Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15461-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15461-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the impact of storage-and-release on aircraft-based mass-balance methodology using a regional air-quality model
Sepehr Fathi
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
Physics and Astronomy, York University, Toronto, Canada
Mark Gordon
Earth and Space Science, York University, Toronto, Canada
Paul A. Makar
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
Ayodeji Akingunola
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
Andrea Darlington
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
John Liggio
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
Katherine Hayden
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
Shao-Meng Li
College of Environmental Science and Engineering, Peking University, Beijing, China
Related authors
Sepehr Fathi, Paul Makar, Wanmin Gong, Junhua Zhang, Katherine Hayden, and Mark Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1655, https://doi.org/10.5194/egusphere-2024-1655, 2024
Short summary
Short summary
Our study explores the influence of water phase changes in plumes from industrial sources on atmospheric dispersion of emitted pollutants and air quality. Employing PRISM (Plume-Rise-Iterative-Stratified-Moist), a new method, we found that considering these effects significantly improves predictions of pollutant dispersion. This insight enhances our understanding of environmental impacts, enabling more accurate air quality modeling, and fostering more effective pollution management strategies.
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023, https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
Short summary
We have combined various capabilities within a WRF model to generate simulations of atmospheric pollutant dispersion at 50 m resolution. The study objective was to resolve transport processes at the scale of measurements to assess and optimize aircraft-based emission rate retrievals. Model performance evaluation resulted in agreement within 5 % of observed meteorological and within 1–2 standard deviations of observed wind fields. Mass was conserved in the model within 5 % of input emissions.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024, https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Short summary
Satellite-derived CO emissions provide new insights into the understanding of global CO emission rates from wildfires. We use TROPOMI satellite data to create a global inventory database of wildfire CO emissions. These satellite-derived wildfire emissions are used for the evaluation and improvement of existing fire emission inventories and to examine how the wildfire CO emissions have changed over the past 2 decades.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Sepehr Fathi, Paul Makar, Wanmin Gong, Junhua Zhang, Katherine Hayden, and Mark Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1655, https://doi.org/10.5194/egusphere-2024-1655, 2024
Short summary
Short summary
Our study explores the influence of water phase changes in plumes from industrial sources on atmospheric dispersion of emitted pollutants and air quality. Employing PRISM (Plume-Rise-Iterative-Stratified-Moist), a new method, we found that considering these effects significantly improves predictions of pollutant dispersion. This insight enhances our understanding of environmental impacts, enabling more accurate air quality modeling, and fostering more effective pollution management strategies.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
Stefan J. Miller, Paul A. Makar, and Colin J. Lee
Geosci. Model Dev., 17, 2197–2219, https://doi.org/10.5194/gmd-17-2197-2024, https://doi.org/10.5194/gmd-17-2197-2024, 2024
Short summary
Short summary
This work outlines a new solver written in Fortran to calculate the partitioning of metastable aerosols at thermodynamic equilibrium based on the forward algorithms of ISORROPIA II. The new code includes numerical improvements that decrease the computational speed (compared to ISORROPIA II) while improving the accuracy of the partitioning solution.
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024, https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Short summary
This study reported an integrated UAV measurement platform for GHG monitoring and its application for emission quantification from a coking plant. The key element of this system is a newly designed air sampler, consisting of a 150 m long tube with remote-controlled time stamping. When comparing the top-down results to those derived from the bottom-up inventory method, the present findings indicate that the use of IPCC emission factors for emission calculations can lead to overestimation.
Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola
Geosci. Model Dev., 17, 685–707, https://doi.org/10.5194/gmd-17-685-2024, https://doi.org/10.5194/gmd-17-685-2024, 2024
Short summary
Short summary
The article explores the impact of different representations of below-cloud scavenging on model biases. A new scavenging scheme and precipitation-phase partitioning improve the model's performance, with better SO42- scavenging and wet deposition of NO3- and NH4+.
Yanrong Yang, Yuheng Zhang, Tianran Han, Conghui Xie, Yayong Liu, Yufei Huang, Jietao Zhou, Haijiong Sun, Delong Zhao, Kui Zhang, and Shao-Meng Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-248, https://doi.org/10.5194/amt-2023-248, 2024
Preprint withdrawn
Short summary
Short summary
The paper introduces a correction algorithm for accurate wind speed measurement in a multirotor unmanned aerial vehicle (UAV) with a sonic anemometer. Addressing propeller rotation, UAV movement, and attitude changes, it integrates computational fluid dynamics simulation and regression analysis. This comprehensive algorithm corrects rotor disturbances, motion, and attitude variations. Validation against meteorological tower data demonstrates its enhanced reliability in wind speed measurements.
Colin J. Lee, Paul A. Makar, and Joana Soares
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-185, https://doi.org/10.5194/gmd-2023-185, 2023
Publication in GMD not foreseen
Short summary
Short summary
Clustering is an analysis technique for finding similarities within datasets. We present a new implementation of the hierarchical clustering algorithm that is able to process much larger datasets than was previously possible, by spreading the program out over many connected computers in a high-performance computing system. We show airshed maps of a high-resolution regional model output domain, and find related air pollution profiles at monitoring stations separated by thousands of kilometers.
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023, https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary
Short summary
Measurements of ozone in the atmosphere were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements show that the emissions of other pollutants from oil sands production and processing reduce the amount of ozone in the forest. By using an atmospheric model combined with measurements, we find that the rate at which ozone is absorbed by the forest is lower than typical rates from similar measurements in other forests.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023, https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
Short summary
We have combined various capabilities within a WRF model to generate simulations of atmospheric pollutant dispersion at 50 m resolution. The study objective was to resolve transport processes at the scale of measurements to assess and optimize aircraft-based emission rate retrievals. Model performance evaluation resulted in agreement within 5 % of observed meteorological and within 1–2 standard deviations of observed wind fields. Mass was conserved in the model within 5 % of input emissions.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022, https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary
Short summary
This research investigates the measurement of atmospheric turbulence using a low-cost instrumented car that travels at near-highway speeds and is impacted by upwind obstructions and other on-road traffic. We show that our car design can successfully measure the mean flow and atmospheric turbulence near the surface. We outline a technique to isolate and remove the effects of sporadic passing traffic from car-measured velocity variances and discuss potential measurement uncertainties.
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022, https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Short summary
Accurately estimating greenhouse gas (GHG) emissions is essential to reaching net-zero goals to combat the climate crisis. Airborne box-flights are ideal for assessing regional GHG emissions, as they can attain small error. We compare two box-flight algorithms and found they produce similar results, but daily variability must be considered when deriving emissions inventories. Increasing the consistency and agreement between airborne methods moves us closer to achieving more accurate estimates.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022, https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Paul A. Makar, Craig Stroud, Ayodeji Akingunola, Junhua Zhang, Shuzhan Ren, Philip Cheung, and Qiong Zheng
Atmos. Chem. Phys., 21, 12291–12316, https://doi.org/10.5194/acp-21-12291-2021, https://doi.org/10.5194/acp-21-12291-2021, 2021
Short summary
Short summary
Vehicle pollutant emissions occur in an environment where upward transport can be enhanced due to the turbulence created by the vehicles as they move through the atmosphere. An approach for including these turbulence effects in regional air pollution forecast models has been derived from theoretical, observation, and higher-resolution modeling. The enhanced mixing, which occurs in the immediate vicinity of roadways, changes pollutant concentrations on the regional to continental scale.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Michael D. Moran, and Junhua Zhang
Atmos. Chem. Phys., 20, 2911–2925, https://doi.org/10.5194/acp-20-2911-2020, https://doi.org/10.5194/acp-20-2911-2020, 2020
Short summary
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Roya Ghahreman, Wanmin Gong, Martí Galí, Ann-Lise Norman, Stephen R. Beagley, Ayodeji Akingunola, Qiong Zheng, Alexandru Lupu, Martine Lizotte, Maurice Levasseur, and W. Richard Leaitch
Atmos. Chem. Phys., 19, 14455–14476, https://doi.org/10.5194/acp-19-14455-2019, https://doi.org/10.5194/acp-19-14455-2019, 2019
Short summary
Short summary
Atmospheric DMS(g) is a climatically important compound and the main source of biogenic sulfate in the Arctic. Its abundance in the Arctic increases during summer due to greater ice-free sea surface and higher biological activity. In this study, we implemented DMS(g) in a regional air quality forecast model configured for the Arctic. The study showed a significant impact from DMS(g) on sulfate aerosols, particularly in the 50–100 nm size range, in the Arctic marine boundary layer during summer.
Alex K. Y. Lee, Max G. Adam, John Liggio, Shao-Meng Li, Kun Li, Megan D. Willis, Jonathan P. D. Abbatt, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, Kevin Strawbridge, and Jeffery R. Brook
Atmos. Chem. Phys., 19, 12209–12219, https://doi.org/10.5194/acp-19-12209-2019, https://doi.org/10.5194/acp-19-12209-2019, 2019
Short summary
Short summary
This work provides the first direct field evidence that anthropogenic organo-nitrate contributed up to half of secondary organic aerosol (SOA) mass that was freshly produced within the emission plumes of oil sands facilities in Alberta, Canada. The findings illustrate the central role of organo-nitrate in SOA production from the oil and gas industry, with relevance for other urban and industrial regions with significant intermediate-volatility organic compounds (IVOCs) and NOx emissions.
