Articles | Volume 18, issue 3
https://doi.org/10.5194/acp-18-2011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-2011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada
Cynthia H. Whaley
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Climate Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Paul A. Makar
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Mark W. Shephard
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Leiming Zhang
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Junhua Zhang
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Qiong Zheng
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Ayodeji Akingunola
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Gregory R. Wentworth
Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada
Environmental Monitoring and Science Division, Alberta Environment and Parks, 9888 Jasper Ave NW, Edmonton, Alberta, Canada
Jennifer G. Murphy
Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada
Shailesh K. Kharol
Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
Karen E. Cady-Pereira
Atmospheric and Environmental Research, Lexington, Massachusetts, USA
Related authors
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Shoma Yamanouchi, Stephanie Conway, Kimberly Strong, Orfeo Colebatch, Erik Lutsch, Sébastien Roche, Jeffrey Taylor, Cynthia H. Whaley, and Aldona Wiacek
Earth Syst. Sci. Data, 15, 3387–3418, https://doi.org/10.5194/essd-15-3387-2023, https://doi.org/10.5194/essd-15-3387-2023, 2023
Short summary
Short summary
Nineteen years of atmospheric composition measurements made at the University of Toronto Atmospheric Observatory (TAO; 43.66° N, 79.40° W; 174 m.a.s.l.) are presented. These are retrieved from Fourier transform infrared (FTIR) solar absorption spectra recorded with a spectrometer from May 2002 to December 2020. The retrievals have been optimized for fourteen species: O3, HCl, HF, HNO3, CH4, C2H6, CO, HCN, N2O, C2H2, H2CO, CH3OH, HCOOH, and NH3.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Michael D. Moran, and Junhua Zhang
Atmos. Chem. Phys., 20, 2911–2925, https://doi.org/10.5194/acp-20-2911-2020, https://doi.org/10.5194/acp-20-2911-2020, 2020
Short summary
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Short summary
We present a new, high-resolution, North American model of PAHs and benzene, which are toxic air pollutants that cause a variety of negative health impacts. Our simulation in a densely populated region of Canada and the U.S. shows that the model is improved over a previous model. The new model is particularly refined regarding the gas–particle partitioning of these pollutants, which has impacts on deposition and inhalation. The simulation was sensitive to the selection of vehicle emissions.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2895, https://doi.org/10.5194/egusphere-2024-2895, 2024
Short summary
Short summary
Using the Positive Matrix Factorization (PMF) model and observations, we showed natural surface emission (wildfires and re-emitted Hg) dominated anthropogenic contributions to total gaseous mercury (TGM). Decreasing TGM was due to reduced shipping and regional emissions. This has led to increasing relative contributions from natural surface emissions of 1.0–1.6 % yr-1. Results showed Hg control measures have been effective, but greater attention is needed on monitoring surface re-emissions.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024, https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Short summary
Satellite-derived CO emissions provide new insights into the understanding of global CO emission rates from wildfires. We use TROPOMI satellite data to create a global inventory database of wildfire CO emissions. These satellite-derived wildfire emissions are used for the evaluation and improvement of existing fire emission inventories and to examine how the wildfire CO emissions have changed over the past 2 decades.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Sepehr Fathi, Paul Makar, Wanmin Gong, Junhua Zhang, Katherine Hayden, and Mark Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1655, https://doi.org/10.5194/egusphere-2024-1655, 2024
Short summary
Short summary
Our study explores the influence of water phase changes in plumes from industrial sources on atmospheric dispersion of emitted pollutants and air quality. Employing PRISM (Plume-Rise-Iterative-Stratified-Moist), a new method, we found that considering these effects significantly improves predictions of pollutant dispersion. This insight enhances our understanding of environmental impacts, enabling more accurate air quality modeling, and fostering more effective pollution management strategies.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Kelley Wells, Dylan Millet, Jared Brewer, Vivienne Payne, Karen Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2024-1551, https://doi.org/10.5194/egusphere-2024-1551, 2024
Short summary
Short summary
Atmospheric volatile organic compounds affect both air quality and climate. Satellite measurements can help us to assess and predict their global impacts. We present new long-term (2012–2023) measurements of four key VOCs: methanol, ethene, ethyne, and hydrogen cyanide (HCN) from the Cross-track Infrared Sounder. The measurements reflect emissions from major forests, wildfires, and industry, and provide new information to advance understanding of these sources and their changes over time.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
EGUsphere, https://doi.org/10.5194/egusphere-2024-980, https://doi.org/10.5194/egusphere-2024-980, 2024
Short summary
Short summary
1. A novel concept integrating crop cycle information into fire spots extraction was proposed. 2. Spatiotemporal variations of open straw burning in Northeast China were revealed. 3. Open straw burning in Northeast China emitted a total of 221 Tg of CO2-eq during 2001–2020. 4. The policy of banning straw burning effectively reduced greenhouse gases emissions.
Stefan J. Miller, Paul A. Makar, and Colin J. Lee
Geosci. Model Dev., 17, 2197–2219, https://doi.org/10.5194/gmd-17-2197-2024, https://doi.org/10.5194/gmd-17-2197-2024, 2024
Short summary
Short summary
This work outlines a new solver written in Fortran to calculate the partitioning of metastable aerosols at thermodynamic equilibrium based on the forward algorithms of ISORROPIA II. The new code includes numerical improvements that decrease the computational speed (compared to ISORROPIA II) while improving the accuracy of the partitioning solution.
Matthew Gordon Davis, Kevin Yan, and Jennifer Grace Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-126, https://doi.org/10.5194/egusphere-2024-126, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere, this can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may over-estimate the quantity available for exchange by a factor of 5 – 12, suggesting that ammonia emissions from soil may be overestimated.
Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola
Geosci. Model Dev., 17, 685–707, https://doi.org/10.5194/gmd-17-685-2024, https://doi.org/10.5194/gmd-17-685-2024, 2024
Short summary
Short summary
The article explores the impact of different representations of below-cloud scavenging on model biases. A new scavenging scheme and precipitation-phase partitioning improve the model's performance, with better SO42- scavenging and wet deposition of NO3- and NH4+.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Karen E. Cady-Pereira, Xuehui Guo, Rui Wang, April B. Leytem, Chase Calkins, Elizabeth Berry, Kang Sun, Markus Müller, Armin Wisthaler, Vivienne H. Payne, Mark W. Shephard, Mark A. Zondlo, and Valentin Kantchev
Atmos. Meas. Tech., 17, 15–36, https://doi.org/10.5194/amt-17-15-2024, https://doi.org/10.5194/amt-17-15-2024, 2024
Short summary
Short summary
Ammonia is a significant precursor of PM2.5 particles and thus contributes to poor air quality in many regions. Furthermore, ammonia concentrations are rising due to the increase of large-scale, intensive agricultural activities. Here we evaluate satellite measurements of ammonia against aircraft and surface network data, and show that there are differences in magnitude, but the satellite data are spatially and temporally well correlated with the in situ data.
Colin J. Lee, Paul A. Makar, and Joana Soares
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-185, https://doi.org/10.5194/gmd-2023-185, 2023
Publication in GMD not foreseen
Short summary
Short summary
Clustering is an analysis technique for finding similarities within datasets. We present a new implementation of the hierarchical clustering algorithm that is able to process much larger datasets than was previously possible, by spreading the program out over many connected computers in a high-performance computing system. We show airshed maps of a high-resolution regional model output domain, and find related air pollution profiles at monitoring stations separated by thousands of kilometers.
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023, https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary
Short summary
Measurements of ozone in the atmosphere were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements show that the emissions of other pollutants from oil sands production and processing reduce the amount of ozone in the forest. By using an atmospheric model combined with measurements, we find that the rate at which ozone is absorbed by the forest is lower than typical rates from similar measurements in other forests.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Shoma Yamanouchi, Stephanie Conway, Kimberly Strong, Orfeo Colebatch, Erik Lutsch, Sébastien Roche, Jeffrey Taylor, Cynthia H. Whaley, and Aldona Wiacek
Earth Syst. Sci. Data, 15, 3387–3418, https://doi.org/10.5194/essd-15-3387-2023, https://doi.org/10.5194/essd-15-3387-2023, 2023
Short summary
Short summary
Nineteen years of atmospheric composition measurements made at the University of Toronto Atmospheric Observatory (TAO; 43.66° N, 79.40° W; 174 m.a.s.l.) are presented. These are retrieved from Fourier transform infrared (FTIR) solar absorption spectra recorded with a spectrometer from May 2002 to December 2020. The retrievals have been optimized for fourteen species: O3, HCl, HF, HNO3, CH4, C2H6, CO, HCN, N2O, C2H2, H2CO, CH3OH, HCOOH, and NH3.
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Helen M. Worden, Gene L. Francis, Susan S. Kulawik, Kevin W. Bowman, Karen Cady-Pereira, Dejian Fu, Jennifer D. Hegarty, Valentin Kantchev, Ming Luo, Vivienne H. Payne, John R. Worden, Róisín Commane, and Kathryn McKain
Atmos. Meas. Tech., 15, 5383–5398, https://doi.org/10.5194/amt-15-5383-2022, https://doi.org/10.5194/amt-15-5383-2022, 2022
Short summary
Short summary
Satellite observations of global carbon monoxide (CO) are essential for understanding atmospheric chemistry and pollution sources. This paper describes a new data product using radiance measurements from the Cross-track Infrared Sounder (CrIS) instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite that provides vertical profiles of CO from single-field-of-view observations. We show how these satellite CO profiles compare to aircraft observations and evaluate their biases.
Michael Sitwell, Mark W. Shephard, Yves Rochon, Karen Cady-Pereira, and Enrico Dammers
Atmos. Chem. Phys., 22, 6595–6624, https://doi.org/10.5194/acp-22-6595-2022, https://doi.org/10.5194/acp-22-6595-2022, 2022
Short summary
Short summary
Observations of ammonia made using the satellite-borne CrIS instrument were used to improve the ammonia emissions used in the GEM-MACH model. These observations were used to refine estimates of the monthly mean ammonia emissions over North America for May to August 2016. The updated ammonia emissions reduced biases of GEM-MACH surface ammonia fields with surface observations and showed some improvements in the forecasting of species involved in inorganic particulate matter formation.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark W. Shephard, and Jan Willem Erisman
Atmos. Chem. Phys., 22, 951–972, https://doi.org/10.5194/acp-22-951-2022, https://doi.org/10.5194/acp-22-951-2022, 2022
Short summary
Short summary
CrIS NH3 satellite observations are assimilated into the LOTOS-EUROS model using two different methods. In the first method the data are used to fit spatially varying NH3 emission time factors. In the second method a local ensemble transform Kalman filter is used. Compared to in situ observations, combining both methods led to the most significant improvements in the modeled concentrations and deposition, illustrating the usefulness of CrIS NH3 to improve the spatiotemporal distribution of NH3.
