scientific, Singapore, Imperial College Press, London, https://doi.org/10.1142/p1005, 2015.
Ray, P. and Li, T.: Relative Roles of Circumnavigating Waves and Extratropics on the MJO and Its Relationship with the Mean State, J. Atmos. Sci., 70, 876–893, 2013.
Ray, P. and Zhang, C.: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation, J. Atmos. Sci., 67, 515–528, 2010.
Rostami, M. and Zeitlin, V.: Eastward-moving convection-enhanced modons in
shallow water in the equatorial tangent plane featured, Phys. Fluids, 31,
021701, https://doi.org/10.1063/1.5080415, 2019.
Salby, M. L., Garcia, R. R., and Hendon, H. H.: Planetary-scale circulations in the presence of climatological and wave-induced heating, J. Atmos. Sci., 51, 2344–2367, 1994.
Seo, K., Wang, W., Gottschalck, J., Zhang, Q., Schemm, J. E., Higgins, W. R., and Kumar, A.: Evaluation of MJO Forecast Skill from Several Statistical and Dynamical Forecast Models, J. Climate, 22, 2372–2388, https://doi.org/10.1175/2008JCLI2421.1, 2009.
Straub, K. H.: MJO initiation in the real-time multivariate MJO index, J. Climate, 26, 1130–1151, 2013.
Vitart, F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q. J. Roy. Meteor. Soc., 140, 1889–1899, 2014.
Wang, B.: Dynamics of tropical low frequency waves: An analysis of the moist Kelvin wave, J. Atmos. Sci., 45, 2051–2065, 1988.
Wang, D., Yano, J.-I., and Lin, Y.: Madden–Julian oscillations seen in the upper-troposphere vorticity field: Interactions with Rossby-wave trains, J. Atmos. Sci., 76, 1785–1807, https://doi.org/10.1175/JAS-D-18-0172.1, 2019.
Wedi, N. P.: Increasing horizontal resolution in NWP and climate simulations – illusion or panacea?, Philos. T. R. Soc. A, 372, 20130289, https://doi.org/10.1098/rsta.2013.0289, 2014.
Wedi, N. P. and Smolarkiewicz, P. K.: A nonlinear perspective on the dynamics of the MJO: Idealized large-eddy simulations, J. Atmos. Sci., 67, 1202–1217, 2010.
Weickmann, K. M., Lussky, G. R., and Kutzbach, J. E.: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter, Mon. Weather Rev., 113, 941–961, 1985.
Wheeler, M. C. and Hendon, H. H.: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction, Mon. Weather Rev., 132, 1917–1932, 2004.
Yano, J.-I. and Bonazzola, M.: Scale analysis for the large-scale tropical atmospheric dynamics, J. Atmos. Sci., 66, 159–172, 2009.
Yano, J.-I. and Emanuel, K. A.: An improved model of the equatorial troposphere and its coupling with the stratosphere, J. Atmos. Sci., 48, 377–389, 1991.
Yano, J.-I. and Tribbia, J. J.: Tropical atmospheric Madden–Julian oscillation: Strongly-nonlinear free solitary Rossby wave?, J. Atmos. Sci., 74, 3473–3489, 2017.
Yano, J.-I., Mulet, S., and Bonazzola, M.: Large-scale tropical atmosphere:
asymptotically non-divergent?, Tellus A, 61, 417–427, 2009.
Yano, J.-I., Bister, M., Fuchs, Ž., Gerard, L., Phillips, V. T. J., Barkidija, S., and Piriou, J.-M.: Phenomenology of convection-parameterization closure, Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013, 2013.
Zhang, C.: Madden–Julian oscillation, Rev. Geophys., 43, RG2003,
https://doi.org/10.1029/2004RG000158, 2005.
Zhang, C., Adames, Á. F., Khouider, B., Wang, B., and Yang, D.: Four theories of the Madden–Julian Oscillation, Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685, 2020.
Zhao, C., Li, T., and Zhou, T.: Precursor signals and processes associated with MJO initiation over the Tropical Indian Ocean, J. Climate, 26, 291–307, 2013.
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different...
Altmetrics
Final-revised paper
Preprint