Kun Li, John Liggio, Patrick Lee, Chong Han, Qifan Liu, and Shao-Meng Li
Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, https://doi.org/10.5194/acp-19-9715-2019, 2019
Short summary
Short summary
A new oxidation flow reactor was developed and applied to study the secondary organic aerosol (SOA) formation from precursors associated with oil-sands (OS) operations. The results reveal that the SOA yields from OS precursors are related to the volatilities of precursors and that open-pit mining is the main source of SOA formed from oil sands. In addition, cyclic alkanes are found to play an important role in SOA formation from oil-sands precursors.
Matthew Russell, Amir Hakami, Paul A. Makar, Ayodeji Akingunola, Junhua Zhang, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 19, 4393–4417, https://doi.org/10.5194/acp-19-4393-2019, https://doi.org/10.5194/acp-19-4393-2019, 2019
Short summary
Short summary
High-resolution air-quality forecast modeling results are compared for two different grid spacings for the Environment and Climate Change Canada GEM-MACH model. While the higher-resolution simulations have worse formal error scores, we show that the higher-resolution model nevertheless has the ability to better resolve plume maxima and has better performance when the evaluation occurs using new scoring metrics which operate on an equal-representative-area basis.
Cristen Adams, Chris A. McLinden, Mark W. Shephard, Nolan Dickson, Enrico Dammers, Jack Chen, Paul Makar, Karen E. Cady-Pereira, Naomi Tam, Shailesh K. Kharol, Lok N. Lamsal, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, https://doi.org/10.5194/acp-19-2577-2019, 2019
Short summary
Short summary
We estimated how much carbon monoxide, ammonia, and nitrogen oxides were emitted in the smoke from the Fort McMurray Horse River wildfire using satellite data and air quality models. The fire emitted amounts of carbon monoxide that were similar to anthropogenic (human-caused) emissions for all of Alberta over a full year. We also estimated large amounts of ammonia and nitrogen oxides emitted from the fire. These results can be used to evaluate the performance of air quality forecasting models.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Travis W. Tokarek, Charles A. Odame-Ankrah, Jennifer A. Huo, Robert McLaren, Alex K. Y. Lee, Max G. Adam, Megan D. Willis, Jonathan P. D. Abbatt, Cristian Mihele, Andrea Darlington, Richard L. Mittermeier, Kevin Strawbridge, Katherine L. Hayden, Jason S. Olfert, Elijah G. Schnitzler, Duncan K. Brownsey, Faisal V. Assad, Gregory R. Wentworth, Alex G. Tevlin, Douglas E. J. Worthy, Shao-Meng Li, John Liggio, Jeffrey R. Brook, and Hans D. Osthoff
Atmos. Chem. Phys., 18, 17819–17841, https://doi.org/10.5194/acp-18-17819-2018, https://doi.org/10.5194/acp-18-17819-2018, 2018
Short summary
Short summary
Measurements of air pollutants at a ground site near Fort McKay in the Athabasca oil sands region in the summer of 2013 are presented. A large number of intermediate-volatility organic compounds (IVOCs) were observed; these molecules were shown previously to generate atmospheric particles downwind of the region. A principal component analysis was performed to identify major pollution source types, including which source(s) is(are) associated with IVOC emissions (e.g., freshly mined bitumen).
Sumi N. Wren, John Liggio, Yuemei Han, Katherine Hayden, Gang Lu, Cris M. Mihele, Richard L. Mittermeier, Craig Stroud, Jeremy J. B. Wentzell, and Jeffrey R. Brook
Atmos. Chem. Phys., 18, 16979–17001, https://doi.org/10.5194/acp-18-16979-2018, https://doi.org/10.5194/acp-18-16979-2018, 2018
Short summary
Short summary
We made measurements from a mobile laboratory across a large urban area and determined fleet-average vehicle emission factors (EFs) for a suite of traffic-related air pollutants. We present the first real-world EFs for isocyanic acid (HNCO) and hydrogen cyanide (HCN) and insight into their on-road variability. We find that vehicles may represent an important source of these air toxics at an urban scale. This work has implications for understanding population exposure to these species.
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Craig A. Stroud, Paul A. Makar, Junhua Zhang, Michael D. Moran, Ayodeji Akingunola, Shao-Meng Li, Amy Leithead, Katherine Hayden, and May Siu
Atmos. Chem. Phys., 18, 13531–13545, https://doi.org/10.5194/acp-18-13531-2018, https://doi.org/10.5194/acp-18-13531-2018, 2018
Short summary
Short summary
It is shown that using measurement-derived volatile organic compound (VOC) and organic aerosol (OA) emissions in the GEM-MACH air quality model provides better overall predictions compared to using bottom-up emission inventories. This work was done to better constrain the fugitive organic emissions from the Athabasca oil sands region, which are a challenge to estimate with bottom-up emission approaches. We use observations from the 2013 Joint Oil Sands Monitoring study.
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, https://doi.org/10.5194/acp-18-10459-2018, 2018
Short summary
Short summary
This paper discusses the development of new synthesized emissions inventories and the generation of air quality model-ready emissions files for the Athabasca Oil Sands Region of Alberta, Canada, using multiple emissions inventories, continuous emissions monitoring data, and inferred emission rates based on aircraft measurements. Novel facility-specific gridded spatial surrogate fields were generated to allocate emissions spatially within each huge mining facility.
Emma L. Mungall, Jonathan P. D. Abbatt, Jeremy J. B. Wentzell, Gregory R. Wentworth, Jennifer G. Murphy, Daniel Kunkel, Ellen Gute, David W. Tarasick, Sangeeta Sharma, Christopher J. Cox, Taneil Uttal, and John Liggio
Atmos. Chem. Phys., 18, 10237–10254, https://doi.org/10.5194/acp-18-10237-2018, https://doi.org/10.5194/acp-18-10237-2018, 2018
Short summary
Short summary
We measured gas-phase formic and acetic acid at Alert, Nunavut. These acids play an important role in cloud water acidity in remote environments, yet they are not well represented in chemical transport models, particularly in the Arctic. We observed high levels of formic and acetic acid under both cold, wet, and cloudy and warm, sunny, and dry conditions, suggesting that multiple sources significantly contribute to gas-phase concentrations of these species in the summer Arctic.
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, https://doi.org/10.5194/acp-18-9897-2018, 2018
Short summary
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Short summary
We present a new, high-resolution, North American model of PAHs and benzene, which are toxic air pollutants that cause a variety of negative health impacts. Our simulation in a densely populated region of Canada and the U.S. shows that the model is improved over a previous model. The new model is particularly refined regarding the gas–particle partitioning of these pollutants, which has impacts on deposition and inhalation. The simulation was sensitive to the selection of vehicle emissions.
Monika Aggarwal, James Whiteway, Jeffrey Seabrook, Lawrence Gray, Kevin Strawbridge, Peter Liu, Jason O'Brien, Shao-Meng Li, and Robert McLaren
Atmos. Meas. Tech., 11, 3829–3849, https://doi.org/10.5194/amt-11-3829-2018, https://doi.org/10.5194/amt-11-3829-2018, 2018
Short summary
Short summary
Aircraft-based laser remote sensing measurements of atmospheric aerosol and ozone were conducted to study air pollution from the oil sands extraction industry in northern Alberta. The ozone mixing ratio measured in the polluted boundary layer air was equal to or less than the background ozone mixing ratio. The lidar measurements detected a layer of forest fire smoke above the surface boundary layer in which the measured ozone mixing ratio was substantially greater than the background amount.
Ayodeji Akingunola, Paul A. Makar, Junhua Zhang, Andrea Darlington, Shao-Meng Li, Mark Gordon, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, https://doi.org/10.5194/acp-18-8667-2018, 2018
Short summary
Short summary
We examine the manner in which air-quality models simulate lofting of buoyant plumes of emissions from stacks (plume rise) and the impact of the level of detail in algorithms simulating particles' variation in size (particle size distribution). The most commonly used plume rise algorithm underestimates the height of plumes compared to observations, while a revised algorithm has much better performance. A 12-bin size distribution reduced the forecast 2-bin size distribution bias error by 32 %.
Sabour Baray, Andrea Darlington, Mark Gordon, Katherine L. Hayden, Amy Leithead, Shao-Meng Li, Peter S. K. Liu, Richard L. Mittermeier, Samar G. Moussa, Jason O'Brien, Ralph Staebler, Mengistu Wolde, Doug Worthy, and Robert McLaren
Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, https://doi.org/10.5194/acp-18-7361-2018, 2018
Short summary
Short summary
Methane emissions from major oil sands facilities in the Athabasca Oil Sands Region (AOSR) of Alberta were measured in the summer of 2013 using two related aircraft mass-balance approaches. Tailings ponds and fugitive emissions of methane from open pit mines were found to be the major sources of methane in the region. Total methane emissions in the AOSR were measured to be ~ 20 tonnes of CH4 per hour, which is 48 % higher than the Canadian Greenhouse Gas Reporting Program Emissions Inventory.
Joana Soares, Paul Andrew Makar, Yayne Aklilu, and Ayodeji Akingunola
Atmos. Chem. Phys., 18, 6543–6566, https://doi.org/10.5194/acp-18-6543-2018, https://doi.org/10.5194/acp-18-6543-2018, 2018
Short summary
Short summary
Grouping data on the basis of (dis)similarity can be used to assess the efficacy of monitoring networks. The data are cross-compared in terms of temporal variation and magnitude of concentrations, and sites are ranked according to their level of potential redundancy. The methodology can be applied to measurement data, helping to identify sites with different measuring technologies or data flaws, and to model output, generating maps of areas of spatial representativeness of a monitoring site.