Jennifer D. Hegarty, Karen E. Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, John R. Worden, Valentin Kantchev, Helen M. Worden, Kathryn McKain, Jasna V. Pittman, Róisín Commane, Bruce C. Daube Jr., and Eric A. Kort
Atmos. Meas. Tech., 15, 205–223, https://doi.org/10.5194/amt-15-205-2022, https://doi.org/10.5194/amt-15-205-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is produced by combustion of substances such as fossil fuels and plays an important role in atmospheric pollution and climate. We evaluated estimates of atmospheric CO derived from outgoing radiation measurements of the Atmospheric Infrared Sounder (AIRS) on a satellite orbiting the Earth against CO measurements from aircraft to show that these satellite measurements are reliable for continuous global monitoring of atmospheric CO concentrations.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329, https://doi.org/10.5194/gmd-14-6309-2021, https://doi.org/10.5194/gmd-14-6309-2021, 2021
Short summary
Short summary
Over the past decade, understanding of isoprene oxidation has improved, and proper representation of isoprene oxidation and isoprene-derived SOA (iSOA) formation in canopy–chemistry models is now recognized to be important for an accurate understanding of forest–atmosphere exchange. The updated FORCAsT version 2.0 improves the estimation of some isoprene oxidation products and is one of the few canopy models currently capable of simulating SOA formation from monoterpenes and isoprene.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Sepehr Fathi, Mark Gordon, Paul A. Makar, Ayodeji Akingunola, Andrea Darlington, John Liggio, Katherine Hayden, and Shao-Meng Li
Atmos. Chem. Phys., 21, 15461–15491, https://doi.org/10.5194/acp-21-15461-2021, https://doi.org/10.5194/acp-21-15461-2021, 2021
Short summary
Short summary
We have investigated the accuracy of aircraft-based mass balance methodologies through computer model simulations of the atmosphere and air quality at a regional high-resolution scale. We have defined new quantitative metrics to reduce emission retrieval uncertainty by evaluating top-down mass balance estimates against the known simulated meteorology and input emissions. We also recommend methodologies and flight strategies for improved retrievals in future aircraft-based studies.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021, https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Short summary
An assessment of mercury levels in air and deposition in the Athabasca oil sands region (AOSR) in Northern Alberta, Canada, was conducted to investigate the contribution of Hg emitted from oil sands activities to the surrounding landscape using a 3D process-based Hg model in 2012–2015. Oil sands Hg emissions are found to be important sources of Hg contamination to the local landscape in proximity to the processing activities, particularly in wintertime.
Paul A. Makar, Craig Stroud, Ayodeji Akingunola, Junhua Zhang, Shuzhan Ren, Philip Cheung, and Qiong Zheng
Atmos. Chem. Phys., 21, 12291–12316, https://doi.org/10.5194/acp-21-12291-2021, https://doi.org/10.5194/acp-21-12291-2021, 2021
Short summary
Short summary
Vehicle pollutant emissions occur in an environment where upward transport can be enhanced due to the turbulence created by the vehicles as they move through the atmosphere. An approach for including these turbulence effects in regional air pollution forecast models has been derived from theoretical, observation, and higher-resolution modeling. The enhanced mixing, which occurs in the immediate vicinity of roadways, changes pollutant concentrations on the regional to continental scale.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Susan S. Kulawik, John R. Worden, Vivienne H. Payne, Dejian Fu, Steven C. Wofsy, Kathryn McKain, Colm Sweeney, Bruce C. Daube Jr., Alan Lipton, Igor Polonsky, Yuguang He, Karen E. Cady-Pereira, Edward J. Dlugokencky, Daniel J. Jacob, and Yi Yin
Atmos. Meas. Tech., 14, 335–354, https://doi.org/10.5194/amt-14-335-2021, https://doi.org/10.5194/amt-14-335-2021, 2021
Short summary
Short summary
This paper shows comparisons of a new single-footprint methane product from the AIRS satellite to aircraft-based observations. We show that this AIRS methane product provides useful information to study seasonal and global methane trends of this important greenhouse gas.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Robert L. Herman, John Worden, David Noone, Dean Henze, Kevin Bowman, Karen Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, and Dejian Fu
Atmos. Meas. Tech., 13, 1825–1834, https://doi.org/10.5194/amt-13-1825-2020, https://doi.org/10.5194/amt-13-1825-2020, 2020
Short summary
Short summary
This study is the first assessment and validation of AIRS HDO / H2O retrieved by optimal estimation. Initial comparisons with in situ measurements from NASA ORACLES are promising: the small bias and consistent rms of AIRS suggest that AIRS has well-characterized HDO / H2O. This analysis opens the possibility of a new 17-year long-term data record of global tropospheric HDO / H2O measured from space.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Michael D. Moran, and Junhua Zhang
Atmos. Chem. Phys., 20, 2911–2925, https://doi.org/10.5194/acp-20-2911-2020, https://doi.org/10.5194/acp-20-2911-2020, 2020
Short summary
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 20, 721–733, https://doi.org/10.5194/acp-20-721-2020, https://doi.org/10.5194/acp-20-721-2020, 2020
Short summary
Short summary
An innovative approach is developed to preprocess monitored wet deposition data of inorganic ions for generating their decadal trends. Differing from traditional approaches which directly apply annual or seasonal average data to trend analysis tools, the proposed new approach makes use of slopes of regression equations between a series of study years and a climatology (base) year in terms of monthly averaged data. The new approach yields more robust results than the traditional tools.
Camille Viatte, Tianze Wang, Martin Van Damme, Enrico Dammers, Frederik Meleux, Lieven Clarisse, Mark W. Shephard, Simon Whitburn, Pierre François Coheur, Karen E. Cady-Pereira, and Cathy Clerbaux
Atmos. Chem. Phys., 20, 577–596, https://doi.org/10.5194/acp-20-577-2020, https://doi.org/10.5194/acp-20-577-2020, 2020
Short summary
Short summary
We study concentrations and spatiotemporal variabilities of atmospheric NH3 from the agricultural sector to gain insights on its effects on the Paris megacity air quality using satellite data from IASI and CrIS.
We evaluate the regional CHIMERE model capacity to reproduce NH3 and particulate matter (PM2.5) concentrations and variabilities in the domain of study.
We quantify the main meteorological parameters driving the optimal conditions involved in the PM2.5 formation from NH3 in Paris.
Alexander Moravek, Jennifer G. Murphy, Amy Hrdina, John C. Lin, Christopher Pennell, Alessandro Franchin, Ann M. Middlebrook, Dorothy L. Fibiger, Caroline C. Womack, Erin E. McDuffie, Randal Martin, Kori Moore, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 15691–15709, https://doi.org/10.5194/acp-19-15691-2019, https://doi.org/10.5194/acp-19-15691-2019, 2019
Short summary
Short summary
Ammonium nitrate is a major component of fine particulate matter of wintertime air pollution in the Great Salt Lake Region (UT, USA). We investigate the sources of ammonia in the region by using aircraft observations and comparing them to modelled ammonia mixing ratios based on emission inventory estimates. The results suggest that ammonia emissions are underestimated, specifically in regions with high agricultural activity, while ammonia in Salt Lake City is mainly of local origin.
Roya Ghahreman, Wanmin Gong, Martí Galí, Ann-Lise Norman, Stephen R. Beagley, Ayodeji Akingunola, Qiong Zheng, Alexandru Lupu, Martine Lizotte, Maurice Levasseur, and W. Richard Leaitch
Atmos. Chem. Phys., 19, 14455–14476, https://doi.org/10.5194/acp-19-14455-2019, https://doi.org/10.5194/acp-19-14455-2019, 2019
Short summary
Short summary
Atmospheric DMS(g) is a climatically important compound and the main source of biogenic sulfate in the Arctic. Its abundance in the Arctic increases during summer due to greater ice-free sea surface and higher biological activity. In this study, we implemented DMS(g) in a regional air quality forecast model configured for the Arctic. The study showed a significant impact from DMS(g) on sulfate aerosols, particularly in the 50–100 nm size range, in the Arctic marine boundary layer during summer.
Alexander Moravek, Saumya Singh, Elizabeth Pattey, Luc Pelletier, and Jennifer G. Murphy
Atmos. Meas. Tech., 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, https://doi.org/10.5194/amt-12-6059-2019, 2019
Short summary
Short summary
Determination of ecosystem exchange fluxes using the eddy covariance technique requires measurements with a fast time response. For ammonia, the time response is limited by adsorption and desorption processes on instrument surfaces, generally leading to a substantial underestimation of fluxes. Based on a 5-month flux dataset, we propose a new method to correct for the ammonia flux loss that is better suited to account for factors like surface aging and contamination than other approaches.
Enrico Dammers, Chris A. McLinden, Debora Griffin, Mark W. Shephard, Shelley Van Der Graaf, Erik Lutsch, Martijn Schaap, Yonatan Gainairu-Matz, Vitali Fioletov, Martin Van Damme, Simon Whitburn, Lieven Clarisse, Karen Cady-Pereira, Cathy Clerbaux, Pierre Francois Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, https://doi.org/10.5194/acp-19-12261-2019, 2019
Short summary
Short summary
Ammonia is an essential molecule in the environment, but at its current levels it is unsustainable. However, the emissions are highly uncertain. We explore the use of satellites to estimate the ammonia lifetime and emissions around point sources to help improve the budget. The same method applied to different satellite instruments shows consistent results. Comparison to the emission inventories shows that those are underestimating emissions of point sources by on average a factor of 2.5.
Erin E. McDuffie, Caroline C. Womack, Dorothy L. Fibiger, William P. Dube, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Joel A. Thornton, Alexander Moravek, Jennifer G. Murphy, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 9287–9308, https://doi.org/10.5194/acp-19-9287-2019, https://doi.org/10.5194/acp-19-9287-2019, 2019
Short summary
Short summary
Populated mountain basins, including the Salt Lake Valley (SLV) in Utah, suffer from wintertime stagnation events that trap emissions near the surface and cause fine particulate matter (PM2.5) concentrations to reach unhealthy levels. Previously limited by a lack of nighttime measurements, this study uses 2017 UWFPS aircraft campaign data, in combination with a box model, to show that nitrogen chemistry above the surface at night is a major source of PM2.5 during a wintertime event in the SLV.
