Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 3
Atmos. Chem. Phys., 20, 1839–1847, 2020
https://doi.org/10.5194/acp-20-1839-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 1839–1847, 2020
https://doi.org/10.5194/acp-20-1839-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 17 Feb 2020

Technical note | 17 Feb 2020

Technical note: Intermittent reduction of the stratospheric ozone over northern Europe caused by a storm in the Atlantic Ocean

Mikhail Sofiev et al.

Related authors

Modelling of the public health costs of fine particulate matter and results for Finland in 2015
Jaakko Kukkonen, Mikko Savolahti, Yuliia Palamarchuk, Timo Lanki, Väinö Nurmi, Ville-Veikko Paunu, Leena Kangas, Mikhail Sofiev, Ari Karppinen, Androniki Maragkidou, Pekka Tiittanen, and Niko Karvosenoja
Atmos. Chem. Phys., 20, 9371–9391, https://doi.org/10.5194/acp-20-9371-2020,https://doi.org/10.5194/acp-20-9371-2020, 2020
Short summary
A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020,https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Simulating age of air and the distribution of SF6 in the stratosphere with the SILAM model
Rostislav Kouznetsov, Mikhail Sofiev, Julius Vira, and Gabriele Stiller
Atmos. Chem. Phys., 20, 5837–5859, https://doi.org/10.5194/acp-20-5837-2020,https://doi.org/10.5194/acp-20-5837-2020, 2020
Short summary
The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities
Jaakko Kukkonen, Susana López-Aparicio, David Segersson, Camilla Geels, Leena Kangas, Mari Kauhaniemi, Androniki Maragkidou, Anne Jensen, Timo Assmuth, Ari Karppinen, Mikhail Sofiev, Heidi Hellén, Kari Riikonen, Juha Nikmo, Anu Kousa, Jarkko V. Niemi, Niko Karvosenoja, Gabriela Sousa Santos, Ingrid Sundvor, Ulas Im, Jesper H. Christensen, Ole-Kenneth Nielsen, Marlene S. Plejdrup, Jacob Klenø Nøjgaard, Gunnar Omstedt, Camilla Andersson, Bertil Forsberg, and Jørgen Brandt
Atmos. Chem. Phys., 20, 4333–4365, https://doi.org/10.5194/acp-20-4333-2020,https://doi.org/10.5194/acp-20-4333-2020, 2020
Short summary
Comparison of tropospheric NO2 columns from MAX-DOAS retrievals and regional air quality model simulations
Anne-Marlene Blechschmidt, Joaquim Arteta, Adriana Coman, Lyana Curier, Henk Eskes, Gilles Foret, Clio Gielen, Francois Hendrick, Virginie Marécal, Frédérik Meleux, Jonathan Parmentier, Enno Peters, Gaia Pinardi, Ankie J. M. Piters, Matthieu Plu, Andreas Richter, Arjo Segers, Mikhail Sofiev, Álvaro M. Valdebenito, Michel Van Roozendael, Julius Vira, Tim Vlemmix, and John P. Burrows
Atmos. Chem. Phys., 20, 2795–2823, https://doi.org/10.5194/acp-20-2795-2020,https://doi.org/10.5194/acp-20-2795-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979–2017
Yajuan Li, Martyn P. Chipperfield, Wuhu Feng, Sandip S. Dhomse, Richard J. Pope, Faquan Li, and Dong Guo
Atmos. Chem. Phys., 20, 8627–8639, https://doi.org/10.5194/acp-20-8627-2020,https://doi.org/10.5194/acp-20-8627-2020, 2020
Short summary
Seasonal impact of biogenic very short-lived bromocarbons on lowermost stratospheric ozone between 60° N and 60° S during the 21st century
Javier Alejandro Barrera, Rafael Pedro Fernandez, Fernando Iglesias-Suarez, Carlos Alberto Cuevas, Jean-Francois Lamarque, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 8083–8102, https://doi.org/10.5194/acp-20-8083-2020,https://doi.org/10.5194/acp-20-8083-2020, 2020
Short summary
Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery
James Keeble, N. Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Paul T. Griffiths, and John A. Pyle
Atmos. Chem. Phys., 20, 7153–7166, https://doi.org/10.5194/acp-20-7153-2020,https://doi.org/10.5194/acp-20-7153-2020, 2020
Short summary
The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate
Hans Brenna, Steffen Kutterolf, Michael J. Mills, and Kirstin Krüger
Atmos. Chem. Phys., 20, 6521–6539, https://doi.org/10.5194/acp-20-6521-2020,https://doi.org/10.5194/acp-20-6521-2020, 2020
Short summary
Temporal Evolution of the Bromine Alpha Factor and Equivalent Effective Stratospheric Chlorine in Future Climate Scenarios
J. Eric Klobas, Debra K. Weisenstein, Ross J. Salawitch, and David M. Wilmouth
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-276,https://doi.org/10.5194/acp-2020-276, 2020
Revised manuscript accepted for ACP
Short summary

Cited articles

Carslaw, K. S., Luo, B., and Peter, T.: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett., 22, 1877–1880, 1995. 
Cunnold, D. M., Fraser, P. J., Weiss, R. F., Prinn, R. G., Simmonds, P. G., Miller, B. R., Alyea, F. N., and Crawford, A. J.: Global trends and annual releases of CCl3F and CCl2F2 estimated from ALE/GAGE and other measurements from July 1978 to June 1991, J. Geophys. Res., 99, 1107, https://doi.org/10.1029/93JD02715, 1994. 
Damski, J., Thölix, L., Backman, L., Taalas, P., and Kulmala, M.: FinROSE: middle atmospheric chemistry transport model, Boreal Environ. Res., 12, 535–550, 2007. 
Ebel, A., Hass, H., Jakobs, H., Laube, M., Memmesheimer, M., Oberreuter, A., Geiss, H., and Kuo, Y.-H.: Simulation of ozone intrusion caused by tropopause fold and COL, Atmos. Environ. A-Gen., 25, 2131–2144, https://doi.org/10.1016/0960-1686(91)90089-P, 1991. 
Edwards, P. M. and Evans, M. J.: A new diagnostic for tropospheric ozone production, Atmos. Chem. Phys., 17, 13669–13680, https://doi.org/10.5194/acp-17-13669-2017, 2017. 
Publications Copernicus
Download
Short summary
An episode of anomalously low ozone concentrations in the stratosphere over northern Europe occurred on 3–5 November 2018. The 30 % reduction of the ozone layer was predicted by the global chemistry-transport model of the Finnish Meteorological Institute driven by weather forecasts of ECMWF. The reduction was subsequently observed by ozone monitoring satellites. The episode was caused by a storm in the northern Atlantic, which uplifted air from the troposphere to stratosphere.
An episode of anomalously low ozone concentrations in the stratosphere over northern Europe...
Citation
Final-revised paper
Preprint