Yuan Cheng, Shao-Meng Li, Mark Gordon, and Peter Liu
Atmos. Chem. Phys., 18, 2653–2667, https://doi.org/10.5194/acp-18-2653-2018, https://doi.org/10.5194/acp-18-2653-2018, 2018
Short summary
Short summary
An aircraft campaign was conducted over the Athabasca oil sands (OS) region to characterize refractory black carbon (rBC) particles as they were emitted from the sources and as they were transported downwind; rBC size distributions were consistent at different downwind distances from the source area whereas coating thicknesses on the rBC cores increased considerably as the OS plumes were transported downwind. These results provide insights into the evolution of BC aerosol in the real atmosphere.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
John Liggio, Samar G. Moussa, Jeremy Wentzell, Andrea Darlington, Peter Liu, Amy Leithead, Katherine Hayden, Jason O'Brien, Richard L. Mittermeier, Ralf Staebler, Mengistu Wolde, and Shao-Meng Li
Atmos. Chem. Phys., 17, 8411–8427, https://doi.org/10.5194/acp-17-8411-2017, https://doi.org/10.5194/acp-17-8411-2017, 2017
Short summary
Short summary
The emission and formation of gaseous organic acids from the oil sands industry in Canada is explored through aircraft measurements directly over and downwind wind of industrial facilities. Results demonstrated that the formation of organic acids through atmospheric chemical reactions dominated over the direct emissions from mining activities but could not be explicitly modeled. The results highlight the need for improved understanding of photochemical mechanisms leading to these species.
Yuemei Han, Craig A. Stroud, John Liggio, and Shao-Meng Li
Atmos. Chem. Phys., 16, 13929–13944, https://doi.org/10.5194/acp-16-13929-2016, https://doi.org/10.5194/acp-16-13929-2016, 2016
Short summary
Short summary
This study investigates the acidity effect on the yield and chemical composition of α-pinene secondary organic aerosol based on a series of laboratory experiments performed using a photochemical reaction chamber under high- and low-NOx conditions. We have found that the acidity effect largely depends on NOx level and the inorganic acidity has a significant role to play in determining various organic aerosol chemical properties such as mass yields, oxidation state, and organic nitrate content.
Vitali E. Fioletov, Chris A. McLinden, Alexander Cede, Jonathan Davies, Cristian Mihele, Stoyka Netcheva, Shao-Meng Li, and Jason O'Brien
Atmos. Meas. Tech., 9, 2961–2976, https://doi.org/10.5194/amt-9-2961-2016, https://doi.org/10.5194/amt-9-2961-2016, 2016
Alex K. Y. Lee, Jonathan P. D. Abbatt, W. Richard Leaitch, Shao-Meng Li, Steve J. Sjostedt, Jeremy J. B. Wentzell, John Liggio, and Anne Marie Macdonald
Atmos. Chem. Phys., 16, 6721–6733, https://doi.org/10.5194/acp-16-6721-2016, https://doi.org/10.5194/acp-16-6721-2016, 2016
Short summary
Short summary
Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment. In particular, our observations provide insights into the relative importance of different oxidation mechanisms between day and night.
Emma L. Mungall, Betty Croft, Martine Lizotte, Jennie L. Thomas, Jennifer G. Murphy, Maurice Levasseur, Randall V. Martin, Jeremy J. B. Wentzell, John Liggio, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016, https://doi.org/10.5194/acp-16-6665-2016, 2016
Short summary
Short summary
Previous work has suggested that marine emissions of dimethyl sulfide (DMS) could impact the Arctic climate through interactions with clouds. We made the first high-time-resolution measurements of summertime atmospheric DMS in the Canadian Arctic, and performed source sensitivity simulations. We found that regional marine sources dominated, but do not appear to be sufficient to explain our observations. Understanding DMS sources in the Arctic is necessary to model future climate in the region.
Bin Yuan, John Liggio, Jeremy Wentzell, Shao-Meng Li, Harald Stark, James M. Roberts, Jessica Gilman, Brian Lerner, Carsten Warneke, Rui Li, Amy Leithead, Hans D. Osthoff, Robert Wild, Steven S. Brown, and Joost A. de Gouw
Atmos. Chem. Phys., 16, 2139–2153, https://doi.org/10.5194/acp-16-2139-2016, https://doi.org/10.5194/acp-16-2139-2016, 2016
Short summary
Short summary
We describe high-resolution measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS). Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Box model simulations were able to reproduce the measured nitrated phenols.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
Y. Liu, J. Liggio, R. Staebler, and S.-M. Li
Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, https://doi.org/10.5194/acp-15-13569-2015, 2015
Short summary
Short summary
This work for the first time demonstrated that organonitrogen compounds (NOC) can be formed efficiently via the uptake of ammonia by newly formed secondary organic aerosol using a smog chamber equipped with a HR-ToF-AMS. Based on the measured kinetics, this study suggests that light absorption by NOC in atmospheric particles may be important in regions where the BC contribution is minimal and NOC from ammonia should be considered with respect to overall deposition of nitrogen to ecosystems.
M. Gordon, S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O'Brien, and M. Wolde
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, https://doi.org/10.5194/amt-8-3745-2015, 2015
Short summary
Short summary
Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made during a summer intensive field campaign in 2013. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples. Uncertainty of the emission rates estimated with TERRA is estimated as less than 30%, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.
N. D. Rider, Y. M. Taha, C. A. Odame-Ankrah, J. A. Huo, T. W. Tokarek, E. Cairns, S. G. Moussa, J. Liggio, and H. D. Osthoff
Atmos. Meas. Tech., 8, 2737–2748, https://doi.org/10.5194/amt-8-2737-2015, https://doi.org/10.5194/amt-8-2737-2015, 2015
Short summary
Short summary
A photochemical source of peroxycarboxylic nitric anhydrides (PANs) in which a dialkyl ketone (acetone, diethyl-, di-isopropyl, or di-n-propyl ketone) in the presence of oxygen and nitric oxide is photodissociated by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The source output was analyzed by gas chromatography and thermal dissociation cavity ring-down spectroscopy and modeled using the Master Chemical Mechanism.
B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück, and J. A. de Gouw
Atmos. Chem. Phys., 15, 1975–1993, https://doi.org/10.5194/acp-15-1975-2015, https://doi.org/10.5194/acp-15-1975-2015, 2015
Short summary
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
C. Warneke, P. Veres, S. M. Murphy, J. Soltis, R. A. Field, M. G. Graus, A. Koss, S.-M. Li, R. Li, B. Yuan, J. M. Roberts, and J. A. de Gouw
Atmos. Meas. Tech., 8, 411–420, https://doi.org/10.5194/amt-8-411-2015, https://doi.org/10.5194/amt-8-411-2015, 2015
I. Nuaaman, S.-M. Li, K. L. Hayden, T. B. Onasch, P. Massoli, D. Sueper, D. R. Worsnop, T. S. Bates, P. K. Quinn, and R. McLaren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-2085-2015, https://doi.org/10.5194/acpd-15-2085-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
In this paper, we focus on the measurement and reporting of mass concentrations of particulate chloride and sea salt in a marine area off the coast of California using a High Resolution Aerosol Mass Spectrometer. We outline a method of deconvolving the total aerosol chloride mass into refractory and non-refractory components, previously not reported in the literature. This can be important in regions where refractory sea salt aerosols can contribute to the aerosol chloride signal measured with t
L. Huang, S. L. Gong, M. Gordon, J. Liggio, R. Staebler, C. A. Stroud, G. Lu, C. Mihele, J. R. Brook, and C. Q. Jia
Atmos. Chem. Phys., 14, 12631–12648, https://doi.org/10.5194/acp-14-12631-2014, https://doi.org/10.5194/acp-14-12631-2014, 2014
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
Y. Liu, L. Huang, S.-M. Li, T. Harner, and J. Liggio
Atmos. Chem. Phys., 14, 12195–12207, https://doi.org/10.5194/acp-14-12195-2014, https://doi.org/10.5194/acp-14-12195-2014, 2014
R. Li, C. Warneke, M. Graus, R. Field, F. Geiger, P. R. Veres, J. Soltis, S.-M. Li, S. M. Murphy, C. Sweeney, G. Pétron, J. M. Roberts, and J. de Gouw
Atmos. Meas. Tech., 7, 3597–3610, https://doi.org/10.5194/amt-7-3597-2014, https://doi.org/10.5194/amt-7-3597-2014, 2014
Y. Liu, S.-M. Li, and J. Liggio
Atmos. Chem. Phys., 14, 9201–9211, https://doi.org/10.5194/acp-14-9201-2014, https://doi.org/10.5194/acp-14-9201-2014, 2014
M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown
Atmos. Chem. Phys., 14, 9087–9097, https://doi.org/10.5194/acp-14-9087-2014, https://doi.org/10.5194/acp-14-9087-2014, 2014
P. A. Makar, R. Nissen, A. Teakles, J. Zhang, Q. Zheng, M. D. Moran, H. Yau, and C. diCenzo
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-7-1001-2014, https://doi.org/10.5194/gmd-7-1001-2014, 2014
E. Galarneau, P. A. Makar, Q. Zheng, J. Narayan, J. Zhang, M. D. Moran, M. A. Bari, S. Pathela, A. Chen, and R. Chlumsky
Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, https://doi.org/10.5194/acp-14-4065-2014, 2014
T. P. Riedel, G. M. Wolfe, K. T. Danas, J. B. Gilman, W. C. Kuster, D. M. Bon, A. Vlasenko, S.-M. Li, E. J. Williams, B. M. Lerner, P. R. Veres, J. M. Roberts, J. S. Holloway, B. Lefer, S. S. Brown, and J. A. Thornton
Atmos. Chem. Phys., 14, 3789–3800, https://doi.org/10.5194/acp-14-3789-2014, https://doi.org/10.5194/acp-14-3789-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
G. M. Buffaloe, D. A. Lack, E. J. Williams, D. Coffman, K. L. Hayden, B. M. Lerner, S.-M. Li, I. Nuaaman, P. Massoli, T. B. Onasch, P. K. Quinn, and C. D. Cappa
Atmos. Chem. Phys., 14, 1881–1896, https://doi.org/10.5194/acp-14-1881-2014, https://doi.org/10.5194/acp-14-1881-2014, 2014
S. Zhou, L. Gonzalez, A. Leithead, Z. Finewax, R. Thalman, A. Vlasenko, S. Vagle, L.A. Miller, S.-M. Li, S. Bureekul, H. Furutani, M. Uematsu, R. Volkamer, and J. Abbatt
Atmos. Chem. Phys., 14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, https://doi.org/10.5194/acp-14-1371-2014, 2014