Ye Tao and Jennifer G. Murphy
Atmos. Chem. Phys., 19, 9309–9320, https://doi.org/10.5194/acp-19-9309-2019, https://doi.org/10.5194/acp-19-9309-2019, 2019
Short summary
Short summary
In this study, we analyzed the 10-year variation of aerosol pH in six Canadian cities and found the variation is largely attributed to the seasonal cycling of ambient temperature. We also found that in different seasons the pH sensitivity to chemical composition is distinctly different. This finding suggests the sensitivity of aerosol pH to chemical composition needs to be carefully examined for any particular region.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
John R. Worden, Susan S. Kulawik, Dejian Fu, Vivienne H. Payne, Alan E. Lipton, Igor Polonsky, Yuguang He, Karen Cady-Pereira, Jean-Luc Moncet, Robert L. Herman, Fredrick W. Irion, and Kevin W. Bowman
Atmos. Meas. Tech., 12, 2331–2339, https://doi.org/10.5194/amt-12-2331-2019, https://doi.org/10.5194/amt-12-2331-2019, 2019
Short summary
Short summary
In this paper we take the first steps towards generating a multi-decadal record of the deuterium content of water vapor, useful for evaluating the moisture sources and processes affecting water vapor, by estimating the deuterium content from thermal IR radiances from the AIRS instrument. We find the AIRS-based measurements are sensitive to the deuterium content of water vapor in the middle and lower troposphere with a single measurement uncertainty of ~ 3 % and an accuracy of ~ 0.7 %.
Matthew Russell, Amir Hakami, Paul A. Makar, Ayodeji Akingunola, Junhua Zhang, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 19, 4393–4417, https://doi.org/10.5194/acp-19-4393-2019, https://doi.org/10.5194/acp-19-4393-2019, 2019
Short summary
Short summary
High-resolution air-quality forecast modeling results are compared for two different grid spacings for the Environment and Climate Change Canada GEM-MACH model. While the higher-resolution simulations have worse formal error scores, we show that the higher-resolution model nevertheless has the ability to better resolve plume maxima and has better performance when the evaluation occurs using new scoring metrics which operate on an equal-representative-area basis.
Yang Chen, Mi Tian, Ru-Jin Huang, Guangming Shi, Huanbo Wang, Chao Peng, Junji Cao, Qiyuan Wang, Shumin Zhang, Dongmei Guo, Leiming Zhang, and Fumo Yang
Atmos. Chem. Phys., 19, 3245–3255, https://doi.org/10.5194/acp-19-3245-2019, https://doi.org/10.5194/acp-19-3245-2019, 2019
Short summary
Short summary
Amine-containing particles were characterized in an urban area of Chongqing during both summer and winter using a single-particle aerosol mass spectrometer (SPAMS). Amines were observed to internally mix with elemental carbon (EC), organic carbon (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant in both number and peak area among amine-containing particles. Vegetation and traffic were the primary sources of particulate amines.
Betty Croft, Randall V. Martin, W. Richard Leaitch, Julia Burkart, Rachel Y.-W. Chang, Douglas B. Collins, Patrick L. Hayes, Anna L. Hodshire, Lin Huang, John K. Kodros, Alexander Moravek, Emma L. Mungall, Jennifer G. Murphy, Sangeeta Sharma, Samantha Tremblay, Gregory R. Wentworth, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 2787–2812, https://doi.org/10.5194/acp-19-2787-2019, https://doi.org/10.5194/acp-19-2787-2019, 2019
Short summary
Short summary
Summertime Arctic atmospheric aerosols are strongly controlled by processes related to natural regional sources. We use a chemical transport model with size-resolved aerosol microphysics to interpret measurements made during summertime 2016 in the Canadian Arctic Archipelago. Our results explore the processes that control summertime aerosol size distributions and support a climate-relevant role for Arctic marine secondary organic aerosol formed from precursor vapors with Arctic marine sources.
Cristen Adams, Chris A. McLinden, Mark W. Shephard, Nolan Dickson, Enrico Dammers, Jack Chen, Paul Makar, Karen E. Cady-Pereira, Naomi Tam, Shailesh K. Kharol, Lok N. Lamsal, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, https://doi.org/10.5194/acp-19-2577-2019, 2019
Short summary
Short summary
We estimated how much carbon monoxide, ammonia, and nitrogen oxides were emitted in the smoke from the Fort McMurray Horse River wildfire using satellite data and air quality models. The fire emitted amounts of carbon monoxide that were similar to anthropogenic (human-caused) emissions for all of Alberta over a full year. We also estimated large amounts of ammonia and nitrogen oxides emitted from the fire. These results can be used to evaluate the performance of air quality forecasting models.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Victoria E. Irish, Sarah J. Hanna, Megan D. Willis, Swarup China, Jennie L. Thomas, Jeremy J. B. Wentzell, Ana Cirisan, Meng Si, W. Richard Leaitch, Jennifer G. Murphy, Jonathan P. D. Abbatt, Alexander Laskin, Eric Girard, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1027–1039, https://doi.org/10.5194/acp-19-1027-2019, https://doi.org/10.5194/acp-19-1027-2019, 2019
Short summary
Short summary
Ice nucleating particles (INPs) are atmospheric particles that catalyse the formation of ice crystals in clouds. INPs influence the Earth's radiative balance and hydrological cycle. In this study we measured the concentrations of INPs in the Canadian Arctic marine boundary layer. Average INP concentrations fell within the range measured in other marine boundary layer locations. We also found that mineral dust is a more important contributor to the INP population than sea spray aerosol.
Kang Sun, Lei Zhu, Karen Cady-Pereira, Christopher Chan Miller, Kelly Chance, Lieven Clarisse, Pierre-François Coheur, Gonzalo González Abad, Guanyu Huang, Xiong Liu, Martin Van Damme, Kai Yang, and Mark Zondlo
Atmos. Meas. Tech., 11, 6679–6701, https://doi.org/10.5194/amt-11-6679-2018, https://doi.org/10.5194/amt-11-6679-2018, 2018
Short summary
Short summary
An agile, physics-based approach is developed to oversample irregular satellite observations to a high-resolution common grid. Instead of assuming each sounding as a point or a polygon as in previous methods, the proposed physical oversampling represents soundings as distributions of sensitivity on the ground. This sensitivity distribution can be determined by the spatial response function of each satellite sensor, parameterized as generalized 2-D super Gaussian functions.
Travis W. Tokarek, Charles A. Odame-Ankrah, Jennifer A. Huo, Robert McLaren, Alex K. Y. Lee, Max G. Adam, Megan D. Willis, Jonathan P. D. Abbatt, Cristian Mihele, Andrea Darlington, Richard L. Mittermeier, Kevin Strawbridge, Katherine L. Hayden, Jason S. Olfert, Elijah G. Schnitzler, Duncan K. Brownsey, Faisal V. Assad, Gregory R. Wentworth, Alex G. Tevlin, Douglas E. J. Worthy, Shao-Meng Li, John Liggio, Jeffrey R. Brook, and Hans D. Osthoff
Atmos. Chem. Phys., 18, 17819–17841, https://doi.org/10.5194/acp-18-17819-2018, https://doi.org/10.5194/acp-18-17819-2018, 2018
Short summary
Short summary
Measurements of air pollutants at a ground site near Fort McKay in the Athabasca oil sands region in the summer of 2013 are presented. A large number of intermediate-volatility organic compounds (IVOCs) were observed; these molecules were shown previously to generate atmospheric particles downwind of the region. A principal component analysis was performed to identify major pollution source types, including which source(s) is(are) associated with IVOC emissions (e.g., freshly mined bitumen).
Alessandro Franchin, Dorothy L. Fibiger, Lexie Goldberger, Erin E. McDuffie, Alexander Moravek, Caroline C. Womack, Erik T. Crosman, Kenneth S. Docherty, William P. Dube, Sebastian W. Hoch, Ben H. Lee, Russell Long, Jennifer G. Murphy, Joel A. Thornton, Steven S. Brown, Munkhbayar Baasandorj, and Ann M. Middlebrook
Atmos. Chem. Phys., 18, 17259–17276, https://doi.org/10.5194/acp-18-17259-2018, https://doi.org/10.5194/acp-18-17259-2018, 2018
Short summary
Short summary
We present the results of aerosol and trace gas measurements from airborne and ground-based platforms. The measurements took place in January–February 2017 in northern Utah as part of the Utah Winter Fine Particulate Study (UWFPS). We characterized the chemical composition of PM1 on a regional scale, also probing the vertical dimension. We used a thermodynamic model to study the effectiveness of limiting total ammonium or total nitrate as a strategy to control aerosol concentrations.
Wanmin Gong, Stephen R. Beagley, Sophie Cousineau, Mourad Sassi, Rodrigo Munoz-Alpizar, Sylvain Ménard, Jacinthe Racine, Junhua Zhang, Jack Chen, Heather Morrison, Sangeeta Sharma, Lin Huang, Pascal Bellavance, Jim Ly, Paul Izdebski, Lynn Lyons, and Richard Holt
Atmos. Chem. Phys., 18, 16653–16687, https://doi.org/10.5194/acp-18-16653-2018, https://doi.org/10.5194/acp-18-16653-2018, 2018
Short summary
Short summary
The navigability of the Arctic Ocean is increasing with the warming in recent years. Using model simulations at a much finer resolution than previous pan-Arctic studies, the impact of marine shipping emissions on air pollution in the Canadian Arctic is assessed for present (2010) and projected levels in 2030. The study found that shipping emissions have a local-to-regional impact in the Arctic at the current level; the impact will increase significantly in a projected business-as-usual scenario.
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Craig A. Stroud, Paul A. Makar, Junhua Zhang, Michael D. Moran, Ayodeji Akingunola, Shao-Meng Li, Amy Leithead, Katherine Hayden, and May Siu
Atmos. Chem. Phys., 18, 13531–13545, https://doi.org/10.5194/acp-18-13531-2018, https://doi.org/10.5194/acp-18-13531-2018, 2018
Short summary
Short summary
It is shown that using measurement-derived volatile organic compound (VOC) and organic aerosol (OA) emissions in the GEM-MACH air quality model provides better overall predictions compared to using bottom-up emission inventories. This work was done to better constrain the fugitive organic emissions from the Athabasca oil sands region, which are a challenge to estimate with bottom-up emission approaches. We use observations from the 2013 Joint Oil Sands Monitoring study.
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, https://doi.org/10.5194/acp-18-10459-2018, 2018
Short summary
Short summary
This paper discusses the development of new synthesized emissions inventories and the generation of air quality model-ready emissions files for the Athabasca Oil Sands Region of Alberta, Canada, using multiple emissions inventories, continuous emissions monitoring data, and inferred emission rates based on aircraft measurements. Novel facility-specific gridded spatial surrogate fields were generated to allocate emissions spatially within each huge mining facility.
