Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 7
Atmos. Chem. Phys., 20, 4523–4544, 2020
https://doi.org/10.5194/acp-20-4523-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 4523–4544, 2020
https://doi.org/10.5194/acp-20-4523-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Apr 2020

Research article | 17 Apr 2020

Atmospheric energy budget response to idealized aerosol perturbation in tropical cloud systems

Guy Dagan et al.

Related authors

Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-314,https://doi.org/10.5194/acp-2020-314, 2020
Revised manuscript under review for ACP
Short summary
Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions
Guy Dagan and Philip Stier
Atmos. Chem. Phys., 20, 6291–6303, https://doi.org/10.5194/acp-20-6291-2020,https://doi.org/10.5194/acp-20-6291-2020, 2020
Short summary
Effects of aerosol in simulations of realistic shallow cumulus cloud fields in a large domain
George Spill, Philip Stier, Paul R. Field, and Guy Dagan
Atmos. Chem. Phys., 19, 13507–13517, https://doi.org/10.5194/acp-19-13507-2019,https://doi.org/10.5194/acp-19-13507-2019, 2019
Short summary
Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime
Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren
Atmos. Chem. Phys., 19, 10717–10738, https://doi.org/10.5194/acp-19-10717-2019,https://doi.org/10.5194/acp-19-10717-2019, 2019
Short summary
Core and margin in warm convective clouds – Part 2: Aerosol effects on core properties
Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren
Atmos. Chem. Phys., 19, 10739–10755, https://doi.org/10.5194/acp-19-10739-2019,https://doi.org/10.5194/acp-19-10739-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An idealized model sensitivity study on Dead Sea desertification with a focus on the impact on convection
Samiro Khodayar and Johannes Hoerner
Atmos. Chem. Phys., 20, 12011–12031, https://doi.org/10.5194/acp-20-12011-2020,https://doi.org/10.5194/acp-20-12011-2020, 2020
Modelling mixed-phase clouds with the large-eddy model UCLALES–SALSA
Jaakko Ahola, Hannele Korhonen, Juha Tonttila, Sami Romakkaniemi, Harri Kokkola, and Tomi Raatikainen
Atmos. Chem. Phys., 20, 11639–11654, https://doi.org/10.5194/acp-20-11639-2020,https://doi.org/10.5194/acp-20-11639-2020, 2020
Short summary
Development of aerosol activation in the double-moment Unified Model and evaluation with CLARIFY measurements
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10997–11024, https://doi.org/10.5194/acp-20-10997-2020,https://doi.org/10.5194/acp-20-10997-2020, 2020
Short summary
Size dependence in chord characteristics from simulated and observed continental shallow cumulus
Philipp J. Griewank, Thijs Heus, Neil P. Lareau, and Roel A. J. Neggers
Atmos. Chem. Phys., 20, 10211–10230, https://doi.org/10.5194/acp-20-10211-2020,https://doi.org/10.5194/acp-20-10211-2020, 2020
Short summary
Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach
Sisi Chen, Lulin Xue, and Man-Kong Yau
Atmos. Chem. Phys., 20, 10111–10124, https://doi.org/10.5194/acp-20-10111-2020,https://doi.org/10.5194/acp-20-10111-2020, 2020
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Albrecht, B. A.: Effects of precipitation on the thermodynamic structure of the trade wind boundary layer, J. Geophys. Res.-Atmos., 98, 7327–7337, https://doi.org/10.1029/93JD00027, 1993. 
Altaratz, O., Koren, I., Remer, L., and Hirsch, E.: Review: Cloud invigoration by aerosols–Coupling between microphysics and dynamics, Atmos. Res., 140, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014. 
Aminou, D.: MSG's SEVIRI instrument, ESA Bulletin, 15–17, 2002. 
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, https://doi.org/10.5194/acp-9-543-2009, 2009. 
Publications Copernicus
Download
Short summary
In order to better understand the physical processes behind aerosol effects on the atmospheric energy budget, we analyse numerical simulations of tropical cloud systems. Two sets of simulations, at different dates during the NARVAL 2 field campaign, are simulated with different dominant cloud modes. Our results demonstrate that under different environmental conditions, the response of the atmospheric energy budget to aerosol perturbation could be different.
In order to better understand the physical processes behind aerosol effects on the atmospheric...
Citation
Altmetrics
Final-revised paper
Preprint