C. D. Cappa, E. J. Williams, D. A. Lack, G. M. Buffaloe, D. Coffman, K. L. Hayden, S. C. Herndon, B. M. Lerner, S.-M. Li, P. Massoli, R. McLaren, I. Nuaaman, T. B. Onasch, and P. K. Quinn
Atmos. Chem. Phys., 14, 1337–1352, https://doi.org/10.5194/acp-14-1337-2014, https://doi.org/10.5194/acp-14-1337-2014, 2014
J. R. Brook, P. A. Makar, D. M. L. Sills, K. L. Hayden, and R. McLaren
Atmos. Chem. Phys., 13, 10461–10482, https://doi.org/10.5194/acp-13-10461-2013, https://doi.org/10.5194/acp-13-10461-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
L. Ahlm, K. M. Shakya, L. M. Russell, J. C. Schroder, J. P. S. Wong, S. J. Sjostedt, K. L. Hayden, J. Liggio, J. J. B. Wentzell, H. A. Wiebe, C. Mihele, W. R. Leaitch, and A. M. Macdonald
Atmos. Chem. Phys., 13, 3393–3407, https://doi.org/10.5194/acp-13-3393-2013, https://doi.org/10.5194/acp-13-3393-2013, 2013
J. Liggio and S.-M. Li
Atmos. Chem. Phys., 13, 2989–3002, https://doi.org/10.5194/acp-13-2989-2013, https://doi.org/10.5194/acp-13-2989-2013, 2013
C. R. Lonsdale, R. G. Stevens, C. A. Brock, P. A. Makar, E. M. Knipping, and J. R. Pierce
Atmos. Chem. Phys., 12, 11519–11531, https://doi.org/10.5194/acp-12-11519-2012, https://doi.org/10.5194/acp-12-11519-2012, 2012
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Tracing the origins of stratospheric ozone intrusions: direct vs. indirect pathways and their impacts on Central and Eastern China in spring–summer 2019
Flow-dependent observation errors for greenhouse gas inversions in an ensemble Kalman smoother
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
A mechanism of stratospheric O3 intrusion into the atmospheric environment: a case study of the North China Plain
Influence of atmospheric circulation on the interannual variability of transport from global and regional emissions into the Arctic
Surface networks in the Arctic may miss a future methane bomb
Potential of using CO2 observations over India in a regional carbon budget estimation by improving the modelling system
A bottom-up emission estimate for the 2022 Nord Stream gas leak: derivation, simulations, and evaluation
An improved Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST): update, validation and applications
European CH4 inversions with ICON-ART coupled to the CarbonTracker Data Assimilation Shell
Extreme weather exacerbates ozone pollution in the Pearl River Delta, China: role of natural processes
Multidecadal ozone trends in China and implications for human health and crop yields: a hybrid approach combining a chemical transport model and machine learning
On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations
Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling
The sensitivity of Southern Ocean atmospheric dimethyl sulfide (DMS) to modeled oceanic DMS concentrations and emissions
Impacts of maritime shipping on air pollution along the US East Coast
Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model
Impact of transport model resolution and a priori assumptions on inverse modeling of Swiss F-gas emissions
Estimation of power plant SO2 emissions using the HYSPLIT dispersion model and airborne observations with plume rise ensemble runs
Can we use atmospheric CO2 measurements to verify emission trends reported by cities? Lessons from a 6-year atmospheric inversion over Paris
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons: implication for the influence of the particulate proportion in emissions
An analysis of CMAQ gas-phase dry deposition over North America through grid-scale and land-use-specific diagnostics in the context of AQMEII4
Rethinking the role of transport and photochemistry in regional ozone pollution: insights from ozone concentration and mass budgets
Decreasing seasonal cycle amplitude of methane in the northern high latitudes being driven by lower-latitude changes in emissions and transport
The effect of anthropogenic emission, meteorological factors, and carbon dioxide on the surface ozone increase in China from 2008 to 2018 during the East Asia summer monsoon season
Development of a CMAQ–PMF-based composite index for prescribing an effective ozone abatement strategy: a case study of sensitivity of surface ozone to precursor volatile organic compound species in southern Taiwan
Comment on “Climate consequences of hydrogen emissions” by Ocko and Hamburg (2022)
Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations
Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action
Coupled mesoscale–microscale modeling of air quality in a polluted city using WRF-LES-Chem
Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta
A view of the European carbon flux landscape through the lens of the ICOS atmospheric observation network
Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020
Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models
Impacts of urbanization on air quality and the related health risks in a city with complex terrain
Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data
Development and application of a multi-scale modeling framework for urban high-resolution NO2 pollution mapping
Towards monitoring the CO2 source–sink distribution over India via inverse modelling: quantifying the fine-scale spatiotemporal variability in the atmospheric CO2 mole fraction
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions
Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source
Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations
Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations
Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio
The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China
Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Michael Steiner, Luca Cantarello, Stephan Henne, and Dominik Brunner
Atmos. Chem. Phys., 24, 12447–12463, https://doi.org/10.5194/acp-24-12447-2024, https://doi.org/10.5194/acp-24-12447-2024, 2024
Short summary
Short summary
Atmospheric greenhouse gas inversions have great potential to independently check reported bottom-up emissions; however they are subject to large uncertainties. It is paramount to address and reduce the largest source of uncertainty, which stems from the representation of atmospheric transport in the models. In this study, we show that the use of a temporally varying flow-dependent atmospheric transport uncertainty can enhance the accuracy of emission estimation in an idealized experiment.
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024, https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Short summary
This study examines the drivers of interannual variability in tropospheric N2O. New insights are obtained from aircraft data and a chemistry–climate model that explicitly simulates stratospheric N2O. The stratosphere is found to be the dominant driver of N2O variability in the Northern Hemisphere, while both the stratosphere and El Niño cycles are important in the Southern Hemisphere. These results are consistent with known atmospheric dynamics and differences between the hemispheres.
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024, https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Short summary
Methane (CH4) emissions in Canada for 2007–2017 were estimated using Canada’s surface greenhouse gas measurements. The estimated emissions show no significant trend, but emission uncertainty was reduced as more measurement sites became available. Notably for climate change, we find the wetland CH4 emissions show a positive correlation with surface air temperature in summer. Canada’s measurement network could monitor future CH4 emission changes and compliance with climate change mitigation goals.
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024, https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Short summary
This study investigates the contribution of pollutants from different emitting periods to ozone episodes over the Greater Bay Area. The analysis reveals the variation in major spatiotemporal contributors to the O3 pollution under the influence of typhoons and subtropical high pressure. Through temporal contribution analysis, our work offers a new perspective on the evolution of O3 pollution and can aid in developing effective and timely control policies under unfavorable weather conditions.
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024, https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
Short summary
We investigate the usage of discrete radiocarbon (14C)-based fossil fuel carbon dioxide (ffCO2) concentration estimates vs. continuous carbon monoxide (CO)-based ffCO2 estimates to evaluate the seasonal cycle of ffCO2 emissions in an urban region with an inverse modeling framework. We find that the CO-based ffCO2 estimates allow us to reconstruct robust seasonal cycles, which show the distinct COVID-19 drawdown in 2020 and can be used to validate emission inventories.
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024, https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary
Short summary
In this work, we assess and evaluate benzene, toluene, and xylene primary emissions and air quality levels in Spain by combining observations, emission inventories, and air quality modelling techniques. The comparison between modelled and observed levels allows identifying uncertainty sources within the emission input. This contributes to improving air quality models' performance when simulating these compounds, leading to better support for the design of effective pollution control strategies.
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, and Zhikuan Li
Atmos. Chem. Phys., 24, 7013–7026, https://doi.org/10.5194/acp-24-7013-2024, https://doi.org/10.5194/acp-24-7013-2024, 2024
Short summary
Short summary
We reveal a significant mechanism of stratospheric O3 intrusion (SI) into the atmospheric environment induced by an extratropical cyclone system. This system facilitates the downward transport of stratospheric O3 to the near-surface layer by vertical coupling, involving the upper westerly trough, the middle northeast cold vortex, and the lower extratropical cyclone in the troposphere. On average, stratospheric O3 contributed 26.77 % to near-surface O3 levels over the North China Plain.