Emma L. Mungall, Jonathan P. D. Abbatt, Jeremy J. B. Wentzell, Gregory R. Wentworth, Jennifer G. Murphy, Daniel Kunkel, Ellen Gute, David W. Tarasick, Sangeeta Sharma, Christopher J. Cox, Taneil Uttal, and John Liggio
Atmos. Chem. Phys., 18, 10237–10254, https://doi.org/10.5194/acp-18-10237-2018, https://doi.org/10.5194/acp-18-10237-2018, 2018
Short summary
Short summary
We measured gas-phase formic and acetic acid at Alert, Nunavut. These acids play an important role in cloud water acidity in remote environments, yet they are not well represented in chemical transport models, particularly in the Arctic. We observed high levels of formic and acetic acid under both cold, wet, and cloudy and warm, sunny, and dry conditions, suggesting that multiple sources significantly contribute to gas-phase concentrations of these species in the summer Arctic.
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, https://doi.org/10.5194/acp-18-9897-2018, 2018
Short summary
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Short summary
We present a new, high-resolution, North American model of PAHs and benzene, which are toxic air pollutants that cause a variety of negative health impacts. Our simulation in a densely populated region of Canada and the U.S. shows that the model is improved over a previous model. The new model is particularly refined regarding the gas–particle partitioning of these pollutants, which has impacts on deposition and inhalation. The simulation was sensitive to the selection of vehicle emissions.
Ayodeji Akingunola, Paul A. Makar, Junhua Zhang, Andrea Darlington, Shao-Meng Li, Mark Gordon, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, https://doi.org/10.5194/acp-18-8667-2018, 2018
Short summary
Short summary
We examine the manner in which air-quality models simulate lofting of buoyant plumes of emissions from stacks (plume rise) and the impact of the level of detail in algorithms simulating particles' variation in size (particle size distribution). The most commonly used plume rise algorithm underestimates the height of plumes compared to observations, while a revised algorithm has much better performance. A 12-bin size distribution reduced the forecast 2-bin size distribution bias error by 32 %.
Joana Soares, Paul Andrew Makar, Yayne Aklilu, and Ayodeji Akingunola
Atmos. Chem. Phys., 18, 6543–6566, https://doi.org/10.5194/acp-18-6543-2018, https://doi.org/10.5194/acp-18-6543-2018, 2018
Short summary
Short summary
Grouping data on the basis of (dis)similarity can be used to assess the efficacy of monitoring networks. The data are cross-compared in terms of temporal variation and magnitude of concentrations, and sites are ranked according to their level of potential redundancy. The methodology can be applied to measurement data, helping to identify sites with different measuring technologies or data flaws, and to model output, generating maps of areas of spatial representativeness of a monitoring site.
Emily V. Fischer, Liye Zhu, Vivienne H. Payne, John R. Worden, Zhe Jiang, Susan S. Kulawik, Steven Brey, Arsineh Hecobian, Daniel Gombos, Karen Cady-Pereira, and Frank Flocke
Atmos. Chem. Phys., 18, 5639–5653, https://doi.org/10.5194/acp-18-5639-2018, https://doi.org/10.5194/acp-18-5639-2018, 2018
Short summary
Short summary
PAN is an atmospheric reservoir for nitrogen oxide radicals, and it plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America during July 2006 to 2009. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations overlap with smoke plumes.
Stephanie C. Pugliese, Jennifer G. Murphy, Felix R. Vogel, Michael D. Moran, Junhua Zhang, Qiong Zheng, Craig A. Stroud, Shuzhan Ren, Douglas Worthy, and Gregoire Broquet
Atmos. Chem. Phys., 18, 3387–3401, https://doi.org/10.5194/acp-18-3387-2018, https://doi.org/10.5194/acp-18-3387-2018, 2018
Short summary
Short summary
We developed the Southern Ontario CO2 Emissions (SOCE) inventory, which identifies the spatial and temporal distribution (2.5 km and hourly, respectively) of CO2 emissions from seven source sectors. When the SOCE inventory was used with a chemistry transport model, we found strong agreement between modelled and measured mixing ratios. We were able to quantify that natural gas combustion contributes > 80 % of CO2 emissions at nighttime while on-road emissions contribute > 70 % during the day.
Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner
Atmos. Chem. Phys., 18, 3457–3467, https://doi.org/10.5194/acp-18-3457-2018, https://doi.org/10.5194/acp-18-3457-2018, 2018
Short summary
Short summary
We developed emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region and evaluated the emissions databases by comparing CALPUFF-modelled concentrations with monitored data. Model–measurement agreement improved near oil sands mines due to updated PAC emissions from tailings ponds. Modelled concentrations were underestimated at remote sites and for alkylated PACs suggesting that the emissions of PACs particularly alkylated compounds are underestimated.
Huanbo Wang, Mi Tian, Yang Chen, Guangming Shi, Yuan Liu, Fumo Yang, Leiming Zhang, Liqun Deng, Jiayan Yu, Chao Peng, and Xuyao Cao
Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018, https://doi.org/10.5194/acp-18-865-2018, 2018
Yuan You, Ralf M. Staebler, Samar G. Moussa, Yushan Su, Tony Munoz, Craig Stroud, Junhua Zhang, and Michael D. Moran
Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, https://doi.org/10.5194/acp-17-14119-2017, 2017
Short summary
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
Vitali Fioletov, Chris A. McLinden, Shailesh K. Kharol, Nickolay A. Krotkov, Can Li, Joanna Joiner, Michael D. Moran, Robert Vet, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 17, 12597–12616, https://doi.org/10.5194/acp-17-12597-2017, https://doi.org/10.5194/acp-17-12597-2017, 2017
Huiting Mao, Dolly Hall, Zhuyun Ye, Ying Zhou, Dirk Felton, and Leiming Zhang
Atmos. Chem. Phys., 17, 11655–11671, https://doi.org/10.5194/acp-17-11655-2017, https://doi.org/10.5194/acp-17-11655-2017, 2017
Short summary
Short summary
Mercury (Hg) is a global pollutant hazardous to human and ecosystem health, and its emission control is imperative. Anthropogenic mercury emissions have been reduced by 78 % in the United States from 1990 to 2014. However, no clearly defined trend was observed in Hg concentrations at urban locations such as the one in this study. This indicates that other factors may have dominated over anthropogenic emission control. The implications of this study could hence be highly policy relevant.
Jun Tao, Leiming Zhang, Junji Cao, and Renjian Zhang
Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, https://doi.org/10.5194/acp-17-9485-2017, 2017
Short summary
Short summary
In this study, studies on PM2.5 chemical composition, source apportionment and its impact on aerosol optical properties across China are thoroughly reviewed, and historical emission control policies in China and their effectiveness in reducing PM2.5 are discussed.
Karen E. Cady-Pereira, Vivienne H. Payne, Jessica L. Neu, Kevin W. Bowman, Kazuyuki Miyazaki, Eloise A. Marais, Susan Kulawik, Zitely A. Tzompa-Sosa, and Jennifer D. Hegarty
Atmos. Chem. Phys., 17, 9379–9398, https://doi.org/10.5194/acp-17-9379-2017, https://doi.org/10.5194/acp-17-9379-2017, 2017
Short summary
Short summary
Air quality is a major issue for megacities. Our paper looks at satellite measurements over Mexico City and Lagos of several trace gases gases related to air quality to determine the temporal and spatial variability of these gases, and it relates this variability to local conditions, such as topography, winds and biomass burning events. We find that, while Mexico City is known for severe pollution events, the levels of of pollution in Lagos are much higher and more persistent.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Enrico Dammers, Mark W. Shephard, Mathias Palm, Karen Cady-Pereira, Shannon Capps, Erik Lutsch, Kim Strong, James W. Hannigan, Ivan Ortega, Geoffrey C. Toon, Wolfgang Stremme, Michel Grutter, Nicholas Jones, Dan Smale, Jacob Siemons, Kevin Hrpcek, Denis Tremblay, Martijn Schaap, Justus Notholt, and Jan Willem Erisman
Atmos. Meas. Tech., 10, 2645–2667, https://doi.org/10.5194/amt-10-2645-2017, https://doi.org/10.5194/amt-10-2645-2017, 2017
Short summary
Short summary
Presented here is the validation of the CrIS fast physical retrieval (CFPR) NH3 column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Furthermore, we find that CrIS and FTIR profile comparison differences are mostly within the range of the estimated retrieval uncertainties, with differences in the range of ~ 20 to 40 %.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Shailesh K. Kharol, Chris A. McLinden, Christopher E. Sioris, Mark W. Shephard, Vitali Fioletov, Aaron van Donkelaar, Sajeev Philip, and Randall V. Martin
Atmos. Chem. Phys., 17, 5921–5929, https://doi.org/10.5194/acp-17-5921-2017, https://doi.org/10.5194/acp-17-5921-2017, 2017
Irene Cheng and Leiming Zhang
Atmos. Chem. Phys., 17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017, https://doi.org/10.5194/acp-17-4711-2017, 2017
Short summary
Short summary
Geographical and long-term (1983–2011) trends in air concentrations and wet deposition of inorganic ions and aerosol and precipitation acidity were analyzed at 31 sites in Canada. Declines in atmospheric ammonium, nitrate, and sulfate were consistent with decreasing emissions of NH3, NOx, and SO2. A decline in nitrate and sulfate wet deposition was also observed. Wet scavenging was further studied by estimating scavenging ratios and relative contributions of gases and aerosols to wet deposition.
Chantelle R. Lonsdale, Jennifer D. Hegarty, Karen E. Cady-Pereira, Matthew J. Alvarado, Daven K. Henze, Matthew D. Turner, Shannon L. Capps, John B. Nowak, J. Andy Neuman, Ann M. Middlebrook, Roya Bahreini, Jennifer G. Murphy, Milos Z. Markovic, Trevor C. VandenBoer, Lynn M. Russell, and Amy Jo Scarino
Atmos. Chem. Phys., 17, 2721–2739, https://doi.org/10.5194/acp-17-2721-2017, https://doi.org/10.5194/acp-17-2721-2017, 2017
Short summary
Short summary
This study takes advantage of the high-resolution observations of NH3(g) made by the TES satellite instrument over Bakersfield during the CalNex campaign, along with campaign measurements, to compare CMAQ model results in the San Joaquin Valley, California. Additionally we evaluate the CMAQ bi-directional ammonia flux results using the CARB emissions inventory against these satellite and campaign measurements, not previously explored in combination.
Christopher E. Sioris, Chris A. McLinden, Mark W. Shephard, Vitali E. Fioletov, and Ihab Abboud
Atmos. Chem. Phys., 17, 1931–1943, https://doi.org/10.5194/acp-17-1931-2017, https://doi.org/10.5194/acp-17-1931-2017, 2017
Short summary
Short summary
The contribution of the oil sands region to the local aerosol optical depth (AOD) is sought. Satellite data are used since they provide spatial coverage over many years. Satellites measure AOD with high correlation and small biases relative to coincident AERONET AODs. Trends are determined using annual mean AODs, and an increasing trend is found near the Shell mines. Spatially variable and high surface albedo is challenging for some sensors. Measuring polarization appears to be an asset.
