Articles | Volume 21, issue 5
https://doi.org/10.5194/acp-21-3643-2021
https://doi.org/10.5194/acp-21-3643-2021
Research article
 | 
10 Mar 2021
Research article |  | 10 Mar 2021

Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations

Yuzhong Zhang, Daniel J. Jacob, Xiao Lu, Joannes D. Maasakkers, Tia R. Scarpelli, Jian-Xiong Sheng, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Jinfeng Chang, A. Anthony Bloom, Shuang Ma, John Worden, Robert J. Parker, and Hartmut Boesch

Related authors

Global modeling of brown carbon: impact of temperature- and humidity-dependent bleaching
Xinchun Xie, Yuzhong Zhang, Ruosi Liang, and Xuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2305,https://doi.org/10.5194/egusphere-2025-2305, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Spatiotemporal variations in atmospheric CH4 concentrations and enhancements in northern China based on a comprehensive dataset: ground-based observations, TROPOMI data, inventory data, and inversions
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
Atmos. Chem. Phys., 25, 4965–4988, https://doi.org/10.5194/acp-25-4965-2025,https://doi.org/10.5194/acp-25-4965-2025, 2025
Short summary
Locating and quantifying CH4 sources within a wastewater treatment plant based on mobile measurements
Junyue Yang, Zhengning Xu, Zheng Xia, Xiangyu Pei, Yunye Yang, Botian Qiu, Shuang Zhao, Yuzhong Zhang, and Zhibin Wang
Atmos. Chem. Phys., 25, 4571–4585, https://doi.org/10.5194/acp-25-4571-2025,https://doi.org/10.5194/acp-25-4571-2025, 2025
Short summary
A data-efficient deep transfer learning framework for methane super-emitter detection in oil and gas fields using the Sentinel-2 satellite
Shutao Zhao, Yuzhong Zhang, Shuang Zhao, Xinlu Wang, and Daniel J. Varon
Atmos. Chem. Phys., 25, 4035–4052, https://doi.org/10.5194/acp-25-4035-2025,https://doi.org/10.5194/acp-25-4035-2025, 2025
Short summary
What can we learn about tropospheric OH from satellite observations of methane?
Elise Penn, Daniel J. Jacob, Zichong Chen, James D. East, Melissa P. Sulprizio, Lori Bruhwiler, Joannes D. Maasakkers, Hannah Nesser, Zhen Qu, Yuzhong Zhang, and John Worden
Atmos. Chem. Phys., 25, 2947–2965, https://doi.org/10.5194/acp-25-2947-2025,https://doi.org/10.5194/acp-25-2947-2025, 2025
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Assessing the ability to quantify the decrease in NOx anthropogenic emissions in 2019 compared to 2005 using OMI and TROPOMI satellite observations
Audrey Fortems-Cheiney, Grégoire Broquet, Elise Potier, Antoine Berchet, Isabelle Pison, Adrien Martinez, Robin Plauchu, Rimal Abeed, Aurélien Sicsik-Paré, Gaelle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, Henk Eskes, Hugo A. C. Denier van der Gon, and Stijn N. C. Dellaert
Atmos. Chem. Phys., 25, 6047–6068, https://doi.org/10.5194/acp-25-6047-2025,https://doi.org/10.5194/acp-25-6047-2025, 2025
Short summary
Tracking daily NOx emissions from an urban agglomeration based on TROPOMI NO2 and a local ensemble transform Kalman filter
Yawen Kong, Bo Zheng, and Yuxi Liu
Atmos. Chem. Phys., 25, 5959–5976, https://doi.org/10.5194/acp-25-5959-2025,https://doi.org/10.5194/acp-25-5959-2025, 2025
Short summary
Evaluation of O3, H2O, CO, and NOy climatologies simulated by four global models in the upper troposphere–lower stratosphere with IAGOS measurements
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 25, 5793–5836, https://doi.org/10.5194/acp-25-5793-2025,https://doi.org/10.5194/acp-25-5793-2025, 2025
Short summary
Source contribution to ozone pollution during June 2021 fire events in Arizona: insights from WRF-Chem-tagged O3 and CO
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
Atmos. Chem. Phys., 25, 5591–5616, https://doi.org/10.5194/acp-25-5591-2025,https://doi.org/10.5194/acp-25-5591-2025, 2025
Short summary
High-resolution mapping of on-road vehicle emissions with real-time traffic datasets based on big data
Yujia Wang, Hongbin Wang, Bo Zhang, Peng Liu, Xinfeng Wang, Shuchun Si, Likun Xue, Qingzhu Zhang, and Qiao Wang
Atmos. Chem. Phys., 25, 5537–5555, https://doi.org/10.5194/acp-25-5537-2025,https://doi.org/10.5194/acp-25-5537-2025, 2025
Short summary

Cited articles

ACE Atmospheric Chemistry Experiment: ACE-FTS satellite observations, available at: http://www.ace.uwaterloo.ca/data.php, last access: 20 July 2020. 
Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015. 
Baray, S., Jacob, D. J., Massakkers, J. D., Sheng, J.-X., Sulprizio, M. P., Jones, D. B. A., Bloom, A. A., and McLaren, R.: Estimating 2010–2015 Anthropogenic and Natural Methane Emissions in Canada using ECCC Surface and GOSAT Satellite Observations, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1195, in review, 2021. 
Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation, Sci. Adv., 4, eaat8785, https://doi.org/10.1126/sciadv.aat8785, 2018. 
Download
Short summary
We use 2010–2018 satellite observations of atmospheric methane to interpret the factors controlling atmospheric methane and its accelerating increase during the period. The 2010–2018 increase in global methane emissions is driven by tropical and boreal wetlands and tropical livestock (South Asia, Africa, Brazil), with an insignificant positive trend in emissions from the fossil fuel sector. The peak methane growth rates in 2014–2015 are also contributed by low OH and high fire emissions.
Share
Altmetrics
Final-revised paper
Preprint