Cheng Zheng, Yutian Wu, Mingfang Ting, and Clara Orbe
Atmos. Chem. Phys., 24, 6965–6985, https://doi.org/10.5194/acp-24-6965-2024, https://doi.org/10.5194/acp-24-6965-2024, 2024
Short summary
Short summary
Trace gases and aerosols in the Arctic, which typically originate from midlatitude and tropical emission regions, modulate the Arctic climate via their radiative and chemistry impacts. Thus, long-range transport of these substances is important for understanding the current and the future change of Arctic climate. By employing chemistry–climate models, we explore how year-to-year variations in the atmospheric circulation modulate atmospheric long-range transport into the Arctic.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, and Jean-Daniel Paris
Atmos. Chem. Phys., 24, 6359–6373, https://doi.org/10.5194/acp-24-6359-2024, https://doi.org/10.5194/acp-24-6359-2024, 2024
Short summary
Short summary
The aim of this work is to analyse how accurately a methane bomb event could be detected with the current and a hypothetically extended stationary observation network in the Arctic. For this, we incorporate synthetically modelled possible future CH4 concentrations based on plausible emission scenarios into an inverse modelling framework. We analyse how well the increase is detected in different Arctic regions and evaluate the impact of additional observation sites in this respect.
Vishnu Thilakan, Dhanyalekshmi Pillai, Jithin Sukumaran, Christoph Gerbig, Haseeb Hakkim, Vinayak Sinha, Yukio Terao, Manish Naja, and Monish Vijay Deshpande
Atmos. Chem. Phys., 24, 5315–5335, https://doi.org/10.5194/acp-24-5315-2024, https://doi.org/10.5194/acp-24-5315-2024, 2024
Short summary
Short summary
This study investigates the usability of CO2 mixing ratio observations over India to infer regional carbon sources and sinks. We demonstrate that a high-resolution modelling system can represent the observed CO2 variations reasonably well by improving the transport and flux variations at a fine scale. Future carbon data assimilation systems can thus benefit from these recently available CO2 observations when fine-scale variations are adequately represented in the models.
Rostislav Kouznetsov, Risto Hänninen, Andreas Uppstu, Evgeny Kadantsev, Yalda Fatahi, Marje Prank, Dmitrii Kouznetsov, Steffen Manfred Noe, Heikki Junninen, and Mikhail Sofiev
Atmos. Chem. Phys., 24, 4675–4691, https://doi.org/10.5194/acp-24-4675-2024, https://doi.org/10.5194/acp-24-4675-2024, 2024
Short summary
Short summary
By relying solely on publicly available media reports, we were able to infer the temporal evolution and the injection height for the Nord Stream gas leaks in September 2022. The inventory specifies locations, vertical distributions, and temporal evolution of the methane sources. The inventory can be used to simulate the event with atmospheric transport models. The inventory is supplemented with a set of observational data tailored to evaluate the results of the simulated atmospheric dispersion.
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
EGUsphere, https://doi.org/10.5194/egusphere-2024-800, https://doi.org/10.5194/egusphere-2024-800, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally- and vertically-resolved. In this study, we improved, updated, and validated the TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant stratospheric ozone variation since the late 1990s.
Michael Steiner, Wouter Peters, Ingrid Luijkx, Stephan Henne, Huilin Chen, Samuel Hammer, and Dominik Brunner
Atmos. Chem. Phys., 24, 2759–2782, https://doi.org/10.5194/acp-24-2759-2024, https://doi.org/10.5194/acp-24-2759-2024, 2024
Short summary
Short summary
The Paris Agreement increased interest in estimating greenhouse gas (GHG) emissions of individual countries, but top-down emission estimation is not yet considered policy-relevant. It is therefore paramount to reduce large errors and to build systems that are based on the newest atmospheric transport models. In this study, we present the first application of ICON-ART in the inverse modeling of GHG fluxes with an ensemble Kalman filter and present our results for European CH4 emissions.
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Yu Zou, Tao Deng, Tingyuan Li, Xiaopu Lyu, and Fumo Yang
Atmos. Chem. Phys., 24, 1559–1570, https://doi.org/10.5194/acp-24-1559-2024, https://doi.org/10.5194/acp-24-1559-2024, 2024
Short summary
Short summary
This study explores the influence of extreme-weather-induced natural processes on ozone pollution, which is often overlooked. By analyzing meteorological factors, natural emissions, chemistry pathways and atmospheric transport, we discovered that these natural processes could substantially exacerbate ozone pollution. The findings contribute to a deeper understanding of ozone pollution and offer valuable insights for controlling ozone pollution in the context of global warming.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024, https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Short summary
NO₂ is an important air pollutant. It was observed that the WRF-Chem model shows significant deviations in NO₂ abundance when compared to measurements. We use a 1-month simulation over central Europe to show that these deviations can be mostly resolved by reparameterization of the vertical mixing routine. In order to validate our results, they are compared to in situ, satellite, and MAX-DOAS measurements.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023, https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Short summary
Aerosols are a large source of uncertainty over the Southern Ocean. A dominant source of sulfate aerosol in this region is dimethyl sulfide (DMS), which is poorly simulated by climate models. We show the sensitivity of simulated atmospheric DMS to the choice of oceanic DMS data set and emission scheme. We show that oceanic DMS has twice the influence on atmospheric DMS than the emission scheme. Simulating DMS more accurately in climate models will help to constrain aerosol uncertainty.
Maryam Golbazi and Cristina Archer
Atmos. Chem. Phys., 23, 15057–15075, https://doi.org/10.5194/acp-23-15057-2023, https://doi.org/10.5194/acp-23-15057-2023, 2023
Short summary
Short summary
We use scientific models to study the impact of ship emissions on air quality along the US East Coast. We find an increase in three major pollutants (PM2.5, NO2, and SO2) in coastal regions. However, we detect a reduction in ozone (O3) levels in major coastal cities. This reduction is linked to the significant emissions of nitrogen oxides (NOx) from ships, which scavenged O3, especially in highly polluted urban areas experiencing an NOx-limited regime.
Xinxu Zhao, Jia Chen, Julia Marshall, Michal Gałkowski, Stephan Hachinger, Florian Dietrich, Ankit Shekhar, Johannes Gensheimer, Adrian Wenzel, and Christoph Gerbig
Atmos. Chem. Phys., 23, 14325–14347, https://doi.org/10.5194/acp-23-14325-2023, https://doi.org/10.5194/acp-23-14325-2023, 2023
Short summary
Short summary
We develop a modeling framework using the Weather Research and Forecasting model at a high spatial resolution (up to 400 m) to simulate atmospheric transport of greenhouse gases and interpret column observations. Output is validated against weather stations and column measurements in August 2018. The differential column method is applied, aided by air-mass transport tracing with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, also for an exploratory measurement interpretation.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys., 23, 14159–14186, https://doi.org/10.5194/acp-23-14159-2023, https://doi.org/10.5194/acp-23-14159-2023, 2023
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Tianfeng Chai, Xinrong Ren, Fong Ngan, Mark Cohen, and Alice Crawford
Atmos. Chem. Phys., 23, 12907–12933, https://doi.org/10.5194/acp-23-12907-2023, https://doi.org/10.5194/acp-23-12907-2023, 2023
Short summary
Short summary
The SO2 emissions of three power plants are estimated using aircraft observations and an ensemble of HYSPLIT dispersion simulations with different plume rise parameters. The emission estimates using the runs with the lowest root mean square errors (RMSEs) and the runs with the best correlation coefficients between the predicted and observed mixing ratios both agree well with the Continuous Emissions Monitoring Systems (CEMS) data. The RMSE-based plume rise appears to be more reasonable.
Jinghui Lian, Thomas Lauvaux, Hervé Utard, François-Marie Bréon, Grégoire Broquet, Michel Ramonet, Olivier Laurent, Ivonne Albarus, Mali Chariot, Simone Kotthaus, Martial Haeffelin, Olivier Sanchez, Olivier Perrussel, Hugo Anne Denier van der Gon, Stijn Nicolaas Camiel Dellaert, and Philippe Ciais
Atmos. Chem. Phys., 23, 8823–8835, https://doi.org/10.5194/acp-23-8823-2023, https://doi.org/10.5194/acp-23-8823-2023, 2023
Short summary
Short summary
This study quantifies urban CO2 emissions via an atmospheric inversion for the Paris metropolitan area over a 6-year period from 2016 to 2021. Results show a long-term decreasing trend of about 2 % ± 0.6 % per year in the annual CO2 emissions over Paris. We conclude that our current capacity can deliver near-real-time CO2 emission estimates at the city scale in under a month, and the results agree within 10 % with independent estimates from multiple city-scale inventories.
Fu-Jie Zhu, Peng-Tuan Hu, and Wan-Li Ma
Atmos. Chem. Phys., 23, 8583–8590, https://doi.org/10.5194/acp-23-8583-2023, https://doi.org/10.5194/acp-23-8583-2023, 2023
Short summary
Short summary
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons was established based on the level-III multimedia fugacity model, which proved that the particulate proportion of PAHs in emissions was a crucial factor for G–P partitioning of PAHs. In addition, gaseous and particulate interference was also derived in the new steady-state model determined by the particulate proportion in emission that could derivate the G–P partitioning quotients from the equilibrium state.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Kun Qu, Xuesong Wang, Xuhui Cai, Yu Yan, Xipeng Jin, Mihalis Vrekoussis, Maria Kanakidou, Guy P. Brasseur, Jin Shen, Teng Xiao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 7653–7671, https://doi.org/10.5194/acp-23-7653-2023, https://doi.org/10.5194/acp-23-7653-2023, 2023
Short summary
Short summary
Basic understandings of ozone processes, especially transport and chemistry, are essential to support ozone pollution control, but studies often have different views on their relative importance. We developed a method to quantify their contributions in the ozone mass and concentration budgets based on the WRF-CMAQ model. Results in a polluted region highlight the differences between two budgets. For future studies, two budgets are both needed to fully understand the effects of ozone processes.