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017, https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary
Short summary
This study addresses two issues related to source–receptor analysis of speciated atmospheric mercury: (1) comparing PMF and PCA and (2) testing different approaches in data selection for PMF modeling.
L. Paige Wright, Leiming Zhang, and Frank J. Marsik
Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, https://doi.org/10.5194/acp-16-13399-2016, 2016
Short summary
Short summary
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models and at monitoring sites, measurement methods and studies for quantifying dry deposition of oxidized mercury, and measurement studies of litterfall and throughfall mercury. Over all the regions, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition.
Huiting Mao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 16, 12897–12924, https://doi.org/10.5194/acp-16-12897-2016, https://doi.org/10.5194/acp-16-12897-2016, 2016
Short summary
Short summary
Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of TGM/GEM, GOM, and PBM in environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. Remaining questions/issues and recommendations were provided for future research.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 16, 11465–11475, https://doi.org/10.5194/acp-16-11465-2016, https://doi.org/10.5194/acp-16-11465-2016, 2016
Short summary
Short summary
Atmospheric NH3 plays an important role in forming secondary aerosols and has a direct impact on sensitive ecosystems. This study aims to study its long-term variation and find that the long-term trend can be affected by climate change as well as other anthropogenic factors, depending on sites. A large percentage increase of atmospheric NH3 at remote American sites is surprising and may cause a potential threat to sensitive ecosystems in the future.
Gregory R. Wentworth, Jennifer G. Murphy, Katherine B. Benedict, Evelyn J. Bangs, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 7435–7449, https://doi.org/10.5194/acp-16-7435-2016, https://doi.org/10.5194/acp-16-7435-2016, 2016
Short summary
Short summary
The influence of dew on atmospheric composition is poorly understood. Results from this work show that dew can uptake a significant fraction (roughly two-thirds) of boundary layer gas-phase ammonia. Furthermore, an average of 95 % of the ammonia sequestered in dew is released back to the atmosphere the following morning during dew evaporation. Dew has the ability to affect air quality and N-deposition and should be considered when modelling ammonia concentrations, as well as other soluble gases.
Xiaodong Zhang, Tao Huang, Leiming Zhang, Yanjie Shen, Yuan Zhao, Hong Gao, Xiaoxuan Mao, Chenhui Jia, and Jianmin Ma
Atmos. Chem. Phys., 16, 6949–6960, https://doi.org/10.5194/acp-16-6949-2016, https://doi.org/10.5194/acp-16-6949-2016, 2016
Short summary
Short summary
This paper assesses long-term trend of biogenic isoprene emissions in the Three-North Shelter Forest Program, also known as "the Green Great Wall", the largest artificial afforestation in the human history. Results show that the TNRSF has altered the long-term emission trend in north China from a decreasing to an increasing trend from 1982 to 2010. Isoprene emission fluxes have increased in many places of the TNRSF over the last 3 decades due to the growing trees and vegetation coverage.
Emma L. Mungall, Betty Croft, Martine Lizotte, Jennie L. Thomas, Jennifer G. Murphy, Maurice Levasseur, Randall V. Martin, Jeremy J. B. Wentzell, John Liggio, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016, https://doi.org/10.5194/acp-16-6665-2016, 2016
Short summary
Short summary
Previous work has suggested that marine emissions of dimethyl sulfide (DMS) could impact the Arctic climate through interactions with clouds. We made the first high-time-resolution measurements of summertime atmospheric DMS in the Canadian Arctic, and performed source sensitivity simulations. We found that regional marine sources dominated, but do not appear to be sufficient to explain our observations. Understanding DMS sources in the Arctic is necessary to model future climate in the region.
Lei Zhang, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao
Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, https://doi.org/10.5194/acp-16-2417-2016, 2016
Gregory R. Wentworth, Jennifer G. Murphy, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Jean-Sébastien Côté, Isabelle Courchesne, Jean-Éric Tremblay, Jonathan Gagnon, Jennie L. Thomas, Sangeeta Sharma, Desiree Toom-Sauntry, Alina Chivulescu, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, https://doi.org/10.5194/acp-16-1937-2016, 2016
Short summary
Short summary
Air near the surface in the summertime Arctic is extremely clean and typically has very low concentrations of both gases and particles. However, atmospheric measurements taken throughout the Canadian Arctic in the summer of 2014 revealed higher-than-expected amounts of gaseous ammonia. It is likely the majority of this ammonia is coming from migratory seabird colonies throughout the Arctic. Seabird guano (dung) releases ammonia which could impact climate and sensitive Arctic ecosystems.
N. Borduas, B. Place, G. R. Wentworth, J. P. D. Abbatt, and J. G. Murphy
Atmos. Chem. Phys., 16, 703–714, https://doi.org/10.5194/acp-16-703-2016, https://doi.org/10.5194/acp-16-703-2016, 2016
Short summary
Short summary
HNCO is a toxic molecule and can cause cardiovascular and cataract problems through protein carbamylation once inhaled. Recently reported ambient measurements of HNCO in North America raise concerns for human exposure. To better understand HNCO's loss processes and behaviour in the atmosphere, we provide thermochemical data on HNCO. The parameters allow for more accurate predictions of its lifetime in the atmosphere and consequently help define exposure of this toxic molecule.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
L. Zhu, D. Henze, J. Bash, G.-R. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and S. Capps
Atmos. Chem. Phys., 15, 12823–12843, https://doi.org/10.5194/acp-15-12823-2015, https://doi.org/10.5194/acp-15-12823-2015, 2015
Short summary
Short summary
We implement new diurnal variation scheme for ammonia livestock emissions and bidirectional exchange scheme and its adjoint in the GEOS-Chem global chemical transport model. Updated diurnal variability improves modeled-to-hourly in situ measurements comparison. The ammonium soil pool in the bidirectional exchange model largely extends the ammonia lifetime in the atmosphere. Large model biases remain as livestock emissions are still underestimated.
C. G. Nolte, K. W. Appel, J. T. Kelly, P. V. Bhave, K. M. Fahey, J. L. Collett Jr., L. Zhang, and J. O. Young
Geosci. Model Dev., 8, 2877–2892, https://doi.org/10.5194/gmd-8-2877-2015, https://doi.org/10.5194/gmd-8-2877-2015, 2015
Short summary
Short summary
This study is the most comprehensive evaluation of CMAQ inorganic
aerosol size-composition distributions conducted to date. We compare two
methods of inferring PM2.5 concentrations from the model: (1) based on
the sum of the masses in the fine aerosol modes, as is most commonly
done in CMAQ model evaluation; and (2) computed using the simulated size
distributions. Differences are generally less than 1 microgram/m3, and
are largest over the eastern USA during the summer.
I. Cheng, X. Xu, and L. Zhang
Atmos. Chem. Phys., 15, 7877–7895, https://doi.org/10.5194/acp-15-7877-2015, https://doi.org/10.5194/acp-15-7877-2015, 2015
Short summary
Short summary
Current knowledge of receptor-based studies using speciated atmospheric mercury is reviewed and recommendations for future research needs are provided.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
M. W. Shephard and K. E. Cady-Pereira
Atmos. Meas. Tech., 8, 1323–1336, https://doi.org/10.5194/amt-8-1323-2015, https://doi.org/10.5194/amt-8-1323-2015, 2015
Short summary
Short summary
Presented is a robust retrieval algorithm that demonstrates the capabilities of utilizing Cross-track Infrared Sounder (CrIS) satellite observations to globally retrieval ammonia (NH3) concentrations. Initial NH3 retrieval results show that CrIS is (i) sensitive to NH3 in the boundary layer, with peak vertical sensitivity typically around 850–750hPa (~2km), (ii) has a minimum detection limit of ~1ppbv (peak profile value typically at the surface), and (iii) typically has up to ~1 DOFS.
M. J. Alvarado, V. H. Payne, K. E. Cady-Pereira, J. D. Hegarty, S. S. Kulawik, K. J. Wecht, J. R. Worden, J. V. Pittman, and S. C. Wofsy
Atmos. Meas. Tech., 8, 965–985, https://doi.org/10.5194/amt-8-965-2015, https://doi.org/10.5194/amt-8-965-2015, 2015
L. Zhang, I. Cheng, D. Muir, and J.-P. Charland
Atmos. Chem. Phys., 15, 1421–1434, https://doi.org/10.5194/acp-15-1421-2015, https://doi.org/10.5194/acp-15-1421-2015, 2015
Short summary
Short summary
This study analyzed air and precipitation concentrations of 43 polycyclic aromatic compounds (PACs) collected in the Athabasca oil sands region. A database has been built for the parameter scavenging ratio, which is defined as the ratio of the concentration of PACs in precipitation to that in air. A better understanding of the potential differences between gas and particulate scavenging and between snow and rain scavenging has been achieved.
V. H. Payne, M. J. Alvarado, K. E. Cady-Pereira, J. R. Worden, S. S. Kulawik, and E. V. Fischer
Atmos. Meas. Tech., 7, 3737–3749, https://doi.org/10.5194/amt-7-3737-2014, https://doi.org/10.5194/amt-7-3737-2014, 2014
Short summary
Short summary
Peroxyacetyl nitrate (PAN) plays an important role in the distribution of lower-atmospheric ozone. PAN can be transported far from the original pollution source, leading to ozone formation and degraded air quality in remote areas. Satellite observations from the Tropospheric Emission Spectrometer (TES) are sensitive to PAN at lower altitude than previous global data sets. We describe characteristics of the data and show elevated PAN associated with boreal fires and outflow of Asian pollution.
