Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 18, issue 9
Atmos. Chem. Phys., 18, 6585–6599, 2018
https://doi.org/10.5194/acp-18-6585-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 18, 6585–6599, 2018
https://doi.org/10.5194/acp-18-6585-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 May 2018

Research article | 08 May 2018

Meteorological controls on atmospheric particulate pollution during hazard reduction burns

Giovanni Di Virgilio et al.

Related authors

Efficiently modelling urban heat storage: an interface conduction scheme in an urban land surface model (aTEB v2.0)
Mathew J. Lipson, Melissa A. Hart, and Marcus Thatcher
Geosci. Model Dev., 10, 991–1007, https://doi.org/10.5194/gmd-10-991-2017,https://doi.org/10.5194/gmd-10-991-2017, 2017
Short summary
Local and regional smoke impacts from prescribed fires
Owen F. Price, Bronwyn Horsey, and Ningbo Jiang
Nat. Hazards Earth Syst. Sci., 16, 2247–2257, https://doi.org/10.5194/nhess-16-2247-2016,https://doi.org/10.5194/nhess-16-2247-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
On the climate sensitivity and historical warming evolution in recent coupled model ensembles
Clare Marie Flynn and Thorsten Mauritsen
Atmos. Chem. Phys., 20, 7829–7842, https://doi.org/10.5194/acp-20-7829-2020,https://doi.org/10.5194/acp-20-7829-2020, 2020
Short summary
Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020,https://doi.org/10.5194/acp-20-6861-2020, 2020
Short summary
Hadley cell expansion in CMIP6 models
Kevin M. Grise and Sean M. Davis
Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020,https://doi.org/10.5194/acp-20-5249-2020, 2020
Short summary
Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline
Yufei Zou, Yuhang Wang, Zuowei Xie, Hailong Wang, and Philip J. Rasch
Atmos. Chem. Phys., 20, 4999–5017, https://doi.org/10.5194/acp-20-4999-2020,https://doi.org/10.5194/acp-20-4999-2020, 2020
Short summary
Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020,https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary

Cited articles

ABS – Australian Bureau of Statistics: Population Projections, Australia, 2012 to 2101, Government of Australia, Canberra, 2013. 
ABS – Australian Bureau of Statistics: Regional population growth, Australia, 2014–15: estimated resident population – greater capital city statistical areas, Government of Australia, Canberra, 2016. 
Attiwill, P. M. and Adams, M. A.: Mega-fires, inquiries and politics in the eucalypt forests of Victoria, south-eastern Australia, Forest Ecol. Manag., 294, 45–53, https://doi.org/10.1016/j.foreco.2012.09.015, 2013. 
Bradstock, R., Penman, T., Boer, M., Price, O., and Clarke, H.: Divergent responses of fire to recent warming and drying across south-eastern Australia, Glob. Change Biol., 20, 1412–1428, 10.1111/gcb.12449, 2014. 
Broome, R. A., Johnstone, F. H., Horsley, J., and Morgan, G. G.: A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016, Med. J. Aust., 205, 407–408, https://doi.org/10.5694/mja16.00895, 2016. 
Publications Copernicus
Download
Short summary
Hazard reduction burns (HRBs) may prevent wildfires, but both generate PM2.5 air pollution. We identify the meteorological factors linked to high PM2.5 pollution & assess how they differ between HRB days with low vs. high PM2.5. Boundary layer, cloud cover, temperature & wind speed strongly influence PM2.5, with these factors being more variable & higher in magnitude during mornings & evenings of HRB days when PM2.5 remains low, indicating how HRB timing can be altered to reduce air pollution.
Hazard reduction burns (HRBs) may prevent wildfires, but both generate PM2.5 air pollution. We...
Citation
Altmetrics
Final-revised paper
Preprint