Emily Dowd, Chris Wilson, Martyn P. Chipperfield, Emanuel Gloor, Alistair Manning, and Ruth Doherty
Atmos. Chem. Phys., 23, 7363–7382, https://doi.org/10.5194/acp-23-7363-2023, https://doi.org/10.5194/acp-23-7363-2023, 2023
Short summary
Short summary
Surface observations of methane show that the seasonal cycle amplitude (SCA) of methane is decreasing in the northern high latitudes (NHLs) but increased globally (1995–2020). The NHL decrease is counterintuitive, as we expect the SCA to increase with increasing concentrations. We use a chemical transport model to investigate changes in SCA in the NHLs. We find well-mixed methane and changes in emissions from Canada, the Middle East, and Europe are the largest contributors to the SCA in NHLs.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Jackson Hian-Wui Chang, Stephen M. Griffith, Steven Soon-Kai Kong, Ming-Tung Chuang, and Neng-Huei Lin
Atmos. Chem. Phys., 23, 6357–6382, https://doi.org/10.5194/acp-23-6357-2023, https://doi.org/10.5194/acp-23-6357-2023, 2023
Short summary
Short summary
A novel CMAQ–PMF-based composite index is developed to identify the key VOC source species for an effective ozone abatement strategy. The index provides information as to which VOC species are key to ozone formation and where to reduce sources of these VOC species. Using the composite index, we recommended the VOC control measures in southern Taiwan should prioritize solvent usage, vehicle emissions, and the petrochemical industry.
Lei Duan and Ken Caldeira
Atmos. Chem. Phys., 23, 6011–6020, https://doi.org/10.5194/acp-23-6011-2023, https://doi.org/10.5194/acp-23-6011-2023, 2023
Short summary
Short summary
Ocko and Hamburg (2022) emphasize the short-term climate impact of hydrogen, and we present an analysis that places greater focus on long-term outcomes. We have derived equations that describe the time-evolving impact of hydrogen and show that higher methane leakage is primarily responsible for the warming potential of blue hydrogen, while hydrogen leakage plays a less critical role. Fossil fuels show more prominent longer-term climate impacts than clean hydrogen under all emission scenarios.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Zichong Chen, Daniel J. Jacob, Ritesh Gautam, Mark Omara, Robert N. Stavins, Robert C. Stowe, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Drew C. Pendergrass, and Sarah Hancock
Atmos. Chem. Phys., 23, 5945–5967, https://doi.org/10.5194/acp-23-5945-2023, https://doi.org/10.5194/acp-23-5945-2023, 2023
Short summary
Short summary
We quantify methane emissions from individual countries in the Middle East and North Africa by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We show that the ability to simply relate oil/gas emissions to activity metrics is compromised by stochastic nature of local infrastructure and management practices. We find that the industry target for oil/gas methane intensity is achievable through associated gas capture, modern infrastructure, and centralized operations.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy Wing Yi Li, Pablo Lichtig, Roy Chun-Wang Tsang, Chun-Ho Liu, Tao Wang, and Guy Pierre Brasseur
Atmos. Chem. Phys., 23, 5905–5927, https://doi.org/10.5194/acp-23-5905-2023, https://doi.org/10.5194/acp-23-5905-2023, 2023
Short summary
Short summary
Air quality in urban areas is difficult to simulate in coarse-resolution models. This work exploits the WRF (Weather Research and Forecasting) model coupled with a large-eddy simulation (LES) component and online chemistry to perform high-resolution (33.3 m) simulations of air quality in a large city. The evaluation of the simulations with observations shows that increased model resolution improves the representation of the chemical species near the pollution sources.
Shuqi Yan, Bin Zhu, Shuangshuang Shi, Wen Lu, Jinhui Gao, Hanqing Kang, and Duanyang Liu
Atmos. Chem. Phys., 23, 5177–5190, https://doi.org/10.5194/acp-23-5177-2023, https://doi.org/10.5194/acp-23-5177-2023, 2023
Short summary
Short summary
We analyze ozone response to aerosol mixing states in the vertical direction by WRF-Chem simulations. Aerosols generally lead to turbulent suppression, precursor accumulation, low-level photolysis reduction, and upper-level photolysis enhancement under different underlying surface and pollution conditions. Thus, ozone decreases within the entire boundary layer during the daytime, and the decrease is the least in aerosol external mixing states compared to internal and core shell mixing states.
Ida Storm, Ute Karstens, Claudio D'Onofrio, Alex Vermeulen, and Wouter Peters
Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, https://doi.org/10.5194/acp-23-4993-2023, 2023
Short summary
Short summary
In this study, we evaluate what is in the influence regions of the ICOS atmospheric measurement stations to gain insight into what land cover types and land-cover-associated fluxes the network represents. Subsequently, insights about strengths, weaknesses, and potential gaps can assist in future network expansion decisions. The network is concentrated in central Europe, which leads to a general overrepresentation of coniferous forest and cropland and underrepresentation of grass and shrubland.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Hélène Peiro, Sean Crowell, and Berrien Moore III
Atmos. Chem. Phys., 22, 15817–15849, https://doi.org/10.5194/acp-22-15817-2022, https://doi.org/10.5194/acp-22-15817-2022, 2022
Short summary
Short summary
CO data can provide a powerful constraint on fire fluxes, supporting more accurate estimation of biospheric CO2 fluxes. We converted CO fire flux into CO2 fire prior, which is then used to adjust CO2 respiration. We applied this to two other fire flux products. CO2 inversions constrained by satellites or in situ data are then performed. Results show larger variations among the data assimilated than across the priors, but tropical flux from in situ inversions is sensitive to priors.
Zhaofeng Lv, Zhenyu Luo, Fanyuan Deng, Xiaotong Wang, Junchao Zhao, Lucheng Xu, Tingkun He, Yingzhi Zhang, Huan Liu, and Kebin He
Atmos. Chem. Phys., 22, 15685–15702, https://doi.org/10.5194/acp-22-15685-2022, https://doi.org/10.5194/acp-22-15685-2022, 2022
Short summary
Short summary
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations at a high spatial resolution. To estimate the influence of various street canyons on the dispersion of air pollutants, a new parameterization scheme was established based on computational fluid dynamics and machine learning methods. This work created a new method to identify the characteristics of vehicle-related air pollution at both city and street scales simultaneously and accurately.
Vishnu Thilakan, Dhanyalekshmi Pillai, Christoph Gerbig, Michal Galkowski, Aparnna Ravi, and Thara Anna Mathew
Atmos. Chem. Phys., 22, 15287–15312, https://doi.org/10.5194/acp-22-15287-2022, https://doi.org/10.5194/acp-22-15287-2022, 2022
Short summary
Short summary
This paper demonstrates how we can use atmospheric observations to improve the CO2 flux estimates in India. This is achieved by improving the representation of terrain, mesoscale transport, and flux variations. We quantify the impact of the unresolved variations in the current models on optimally estimated fluxes via inverse modelling and quantify the associated flux uncertainty. We illustrate how a parameterization scheme captures this variability in the coarse models.
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, https://doi.org/10.5194/acp-22-10809-2022, 2022
Short summary
Short summary
We quantify methane emissions in China and contributions from different sectors by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We find that anthropogenic methane emissions for China are underestimated in the national inventory. Our estimate of emissions indicates a small life-cycle loss rate, implying net climate benefits from the current
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 22, 3911–3929, https://doi.org/10.5194/acp-22-3911-2022, https://doi.org/10.5194/acp-22-3911-2022, 2022
Short summary
Short summary
Quantifying methane emissions from different sources is a key focus of current research. We present a method for estimating sectoral methane emissions that uses ethane as a tracer for fossil fuel methane. By incorporating variable ethane : methane emission ratios into this model, we produce emissions estimates with improved uncertainty characterisation. This method will be particularly useful for studying methane emissions in areas with complex distributions of sources.
Ying Li, Xiangjun Zhao, Xuejiao Deng, and Jinhui Gao
Atmos. Chem. Phys., 22, 3861–3873, https://doi.org/10.5194/acp-22-3861-2022, https://doi.org/10.5194/acp-22-3861-2022, 2022
Short summary
Short summary
This study finds a new phenomenon of weak wind deepening (WWD) associated with the peripheral circulation of typhoon and gives the influence mechanism of WWD on its contribution to daily variation during sustained ozone episodes. The WWD provides the premise for pollution accumulation in the whole PBL and continued enhancement of ground-level ozone via vertical mixing processes. These findings could benefit the daily daytime ozone forecast in the PRD region and other areas.