G. R. Wentworth, J. G. Murphy, P. K. Gregoire, C. A. L. Cheyne, A. G. Tevlin, and R. Hems
Biogeosciences, 11, 5675–5686, https://doi.org/10.5194/bg-11-5675-2014, https://doi.org/10.5194/bg-11-5675-2014, 2014
M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown
Atmos. Chem. Phys., 14, 9087–9097, https://doi.org/10.5194/acp-14-9087-2014, https://doi.org/10.5194/acp-14-9087-2014, 2014
J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che, Z. Zhang, Z. Lin, J. Jing, J. Cao, and S.-C. Hsu
Atmos. Chem. Phys., 14, 8679–8699, https://doi.org/10.5194/acp-14-8679-2014, https://doi.org/10.5194/acp-14-8679-2014, 2014
S. C. Pugliese, J. G. Murphy, J. A. Geddes, and J. M. Wang
Atmos. Chem. Phys., 14, 8197–8207, https://doi.org/10.5194/acp-14-8197-2014, https://doi.org/10.5194/acp-14-8197-2014, 2014
E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. T. Pye
Atmos. Chem. Phys., 14, 7693–7703, https://doi.org/10.5194/acp-14-7693-2014, https://doi.org/10.5194/acp-14-7693-2014, 2014
Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang
Atmos. Chem. Phys., 14, 7631–7644, https://doi.org/10.5194/acp-14-7631-2014, https://doi.org/10.5194/acp-14-7631-2014, 2014
K. E. Cady-Pereira, S. Chaliyakunnel, M. W. Shephard, D. B. Millet, M. Luo, and K. C. Wells
Atmos. Meas. Tech., 7, 2297–2311, https://doi.org/10.5194/amt-7-2297-2014, https://doi.org/10.5194/amt-7-2297-2014, 2014
C. L. Heald, D. A. Ridley, J. H. Kroll, S. R. H. Barrett, K. E. Cady-Pereira, M. J. Alvarado, and C. D. Holmes
Atmos. Chem. Phys., 14, 5513–5527, https://doi.org/10.5194/acp-14-5513-2014, https://doi.org/10.5194/acp-14-5513-2014, 2014
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
P. A. Makar, R. Nissen, A. Teakles, J. Zhang, Q. Zheng, M. D. Moran, H. Yau, and C. diCenzo
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-7-1001-2014, https://doi.org/10.5194/gmd-7-1001-2014, 2014
D. R. Gentner, T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, C. Warneke, J. B. Gilman, T. B. Ryerson, J. Peischl, S. Meinardi, D. R. Blake, E. Atlas, W. A. Lonneman, T. E. Kleindienst, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, T. C. VandenBoer, M. Z. Markovic, J. G. Murphy, R. A. Harley, and A. H. Goldstein
Atmos. Chem. Phys., 14, 4955–4978, https://doi.org/10.5194/acp-14-4955-2014, https://doi.org/10.5194/acp-14-4955-2014, 2014
X. Wang, L. Zhang, and M. D. Moran
Geosci. Model Dev., 7, 799–819, https://doi.org/10.5194/gmd-7-799-2014, https://doi.org/10.5194/gmd-7-799-2014, 2014
E. Galarneau, P. A. Makar, Q. Zheng, J. Narayan, J. Zhang, M. D. Moran, M. A. Bari, S. Pathela, A. Chen, and R. Chlumsky
Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, https://doi.org/10.5194/acp-14-4065-2014, 2014
L. Zhang and Z. He
Atmos. Chem. Phys., 14, 3729–3737, https://doi.org/10.5194/acp-14-3729-2014, https://doi.org/10.5194/acp-14-3729-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
J. A. Geddes and J. G. Murphy
Atmos. Chem. Phys., 14, 2939–2957, https://doi.org/10.5194/acp-14-2939-2014, https://doi.org/10.5194/acp-14-2939-2014, 2014
K. C. Wells, D. B. Millet, K. E. Cady-Pereira, M. W. Shephard, D. K. Henze, N. Bousserez, E. C. Apel, J. de Gouw, C. Warneke, and H. B. Singh
Atmos. Chem. Phys., 14, 2555–2570, https://doi.org/10.5194/acp-14-2555-2014, https://doi.org/10.5194/acp-14-2555-2014, 2014
X. H. Yao and L. Zhang
Biogeosciences, 10, 7913–7925, https://doi.org/10.5194/bg-10-7913-2013, https://doi.org/10.5194/bg-10-7913-2013, 2013
S. Chen, X. Qiu, L. Zhang, F. Yang, and P. Blanchard
Atmos. Chem. Phys., 13, 11287–11293, https://doi.org/10.5194/acp-13-11287-2013, https://doi.org/10.5194/acp-13-11287-2013, 2013
J. R. Brook, P. A. Makar, D. M. L. Sills, K. L. Hayden, and R. McLaren
Atmos. Chem. Phys., 13, 10461–10482, https://doi.org/10.5194/acp-13-10461-2013, https://doi.org/10.5194/acp-13-10461-2013, 2013
L. Zhang, X. Wang, M. D. Moran, and J. Feng
Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, https://doi.org/10.5194/acp-13-10005-2013, 2013
M. J. Alvarado, V. H. Payne, E. J. Mlawer, G. Uymin, M. W. Shephard, K. E. Cady-Pereira, J. S. Delamere, and J.-L. Moncet
Atmos. Chem. Phys., 13, 6687–6711, https://doi.org/10.5194/acp-13-6687-2013, https://doi.org/10.5194/acp-13-6687-2013, 2013
J. M. Wang, J. G. Murphy, J. A. Geddes, C. L. Winsborough, N. Basiliko, and S. C. Thomas
Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, https://doi.org/10.5194/bg-10-4371-2013, 2013
I. Cheng, L. Zhang, P. Blanchard, J. Dalziel, and R. Tordon
Atmos. Chem. Phys., 13, 6031–6048, https://doi.org/10.5194/acp-13-6031-2013, https://doi.org/10.5194/acp-13-6031-2013, 2013
G. Kos, A. Ryzhkov, A. Dastoor, J. Narayan, A. Steffen, P. A. Ariya, and L. Zhang
Atmos. Chem. Phys., 13, 4839–4863, https://doi.org/10.5194/acp-13-4839-2013, https://doi.org/10.5194/acp-13-4839-2013, 2013
D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran
Geosci. Model Dev., 6, 327–344, https://doi.org/10.5194/gmd-6-327-2013, https://doi.org/10.5194/gmd-6-327-2013, 2013
C. R. Lonsdale, R. G. Stevens, C. A. Brock, P. A. Makar, E. M. Knipping, and J. R. Pierce
Atmos. Chem. Phys., 12, 11519–11531, https://doi.org/10.5194/acp-12-11519-2012, https://doi.org/10.5194/acp-12-11519-2012, 2012
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Tropospheric ozone precursors: global and regional distributions, trends, and variability
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska during ALPACA-2022
Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes
The impact of multi-decadal changes in VOC speciation on urban ozone chemistry: a case study in Birmingham, United Kingdom
Technical note: Challenges in detecting free tropospheric ozone trends in a sparsely sampled environment
Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide
The impact of gaseous degradation on the gas–particle partitioning of methylated polycyclic aromatic hydrocarbons
Technical note: An assessment of the performance of statistical bias correction techniques for global chemistry–climate model surface ozone fields
Opinion: Challenges and needs of tropospheric chemical mechanism development
A better representation of volatile organic compound chemistry in WRF-Chem and its impact on ozone over Los Angeles
High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills
Summertime tropospheric ozone source apportionment study in the Madrid region (Spain)
CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data
Constraining long-term NOx emissions over the United States and Europe using nitrate wet deposition monitoring networks
Analysis of an intense O3 pollution episode on the Atlantic coast of the Iberian Peninsula using photochemical modeling: characterization of transport pathways and accumulation processes
Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK
Source analyses of ambient VOCs considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
MIXv2: a long-term mosaic emission inventory for Asia (2010–2017)
The Atmospheric Oxidizing Capacity in China: Part 2. Sensitivity to emissions of primary pollutants
Process Analysis of Elevated Concentrations of Organic Acids at Whiteface Mountain, New York
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O. T. Pye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1680, https://doi.org/10.5194/egusphere-2024-1680, 2024
Short summary
Short summary
Here, we develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry representation, we then estimate the cancer risk in the contiguous US from exposure to ambient formaldehyde and estimate 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, Peter Effertz, Gary Morris, and Brian C. McDonald
Atmos. Chem. Phys., 24, 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, https://doi.org/10.5194/acp-24-6197-2024, 2024
Short summary
Short summary
A great majority of observational trend studies of free tropospheric ozone use sparsely sampled ozonesonde and aircraft measurements as reference data sets. A ubiquitous assumption is that trends are accurate and reliable so long as long-term records are available. We show that sampling bias due to sparse samples can persistently reduce the trend accuracy, and we highlight the importance of maintaining adequate frequency and continuity of observations.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Fu-Jie Zhu, Zi-Feng Zhang, Li-Yan Liu, Pu-Fei Yang, Peng-Tuan Hu, Geng-Bo Ren, Meng Qin, and Wan-Li Ma
Atmos. Chem. Phys., 24, 6095–6103, https://doi.org/10.5194/acp-24-6095-2024, https://doi.org/10.5194/acp-24-6095-2024, 2024
Short summary
Short summary
Gas–particle (G–P) partitioning is an important atmospheric behavior for semi-volatile organic compounds (SVOCs). Diurnal variation in G–P partitioning of methylated polycyclic aromatic hydrocarbons (Me-PAHs) demonstrates the possible influence of gaseous degradation; the enhancement of gaseous degradation (1.10–5.58 times) on G–P partitioning is verified by a steady-state G–P partitioning model. The effect of gaseous degradation on G–P partitioning of (especially light) SVOCs is important.
Christoph Staehle, Harald E. Rieder, Arlene M. Fiore, and Jordan L. Schnell
Atmos. Chem. Phys., 24, 5953–5969, https://doi.org/10.5194/acp-24-5953-2024, https://doi.org/10.5194/acp-24-5953-2024, 2024
Short summary
Short summary
Chemistry–climate models show biases compared to surface ozone observations and thus require bias correction for impact studies and the assessment of air quality changes. We compare the performance of commonly used correction techniques for model outputs available via CMIP6. While all methods can reduce model biases, better results are obtained from more complex approaches. Thus, our study suggests broader use of these techniques in studies seeking to inform air quality management and policy.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William Stockwell, Luc Vereecken, and Tim Wallington
EGUsphere, https://doi.org/10.5194/egusphere-2024-1316, https://doi.org/10.5194/egusphere-2024-1316, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes of the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
Atmos. Chem. Phys., 24, 5069–5091, https://doi.org/10.5194/acp-24-5069-2024, https://doi.org/10.5194/acp-24-5069-2024, 2024
Short summary
Short summary
We quantify 2019 methane emissions in the contiguous US (CONUS) at a ≈ 25 km × 25 km resolution using satellite methane observations. We find a 13 % upward correction to the 2023 US Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) for 2019, with large corrections to individual states, urban areas, and landfills. This may present a challenge for US climate policies and goals, many of which target significant reductions in methane emissions.
David de la Paz, Rafael Borge, Juan Manuel de Andrés, Luis Tovar, Golam Sarwar, and Sergey L. Napelenok
Atmos. Chem. Phys., 24, 4949–4972, https://doi.org/10.5194/acp-24-4949-2024, https://doi.org/10.5194/acp-24-4949-2024, 2024
Short summary
Short summary
This source apportionment modeling study shows that around 70 % of ground-level O3 in Madrid (Spain) is transported from other regions. Nonetheless, emissions from local sources, mainly road traffic, play a significant role, especially under atmospheric stagnation. Local measures during those conditions may be able to reduce O3 peaks by up to 30 % and, thus, lessen impacts from high-O3 episodes in the Madrid metropolitan area.
