Articles | Volume 18, issue 5
Atmos. Chem. Phys., 18, 3755–3778, 2018
https://doi.org/10.5194/acp-18-3755-2018
Atmos. Chem. Phys., 18, 3755–3778, 2018
https://doi.org/10.5194/acp-18-3755-2018
Research article
14 Mar 2018
Research article | 14 Mar 2018

The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole

William Neff et al.

Related authors

Supercooled liquid fogs over the central Greenland Ice Sheet
Christopher J. Cox, David C. Noone, Max Berkelhammer, Matthew D. Shupe, William D. Neff, Nathaniel B. Miller, Von P. Walden, and Konrad Steffen
Atmos. Chem. Phys., 19, 7467–7485, https://doi.org/10.5194/acp-19-7467-2019,https://doi.org/10.5194/acp-19-7467-2019, 2019
Short summary
The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA
Maria Zatko, Joseph Erbland, Joel Savarino, Lei Geng, Lauren Easley, Andrew Schauer, Timothy Bates, Patricia K. Quinn, Bonnie Light, David Morison, Hans D. Osthoff, Seth Lyman, William Neff, Bin Yuan, and Becky Alexander
Atmos. Chem. Phys., 16, 13837–13851, https://doi.org/10.5194/acp-16-13837-2016,https://doi.org/10.5194/acp-16-13837-2016, 2016
Short summary
Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of 14CO2
B. W. LaFranchi, G. Pétron, J. B. Miller, S. J. Lehman, A. E. Andrews, E. J. Dlugokencky, B. Hall, B. R. Miller, S. A. Montzka, W. Neff, P. C. Novelli, C. Sweeney, J. C. Turnbull, D. E. Wolfe, P. P. Tans, K. R. Gurney, and T. P. Guilderson
Atmos. Chem. Phys., 13, 11101–11120, https://doi.org/10.5194/acp-13-11101-2013,https://doi.org/10.5194/acp-13-11101-2013, 2013

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary
Evolution of turbulent kinetic energy during the entire sandstorm process
Hongyou Liu, Yanxiong Shi, and Xiaojing Zheng
Atmos. Chem. Phys., 22, 8787–8803, https://doi.org/10.5194/acp-22-8787-2022,https://doi.org/10.5194/acp-22-8787-2022, 2022
Short summary
Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022,https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022,https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
Momentum fluxes from airborne wind measurements in three cumulus cases over land
Ada Mariska Koning, Louise Nuijens, and Christian Mallaun
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022,https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary

Cited articles

Arimoto, R., Zeng, T., Davis, D., Wang, Y., Khaing, H., Nesbit, C., and Huey, G.: Concentrations and sources of aerosol ions and trace elements during ANTCI-2003, Atmos. Environ., 42, 2864–2876, 2008.
Ball, F. K.: Winds on the Ice Slopes of Antarctica, Antarctic Meteorology, Proceedings of the Symposium in Melbourne, February 1959, Melbourne, Australia, Pergamon Press, 9–16, 1960.
Berhanu, T. A., Savarino, J., Erbland, J., Vicars, W. C., Preunkert, S., Martins, J. F., and Johnson, M. S.: Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica, Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, 2015.
Black, R. X. and McDaniel, B. A.: Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events, J. Atmos. Sci., 64, 2968–2974, 2007.
Bock, J., Savarino, J., and Picard, G.: Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica, Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, 2016.
Download
Short summary
Our study examined the effect of the seasonal cycle in meteorology from November through December and the role of stratospheric ozone depletion in the photochemical production of nitrogen oxide (NO) from nitrate in the snow at the South Pole. We found that ozone depletion which now extends into late November–early December coincides with optimum meteorological conditions (clear skies, a stable shallow boundary layer, and light winds) for high concentrations of NO to accumulate at the surface.
Altmetrics
Final-revised paper
Preprint