Tia R. Scarpelli, Daniel J. Jacob, Shayna Grossman, Xiao Lu, Zhen Qu, Melissa P. Sulprizio, Yuzhong Zhang, Frances Reuland, Deborah Gordon, and John R. Worden
Atmos. Chem. Phys., 22, 3235–3249, https://doi.org/10.5194/acp-22-3235-2022, https://doi.org/10.5194/acp-22-3235-2022, 2022
Short summary
Short summary
We present a spatially explicit version of the national inventories of oil, gas, and coal methane emissions as submitted by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. We then use atmospheric modeling to compare our inventory emissions to atmospheric methane observations with the goal of identifying potential under- and overestimates of oil–gas methane emissions in the national inventories.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res.-Atmos., 107, AAC 1-1–AAC 1-6, https://doi.org/10.1029/2001JD000483, 2002. a
Aggarwal, M., Whiteway, J., Seabrook, J., Gray, L., Strawbridge, K., Liu, P.,
O'Brien, J., Li, S.-M., and McLaren, R.: Airborne lidar measurements of aerosol and ozone above the Canadian oil sands region, Atmos. Meas. Tech., 11, 3829–3849, https://doi.org/10.5194/amt-11-3829-2018, 2018. a
Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M. D., and Zheng, Q.: A chemical transport model study of plume-rise and particle size distribution for the Athabasca oil sands, Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, 2018. a, b, c
AMS – American Meteorological Society: Gradient Richardson number, Glossary of Meteorology, available at:
http://glossary.ametsoc.org/wiki/Gradient_richardson_number (last access: 5 September 2021), 2021a. a
AMS – American Meteorological Society: Ekman spiral, Glossary of Meteorology, available at: https://glossary.ametsoc.org/wiki/Ekman_spiral (last access: 5 September 2021), 2021b. a
Angevine, W. M., Peischl, J., Crawford, A., Loughner, C. P., Pollack, I. B.,
and Thompson, C. R.: Errors in top-down estimates of emissions using a known
source, Atmos. Chem. Phys., 20, 11855–11868, https://doi.org/10.5194/acp-20-11855-2020, 2020. a, b
Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018. a
Barchyn, T. E., Hugenholtz, C. H., Myshak, S., and Bauer, J.: A UAV-based
system for detecting natural gas leaks, J. Unman. Vehic. Syst., 6, 18–30, https://doi.org/10.1139/juvs-2017-0018, 2018. a
Bélair, S., Brown, R., Mailhot, J., Bilodeau, B., and Crevier, L.-P.:
Operational Implementation of the ISBA Land Surface Scheme in the Canadian
Regional Weather Forecast Model. Part II: Cold Season Results, J. Hydrometeorol., 4, 371–386, https://doi.org/10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2, 2003a. a
Bélair, S., Crevier, L.-P., Mailhot, J., Bilodeau, B., and Delage, Y.:
Operational Implementation of the ISBA Land Surface Scheme in the Canadian
Regional Weather Forecast Model. Part I: Warm Season Results, J. Hydrometeorol., 4, 352–370, https://doi.org/10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2, 2003b. a
Bermejo, R. and Conde, J.: A Conservative Quasi-Monotone Semi-Lagrangian
Scheme, Mon. Weather Rev., 130, 423–430,
https://doi.org/10.1175/1520-0493(2002)130<0423:ACQMSL>2.0.CO;2, 2002. a
Briggs, G. A.: Plume rise and buoyancy effects, atmospheric sciences and power production, in: DOE/TIC-27601 (DE84005177), edited by: Randerson, D., TN, Technical Information Center, US Dept. of Energy, Oak Ridge, USA, 327–366, 1984. a
Cambaliza, M. O. L., Shepson, P. B., Caulton, D. R., Stirm, B., Samarov, D.,
Gurney, K. R., Turnbull, J., Davis, K. J., Possolo, A., Karion, A., Sweeney,
C., Moser, B., Hendricks, A., Lauvaux, T., Mays, K., Whetstone, J., Huang,
J., Razlivanov, I., Miles, N. L., and Richardson, S. J.: Assessment of
uncertainties of an aircraft-based mass balance approach for quantifying
urban greenhouse gas emissions, Atmos. Chem. Phys., 14, 9029–9050, https://doi.org/10.5194/acp-14-9029-2014, 2014. a, b
Cheng, Y., Li, S.-M., Liggio, J., Gordon, M., Darlington, A., Zheng, Q., Moran, M., Liu, P., and Wolde, M.: Top-Down Determination of Black Carbon Emissions from Oil Sand Facilities in Alberta, Canada Using Aircraft Measurements, Environ. Sci. Technol., 54, 412–418, https://doi.org/10.1021/acs.est.9b05522, 2020. a
Coats, C. J.: High-performance algorithms in the sparse matrix operator kernel emissions (SMOKE) modeling system, in: Proceedings of the Ninth AMS Joint Conference on Applications of Air Pollution Meteorology with AWMA, 28 January–2 February 1996, American Meteorological Society, Atlanta, GA, USA, 584–588, 1996. a
Conley, S., Faloona, I., Mehrotra, S., Suard, M., Lenschow, D. H., Sweeney, C., Herndon, S., Schwietzke, S., Pétron, G., Pifer, J., Kort, E. A., and
Schnell, R.: Application of Gauss's theorem to quantify localized surface
emissions from airborne measurements of wind and trace gases, Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017, 2017. a, b, c, d
Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The Operational CMC–MRB Global Environmental
Multiscale (GEM) Model. Part II: Results, Mon. Weather Rev., 126, 1397–1418, https://doi.org/10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2, 1998a. a, b
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation, Mon. Weather Rev., 126, 1373–1395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2, 1998b. a, b, c
de Grandpré, J., Tanguay, M., Qaddouri, A., Zerroukat, M., and McLinden,
C. A.: Semi-Lagrangian Advection of Stratospheric Ozone on a Yin–Yang Grid
System, Mon. Weather Rev., 144, 1035–1050, https://doi.org/10.1175/MWR-D-15-0142.1, 2016. a, b
Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., and Pope, D.:
Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling,
J. Atmos. Ocean. Tech., 32, 97–115, https://doi.org/10.1175/JTECH-D-13-00236.1, 2015. a
Fathi, S.: Evaluating the Top-down Emission Rate Retrieval Algorithm (TERRA)
Using Virtual Aircraft-based Sampling Within the GEM-MACH Model, MS thesis, York University, York, available at: http://hdl.handle.net/10315/34547 (last access: 5 September 2021), 2017. a
Fillion, L., Tanguay, M., Lapalme, E., Denis, B., Desgagne, M., Lee, V., Ek,
N., Liu, Z., Lajoie, M., Caron, J.-F., and Pagé, C.: The Canadian Regional Data Assimilation and Forecasting System, Weather Forecast., 25, 1645–1669, https://doi.org/10.1175/2010WAF2222401.1, 2010. a
Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté, J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M.,
Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered Vertical Discretization of the Canadian Environmental Multiscale (GEM) Model
Using a Coordinate of the Log-Hydrostatic-Pressure Type, Mon. Weather Rev., 142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1, 2014. a, b, c, d
Gong, S. L., Barrie, L. A., and Lazare, M.: Canadian Aerosol Module (CAM): A
size-segregated simulation of atmospheric aerosol processes for climate and
air quality models 2. Global sea-salt aerosol and its budgets, J. Geophys. Res.-Atmos., 107, AAC 13-1–AAC 13-14, https://doi.org/10.1029/2001JD002004, 2002. a
Gong, S. L., Barrie, L. A., Blanchet, J.-P., von Salzen, K., Lohmann, U.,
Lesins, G., Spacek, L., Zhang, L. M., Girard, E., Lin, H., Leaitch, R.,
Leighton, H., Chylek, P., and Huang, P.: Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and
air quality models 1. Module development, J. Geophys. Res.- Atmos., 108, AAC 3-1–AAC 3-16, https://doi.org/10.1029/2001JD002002, 2003. a
Gong, W., Makar, P., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K.,
Macdonald, A., and Leaitch, W.: Modelling aerosol–cloud–meteorology
interaction: A case study with a fully coupled air quality model (GEM-MACH),
Atmos. Environ., 115, 695–715, https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015. a, b
Gordon, M., Li, S.-M., Staebler, R., Darlington, A., Hayden, K., O'Brien, J.,
and Wolde, M.: Determining air pollutant emission rates based on mass
balance using airborne measurement data over the Alberta oil sands operations, Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Gordon, M., Makar, P. A., Staebler, R. M., Zhang, J., Akingunola, A., Gong, W., and Li, S.-M.: A comparison of plume rise algorithms to stack plume
measurements in the Athabasca oil sands, Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, 2018. a
Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, 2nd Edn., Cambridge University Press, Cambridge,https://doi.org/10.1017/CBO9781139165389, 2005. a
JOSM: Environment and Climate Change Canada and Alberta Environment and Parks, Executive Summary, Joint Oil Sands Monitoring Program Emissions Inventory report, JOSM [data set], available at: https://www.canada.ca/en/environment-climate-change/services/science-technology/publications/joint-oil-sands-monitoring-emissions-report.html (last access: 5 September 2021), 2016. a
JOSM: Environment and Climate Change Canada and Alberta Environment and Parks, Joint Oil Sands Emissions Inventory Database, JOSM [data set], available at: http://ec.gc.ca/data_donnees/SSB-OSM_Air/Air/Emissions_inventory_files/, (last access: 5 September 2021), 2018. a
Kalthoff, N., Corsmeier, U., Schmidt, K., Kottmeier, C., Fiedler, F., Habram,
M., and Slemr, F.: Emissions of the city of Augsburg determined using the
mass balance method, Atmosp. Environ., 36, 19–31, https://doi.org/10.1016/S1352-2310(02)00215-7, 2002. a, b, c