Audrey Fortems-Cheiney, Gregoire Broquet, Elise Potier, Robin Plauchu, Antoine Berchet, Isabelle Pison, Hugo Denier van der Gon, and Stijn Dellaert
Atmos. Chem. Phys., 24, 4635–4649, https://doi.org/10.5194/acp-24-4635-2024, https://doi.org/10.5194/acp-24-4635-2024, 2024
Short summary
Short summary
We have estimated the carbon monixide (CO) European emissions from satellite observations of the MOPITT instrument at the relatively high resolution of 0.5° for a period of over 10 years from 2011 to 2021. The analysis of the inversion results reveals the challenges associated with the inversion of CO emissions at the regional scale over Europe.
Amy Christiansen, Loretta J. Mickley, and Lu Hu
Atmos. Chem. Phys., 24, 4569–4589, https://doi.org/10.5194/acp-24-4569-2024, https://doi.org/10.5194/acp-24-4569-2024, 2024
Short summary
Short summary
In this work, we provide an additional constraint on emissions and trends of nitrogen oxides using nitrate wet deposition (NWD) fluxes over the United States and Europe from 1980–2020. We find that NWD measurements constrain total NOx emissions well. We also find evidence of NOx emission overestimates in both domains, but especially over Europe, where NOx emissions are overestimated by a factor of 2. Reducing NOx emissions over Europe improves model representation of ozone at the surface.
Eduardo Torre-Pascual, Gotzon Gangoiti, Ana Rodríguez-García, Estibaliz Sáez de Cámara, Joana Ferreira, Carla Gama, María Carmen Gómez, Iñaki Zuazo, Jose Antonio García, and Maite de Blas
Atmos. Chem. Phys., 24, 4305–4329, https://doi.org/10.5194/acp-24-4305-2024, https://doi.org/10.5194/acp-24-4305-2024, 2024
Short summary
Short summary
We present an analysis of an intense air pollution episode of tropospheric ozone (O3) along the Atlantic coast of the Iberian Peninsula, incorporating both measured and simulated parameters. Our study extends beyond surface-level factors to include altitude-related parameters. These episodes stem from upper-atmosphere O3 accumulation in preceding days, transported to surface layers, causing rapid O3 concentration increase.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
EGUsphere, https://doi.org/10.5194/egusphere-2024-916, https://doi.org/10.5194/egusphere-2024-916, 2024
Short summary
Short summary
Reactive loss of VOCs is a long-term issue yet to be resolved in VOC source analyses. This review assesses the common methods and existing issues of reducing losses, impacts of losses, and sources in current source analyses. We provided a potential supporting role in solving the issues of VOC conversion. Source analyses of consumed VOCs produced by reactions for O3 and secondary organic aerosols can play an important role in effective prevention and control of atmospheric secondary pollution.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-693, https://doi.org/10.5194/egusphere-2024-693, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for conditions of winter and summer as representative. The study provides insights into the further air quality control in China with reduced primary emissions.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
EGUsphere, https://doi.org/10.5194/egusphere-2024-715, https://doi.org/10.5194/egusphere-2024-715, 2024
Short summary
Short summary
This work uses WRF-Chem and chemical box modeling to study the gas and aqueous phase production of organic acid concentrations measured in cloud water the summit of Whiteface Mountain on July 1st, 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Cited articles
Aneja, V., Bunton, B., Walker, J., and Malik, B.: Measurement and analysis of
atmospheric ammonia emissions from anaerobic lagoons, Atmos. Environ., 35,
1949–1958, https://doi.org/10.1016/S1352-2310(00)00547-1, 2001. a, b
Asman, W. A. H., Sutton, M. A., and Schjorring, J. K.: Ammonia: emission,
atmospheric transport and deposition, New Phytol., 139, 27–48,
https://doi.org/10.1046/j.1469-8137.1998.00180.x, 1998. a, b
Ayres, J., Bittman, S., Girdhar, S., Sheppard, S., Niemi, D., Ratte, D., and
Smith, P.: Chap. 5: Sources of Ammonia Emissions, in: The 2008 Canadian
Atmospheric Assessment of Agricultural Ammonia, Environment and Climate
Change Canada, Gatineau, QC, Canada, 2009. a
Bash, J. O., Walker, J. T., Katul, G. G., Jones, M. R., Nemitz, E., and
Robarge, W. P.: Estimation of In-Canopy Ammonia sources and sinks in a
fertilized Zea mays field, Environ. Sci. Technol., 44, 1683–1689,
https://doi.org/10.1021/es9037269, 2010. a
Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., and Pleim, J. E.:
Evaluation of a regional air-quality model with bidirectional NH3 exchange
coupled to an agroecosystem model, Biogeosciences, 10, 1635–1645,
https://doi.org/10.5194/bg-10-1635-2013, 2013. a
Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman,
K. W., Sander, S. P., Fisher, B. M., Payne, V. H., Luo, M., Osterman, G. B.,
and Worden, J. R.: First satellite observations of lower tropospheric ammonia
and methanol, Geophys. Res. Lett., 35, L09801, https://doi.org/10.1029/2008GL033642,
2008. a
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in
the atmosphere: a review on emission sources, atmospheric chemistry and
deposition on terrestrial bodies, Environ. Sci. Pollut. R., 20,
8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. a, b, c
Biswas, H., Catterjee, A., Mukhopadhya, S. K., De, T. K., Sen, S., and Jana,
T. K.: Estimation of ammonia exchange at the land ocean boundary condition of
Sundarban mangrove, northeast coast of Bay of Bengal, India, Atmos.
Environ., 39, 4489–4499, https://doi.org/10.1016/j.atmosenv.2005.03.041, 2005. a
Bittman, S., Ayres, J., S. Sheppard, S., and Girdhar, S.: Chapter 4: Emission
Inventory Development, in: The 2008 Canadian Atmospheric Assessment of
Agricultural Ammonia, Environment and Climate Change Canada, Gatineau, QC,
Canada, 2008. a
Booth, M. S., Stark, J. M., and Rastetter, E.: Controls on nitrogen cycling in
terrestrial ecosystems: a synthetic analysis of literature data, Ecol.
Monogr., 75, 139–157, 2005. a
Bouwman, A., Lee, D. S., Asman, W. A. H., Dentener, F. J., van der Hoek, K. W.,
and Olivier, J. G. J.: A global high-resolution emission inventory for
ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97GB02266,
1997. a
Buehner, M., Morneau, J., and Charette, C.: Four-dimensional ensemble-variational data assimilation for global deterministic weather
prediction, Nonlin. Processes Geophys., 20, 669–682, https://doi.org/10.5194/npg-20-669-2013, 2013. a
Buehner, M., McTaggart-Cowan, R., Beaulne, A., Charette, C., Garand, L.,
Heilliette, S., Lapalme, E., Laroche, S. S. R. M., Morneau, J., and Zadra,
A.: Implementation of Deterministic Weather Forecasting Systems based on
Ensemble-Variational Data Assimilation at Environment Canada. Part I: The
Global System, Mon. Weather Rev., 143, 2532–2559,
https://doi.org/10.1175/MWR-D-14-00354.1, 2015. a
Bytnerowicz, A., Fraczek, W., Schilling, S., and Alexander, D.: Spatial and
temporal distribution of ambient nitric acid and ammonia in the Athabasca
Oil Sands Region, Alberta, J. Limnol., 69, 11–21,
https://doi.org/10.3274/JL10-69-S1-03, 2010. a, b
Carfrae, J. A., Sheppard, L. J., Raven, J., Stein, W., Leith, I. D., Theobald,
A., and Crossley, A.: Early effects of atmospheric ammonia deposition on
Calluna vulgaris (L.) hull growing on anombrotrophic peat bog, Water Air Soil Poll., 4, 229–239, https://doi.org/10.1007/s11267-004-3033-1, 2004. a
Caron, J.-F., Milewski, T., Buehner, M., Fillion, L., Reszka, M., Macpherson,
S., and St-James, J.: Implementation of deterministic weather forecasting
systems based on ensemble-variational data assimilation at Environment
Canada. Part II: The regional system, Mon. Weather Rev., 143, 2560–2580,
https://doi.org/10.1175/MWR-D-14-00353.1, 2015. a
Charpentier, A. D., Bergerson, J. A., and McLean, H. L.: Understanding the
Canadian oil sands industry's greenhouse gas emissions, Environ. Res.
Lett., 4, 1–11, https://doi.org/10.1088/1748-9326/4/1/014005, 2009. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra,
A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C.,
Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical
Cycles, in: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 465–570, 2013. a
Clair, T. A. and Percy, K. E.: Assessing forest health in the Athabasca Oil
Sands Region, Wbea technical report, Wood Buffalo Environmental Agency,
Alberta, 2015. a
Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.-F.:
Global ammonia distribution derived from infrared satellite observations,
Nat. Geosci., 2, L09801, https://doi.org/10.1038/ngeo551, 2009. a
Dragosits, U., Theobald, M., Place, C., Lord, E., Webb, J., Hill, J., ApSimon,
H., and Sutton, M.: Ammonia emission, deposition and impact assessment at the
field scale: a case study of sub-grid spatial variability, Environ. Pollut., 117, 147–158,
https://doi.org/10.1016/S0269-7491(01)00147-6, 2002. a
Ellis, R. A., Murphy, J. G., Markovic, M. Z., VandenBoer, T. C., Makar, P. A., Brook, J., and Mihele, C.:
The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met,
Atmos. Chem. Phys., 11, 133–145, https://doi.org/10.5194/acp-11-133-2011, 2011. a
Environment and Climate Change Canada: Canadian Environmental Sustainability
Indicators: Air Pollutant Emissions, Technical report, Environment and
Climate Change Canada, ECCC Public Inquiries Centre, 200 Sacre-Coeur boul.
Gatineau, QC, K1A 0H3,
available at: http://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=en&n=E79F4C12-1
(last access: 7 February 2018), 2016. a
Environment and Climate Change Canada: Criteria air contaminents, Tech. rep.,
Environment and Climate Change Canada and Canadian Council of Ministers of
the Environment,
available at: https://www.ec.gc.ca/air/default.asp?lang=En&n=7C43740B-1,
last access: 9 June 2017. a
Fangmeier, A., Hadwiger-Fangmeier, A., der Eerden, L. V., and Jäger, H.-J.:
Effects of atmospheric ammonia on vegetation-A review, Environ. Pollut., 86, 43–82,
https://doi.org/10.1016/0269-7491(94)90008-6, 1994. a
Farquhar, G. D., Firth, P. M., Wetselaar, R., and Weir, B.: On the Gaseous
Exchange of Ammonia between Leaves and the Environment Determination of the
Ammonia Compensation Point, Plant Physiol., 66, 710–714,
https://doi.org/10.1104/pp.66.4.710, 1980. a
Flechard, C. R. and Fowler, D.: Atmospheric ammonia at a moorland site. II:
Long term surface atmosphere micrometeorological flux measurements, Q. J.