Karion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R., Kofler, J., Miller, B. R., Newberger, T., Wolter, S., Banta, R., Brewer, A.,
Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer,
M., Zamora, R., and Conley, S.: Methane emissions estimate from airborne
measurements over a western United States natural gas field, Geophys. Res. Lett., 40, 4393–4397, https://doi.org/10.1002/grl.50811, 2013. a
Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza,
M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C.,
Smith, M., Wolter, S., Yacovitch, T. I., and Tans, P.: Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region, Environ. Sci. Technol., 49, 8124–8131, https://doi.org/10.1021/acs.est.5b00217, 2015. a
Karion, A., Lauvaux, T., Lopez Coto, I., Sweeney, C., Mueller, K., Gourdji, S., Angevine, W., Barkley, Z., Deng, A., Andrews, A., Stein, A., and Whetstone, J.: Intercomparison of atmospheric trace gas dispersion models: Barnett Shale case study, Atmos. Chem. Phys., 19, 2561–2576,
https://doi.org/10.5194/acp-19-2561-2019, 2019. a
Li, J. and Barker, H. W.: A Radiation Algorithm with Correlated-k Distribution. Part I: Local Thermal Equilibrium, J. Atmos. Sci., 62, 286–309, https://doi.org/10.1175/JAS-3396.1, 2005. a
Li, S.-M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D., Wang, D.,
Hayden, K., Darlington, A., Gordon, M., Staebler, R., Makar, P. A., Stroud,
C. A., McLaren, R., Liu, P. S. K., O'Brien, J., Mittermeier, R. L., Zhang, J., Marson, G., Cober, S. G., Wolde, M., and Wentzell, J. J. B.: Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada, P. Natl. Acad. Sci. USA, 114, E3756–E3765, https://doi.org/10.1073/pnas.1617862114, 2017. a, b
Li, X.-B., Wang, D., Lu, Q.-C., Peng, Z.-R., Fu, Q., Hu, X.-M., Huo, J., Xiu,
G., Li, B., Li, C., Wang, D.-S., and Wang, H.: Three-dimensional analysis of
ozone and PM2.5 distributions obtained by observations of tethered balloon and unmanned aerial vehicle in Shanghai, China, Stoch. Environ. Res. Risk A., 32, 1189–1203, https://doi.org/10.1007/s00477-018-1524-2, 2018. a
Liggio, J., Li, S.-M., Staebler, R. M., Hayden, K., Darlington, A., Mittermeier, R. L., O'Brien, J., McLaren, R., Wolde, M., Worthy, D., and
Vogel, F.: Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods, Nat. Commun., 10, 1863, https://doi.org/10.1038/s41467-019-09714-9, 2019. a, b, c
Mailhot, J. and Benoit, R.: A Finite-Element Model of the Atmospheric Boundary Layer Suitable for Use with Numerical Weather Prediction Models, J. Atmos. Sci., 39, 2249–2266, https://doi.org/10.1175/1520-0469(1982)039<2249:AFEMOT>2.0.CO;2, 1982. a
Makar, P., Bouchet, V., and Nenes, A.: Inorganic chemistry calculations using
HETV – a vectorized solver for the – – system based on the ISORROPIA algorithms, Atmos. Environ., 37, 2279–2294, https://doi.org/10.1016/S1352-2310(03)00074-8, 2003. a
Makar, P., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather, part 2: Effects on chemistry, Atmos. Environ., 115, 499–526, https://doi.org/10.1016/j.atmosenv.2014.10.021, 2015a. a, b, c
Makar, P., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather, Part 1: Effects on weather, Atmos. Environ., 115, 442–469, https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015b. a, b, c
Makar, P. A., Stroud, C., Zhang, J., Moran, M., Akingunola, A., Gong, W.,
Gravel, S., Pabla, B., Cheung, P., Zheng, Q., Marson, G., Li, S. M., Brook,
J., Hayden, K., Liggio, J., Staebler, R., and Darlington, A.: High Resolution
Model Simulations of the Canadian Oil Sands with Comparisons to Field Study
Observations, Springer International Publishing, Cham, 503–508,
https://doi.org/10.1007/978-3-319-24478-5_80, 2016. a
Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y.-A., Zhang,
J., Wong, I., Hayden, K., Li, S.-M., Kirk, J., Scott, K., Moran, M. D.,
Robichaud, A., Cathcart, H., Baratzedah, P., Pabla, B., Cheung, P., Zheng,
Q., and Jeffries, D. S.: Estimates of exceedances of critical loads for
acidifying deposition in Alberta and Saskatchewan, Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, 2018. a, b
Makar, P. A., Akingunola, A., Chen, J., Pabla, B., Gong, W., Stroud, C.,
Sioris, C., Anderson, K., Cheung, P., Zhang, J., and Milbrandt, J.: Forest-fire aerosol–weather feedbacks over western North America using a
high-resolution, online coupled air-quality model, Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, 2021. a
Mays, K. L., Shepson, P. B., Stirm, B. H., Karion, A., Sweeney, C., and Gurney, K. R.: Aircraft-Based Measurements of the Carbon Footprint of Indianapolis, Environ. Sci. Technol., 43, 7816–7823, https://doi.org/10.1021/es901326b, 2009. a
Milbrandt, J. A. and Morrison, H.: Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories, J. Atmos. Sci., 73, 975–995, https://doi.org/10.1175/JAS-D-15-0204.1, 2016. a
Milbrandt, J. A. and Yau, M. K.: A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape
Parameter, J. Atmos. Sci., 62, 3051–3064, https://doi.org/10.1175/JAS3534.1, 2005a. a
Milbrandt, J. A. and Yau, M. K.: A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme
Description, J. Atmos. Sci., 62, 3065–3081, https://doi.org/10.1175/JAS3535.1, 2005b. a
Mölders, N., Butwin, M., Madden, J., Tran, H., Sassen, K., and Kramm, G.:
Theoretical Investigations on Mapping Mean Distributions of Particulate
Matter, Inert, Reactive, and Secondary Pollutants from Wildfires by Unmanned
Air Vehicles (UAVs), Open J. Air Pollut, 04, 149–174, https://doi.org/10.4236/ojap.2015.43014, 2015. a
Moran M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W., Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur, A., and Sassi, M.: Particulate-matter forecasting with GEMMACH15, a new Canadian air-quality forecast model, in: Air Pollution Modelling and Its Application XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht, 289–292, 2010. a, b
Nathan, B. J., Golston, L. M., O'Brien, A. S., Ross, K., Harrison, W. A.,
Tao, L., Lary, D. J., Johnson, D. R., Covington, A. N., Clark, N. N., and
Zondlo, M. A.: Near-Field Characterization of Methane Emission Variability
from a Compressor Station Using a Model Aircraft, Environ. Sci. Technol., 49, 7896–7903, https://doi.org/10.1021/acs.est.5b00705, 2015. a
Panitz, H.-J., Nester, K., and Fiedler, F.: Mass budget simulation of NOx and CO for the evaluation of calculated emissions for the city of Augsburg (Germany), Atmos. Environ., 36, 33–51, https://doi.org/10.1016/S1352-2310(02)00216-9, 2002. a, b, c
Peischl, J., Ryerson, T. B., Holloway, J. S., Parrish, D. D., Trainer, M.,
Frost, G. J., Aikin, K. C., Brown, S. S., Dubé, W. P., Stark, H., and
Fehsenfeld, F. C.: A top-down analysis of emissions from selected Texas power
plants during TexAQS 2000 and 2006, J. Geophys. Res.-Atmos., 115, D16303, https://doi.org/10.1029/2009JD013527, 2010. a
Ryoo, J.-M., Iraci, L. T., Tanaka, T., Marrero, J. E., Yates, E. L., Fung, I., Michalak, A. M., Tadić, J., Gore, W., Bui, T. P., Dean-Day, J. M., and Chang, C. S.: Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft
measurements, Atmos. Meas. Tech., 12, 2949–2966, https://doi.org/10.5194/amt-12-2949-2019, 2019. a, b, c, d, e
Slemr, F., Friedrich, R., and Seiler, W.: The research project EVA – General
objectives and main results, Atmos. Environ., 36, 1–6, 2002. a
Sørensen, B., Kaas, E., and Korsholm, U. S.: A mass-conserving and
multi-tracer efficient transport scheme in the online integrated Enviro-HIRLAM model, Geosci. Model Dev., 6, 1029–1042,
https://doi.org/10.5194/gmd-6-1029-2013, 2013.
a, b
Stockwell, W. R. and Lurmann, F. W.: Intercomparison of the ADOM and RADM gas-phase chemical mechanisms, Electric Power Institute Topical Report, Electric Power Institute, Palo Alto, California, 323 pp., 1989. a
Tadić, J. M., Michalak, A. M., Iraci, L., Ilić, V., Biraud, S. C., Feldman, D. R., Bui, T., Johnson, M. S., Loewenstein, M., Jeong, S., Fischer, M. L., Yates, E. L., and Ryoo, J.-M.: Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance Approach for Quantifying Local Greenhouse Gas Emissions, Environ. Sci. Technol., 51, 10012–10021, https://doi.org/10.1021/acs.est.7b03100, 2017. a, b, c, d, e
Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T.,
Lehman, S. J., Miller, B. R., Miller, J. B., Montzka, S., Sherwood, T.,
Saripalli, S., Sweeney, C., and Tans, P. P.: Assessment of fossil fuel carbon
dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009, Atmos. Chem. Phys., 11, 705–721, https://doi.org/10.5194/acp-11-705-2011, 2011. a, b
Zhang, J., Moran, M. D., Zheng, Q., Makar, P. A., Baratzadeh, P., Marson, G.,
Liu, P., and Li, S.-M.: Emissions preparation and analysis for multiscale air
quality modeling over the Athabasca Oil Sands Region of Alberta, Canada,
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, 2018. a, b
Short summary
We have investigated the accuracy of aircraft-based mass balance methodologies through computer model simulations of the atmosphere and air quality at a regional high-resolution scale. We have defined new quantitative metrics to reduce emission retrieval uncertainty by evaluating top-down mass balance estimates against the known simulated meteorology and input emissions. We also recommend methodologies and flight strategies for improved retrievals in future aircraft-based studies.
We have investigated the accuracy of aircraft-based mass balance methodologies through computer...
Altmetrics
Final-revised paper
Preprint