Roy. Meteor. Soc., 124, 759–791, https://doi.org/10.1002/qj.49712454706, 1998. a
Fowler, D., Flechard, C. R., Sutton, M. A., and Storeton-West, R. L.: Long term
measurements of the land atmosphere exchange of ammonia over moorland, Atmos.
Environ., 32, 453–459, https://doi.org/10.1016/S1352-2310(97)00044-7, 1998. a
Fu, X., Wang, S. X., Rau, L. M., Pleim, J. E., Cooter, E., Bash, J. O., Benson,
V., and Hao, J. M.: Estimating NH3 emissiosn from agricultural
fertilizer application in China using the bi-directional CMAQ model
coupled to an agro-ecosystem model, Atmos. Chem. Phys., 15, 6637–6649,
https://doi.org/10.5194/acp-15-6637-2015, 2015. a
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C.,
Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.:
Transformation of the nitrogen cycle: Recent trends, questions, and potential
solutions, Science, 320, 889–892, https://doi.org/10.1126/Science.1136674, 2008. a
Galperin, M. and Sofiev, M.: The long-range transport of ammonia and ammonium
in the Northern Hemisphere, Atmos. Environ., 32, 373–380,
https://doi.org/10.1016/S1352-2310(97)00045-9, 1998. a
Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U., Bianconi, R.,
Badia, A., Balzarini, A., Baró, R., Chemel, C., Curci, G., Forkel, R.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O.,
Knote, C., Kuenen, J., Makar, P., Manders-Groot, A., Neal, L., Pérez, J.,
Pirovano, G., Pouliot, G., José, R. S., Savage, N., Schröder, W.,
Sokhi, R., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke, R.,
Yahya, K., Zabkar, R. ., Zhang, Y., and Galmarini, S.: Assessment of the
MACC reanalysis and its influence as chemical boundary conditions for
regional air quality modeling in AQMEII-2, Atmos. Environ., 115, 371–388,
https://doi.org/10.1016/j.atmosenv.2015.02.034, 2015. a
Gong, W., Makar, P. A., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K. L.,
Macdonald, A. M., and Leaitch, W. R.: Modelling aerosol cloud meteorology
interaction: A case study with a fully coupled air quality model GEM-MACH,
Atmos. Environ., 115, 695–715, https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015. a, b
Gordon, M., Li, S.-M., Staebler, R., Darlington, A., Hayden, K., O'Brien, J.,
and Wolde, M.: Determining air pollutant emission rates based on mass balance
using airborne measurement data over the Alberta oil sands operations,
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, 2015. a, b
Hansen, K., Personne, E., Skjoth, C. A., Loubet, B., Ibrom, A., Jensen, R.,
Sorensen, L. L., and Boegh, E.: Investigating sources of measured
forest-atmosphere ammonia fluxes using two-layer bi-directional modelling,
Agr. Forest Meteorol., 237–238, 20–94,
https://doi.org/10.1016/j.agrformet.2017.02.008, 2017. a
Heilman, W. E., Liu, Y., Urbanski, S., Kovalev, V., and Mickler, R.: Wildland
fire emissions, carbon, and climate: Plume rise, atmospheric transport, and
chemistry processes, Forest Ecol. Manag., 317, 70–79,
https://doi.org/10.1016/j.foreco.2013.02.001, 2014. a, b
Hsu, Y.-M. and Clair, T. A.: Measurement of fine particulate matter
water-soluble inorganic species and precursor gases in the Alberta Oil Sands
Region using an improved semicontinuous monitor, J. Air Waste Manage., 65, 423–435, https://doi.org/10.1080/10962247.2014.1001088, 2015. a, b, c
Hsu, Y.-M., Bytnerowicz, A., Fenn, M. E., and Percy, K. E.: Atmospheric dry
deposition of sulfur and nitrogen in the Athabasca Oil Sands Region,
Alberta, Canada, Sci. Total Environ., 568, 285–295,
https://doi.org/10.1016/j.scitotenv.2016.05.205, 2016. a, b, c
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, in: IPCC Fifth Assessment Report, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013. a
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H.,
Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R.,
Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M.,
Tomlinson, J. M., Collins, D. R., Cubison, M. J., ,, Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R.,
Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y, Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T.,
Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of
Organic Aerosols in the Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009. a, b
Kelly, E. N., Short, J. W., Schindler, D. W., Hodson, P. V., Ma, M., Kwan,
A. K., and Fortin, B. L.: Oil sands development contributes polycyclic
aromatic compounds to the Athabasca River and its tributaries, P.
Natl. Acad. Sci. USA, 106, 22346–22351, https://doi.org/10.1073/pnas.0912050106, 2009. a
Kharol, S. K., Shephard, M. W., McLinden, C. A., Zhang, L., Sioris, C. E.,
O'Brien, J. M., Vet, R., Cady-Pereira, K. E., Hare, E., Siemons, J., and
Krotkov, N. A.: Dry deposition of reactive nitrogen from satellite
observations of ammonia and nitrogen dioxide over North America, Geophys.
Res. Lett., 2017GL075832, https://doi.org/10.1002/2017GL075832, 2017. a
Kirk, J. L., Muir, D. C. G., Gleason, A., Wang, X., Lawson, G., Frank, R. A.,
Lehnherr, I., and Wrona, F.: Atmospheric Deposition of Mercury and
Methylmercury to Landscapes and Waterbodies of the Athabasca Oil Sands
Region, Environ. Sci. Technol., 48, 7374–7383, https://doi.org/10.1021/es500986r,
2014. a
Krupa, S.: Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a
review, Environ. Pollut., 124, 179–221,
https://doi.org/10.1016/S0269-7491(02)00434-7, 2003. a, b
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z.,
Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D.,
Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M.,
Mahowald, N., Mc-Connell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.:
Historical (1850–2000) gridded anthropogenic and biomass burning emissions
of reactive gases and aerosols: methodology and application, Atmos. Chem.
Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a
Larkin, N. K., O'Neill, S. M., Solomon, R., Raffuse, S., Strand, T.,
Sullivan, D., Krull, C., Rorig, M., Peterson, J., and Ferguson, S. A.: The
BlueSky smoke modeling framework, Int. J. Wildland Fire, 18, 906–920,
https://doi.org/10.1071/WF07086, 2009. a
Lee, C. J., Martin, R. V., Henze, D. K., Brauer, M., Cohen, A., and van
Donkelaar, A.: Response of Global particulate matter related mortality to
changes in local precursor emissions, Environ. Sci. Technol., 49,
4335–4344, https://doi.org/10.1021/acs.est.5b00873, 2015. a
Li, S.-M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D., Wang, D.,
Hayden, K., Darlington, A., Gordon, M., Staebler, R., Makar, P. A., Stroud,
C. A., McLaren, R., Liu, P. S. K., O'Brien, J., Mittermeier, R. L., Zhang,
J., Marson, G., Cober, S. G., Wolde, M., and Wentzell, J. J. B.: Differences
between measured and reported volatile organic compound emissions from oil
sands facilities in Alberta, Canada, P. Nat. Acad. Sci. USA,
114, E3756–E3765, https://doi.org/10.1073/pnas.1617862114, 2017. a, b
Liggio, J., Li, S.-M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A.,
Drollette, B. D., Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S. G.,
Wang, D., O'Brien, J., Mittermeier, R. L., Brook, J. R., Lu, G., Staebler,
R. M., Han, Y., Tokarek, T. W., Osthoff, H. D., Makar, P. A., Zhang, J.,
L. Plata, D., and Gentner, D. R.: Oil sands operations as a large source of
secondary organic aerosols, Nature, 534, 91–94, https://doi.org/10.1038/nature17646,
2016. a, b, c
Makar, P., Bouchet, V. S., and Nenes, A.: Inorganic chemistry calculations
using HETV – a vectorized solver for the SO -NO -NH
system based on the ISORROPIA Algorithms, Atmos. Environ., 37, 2279–2294,
https://doi.org/10.5194/acp-9-7183-2009, 2003. a
Makar, P. A., Moran, M. D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., Davignon, D., Crevier, L.-P., and Bouchet, V. S.:
Modelling the impacts of ammonia emissions reductions on North American air quality, Atmos. Chem. Phys., 9, 7183–7212,
https://doi.org/10.5194/acp-9-7183-2009, 2009. a, b
Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y.,
Curci, G., Zabkar, R.,
Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P.,
Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero,
P., Langer, M., Moran, M., Pabla, B., Pérez, J., Pirovano, G., José,
R. S., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks
between air pollution and weather, part 2: Effects on chemistry, Atmos.
Environ., 115, 499–526, https://doi.org/10.1016/j.atmosenv.2014.10.021,
2015a. a, b
Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G.,
Zabkar, R., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung,
P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J.,
Pirovano, G., José, R. S., Tuccella, P., Werhahn, J., Zhang, J., and
Galmarini, S.: Feedbacks between air pollution and weather, part 1: Effects
on weather, Atmos. Environ., 115, 442–469,
https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015b. a, b
Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y., Zhang, J.,
Wong, I., Hayden, K., Li, S. M., Kirk, J., Scott, K., Moran, M. D.,
Robichaud, A., Cathcart, H., Baratzehah, P., Pabla, B., Cheung, P., Zheng,
Q., and Jeffries, D. S.: Estimates of exceedances of critical loads for
acidifying deposition in Alberta and Saskatchewan, Atmos. Chem. Phys.
Discuss., under review, 2018. a, b, c
Markovic, M. Z., VandenBoer, T. C., and Murphy, J. G.: Characterization and
optimization of an online system for the simultaneous measurement of
atmospheric water-soluble constituents in the gas and particle phases, J.
Environ. Monitor., 14, 1872–1884, 2012. a
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of
bi-directional ammonia exchange between vegetation and the atmosphere, Atmos.
Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010. a, b
McCalley, C. K. and Sparks, J. P.: Controls over nitric oxide and ammonia
emissions from Mojave Desert soils, Oecologia, 156, 871–881,
https://doi.org/10.1007/s00442-008-1031-0, 2008. a
Moran, M., Menard, S., Gravel, S., Pavlovic, R., and Anselmo, D.: RAQDPS
Versions 1.5.0 and 1.5.1: Upgrades to the CMC Operational Regional Air
Quality Deterministic Prediction System Released in October 2012 and
February 2013, Technical report, Canadian Meteorological Centre, Canadian
Meteorological Centre, Dorval, Quebec, 2013. a, b
Moran, M., Zheng, Q., Zhang, J., and Pavlovic, R.: RAQDPS Version 013:
Upgrades to the CMC Operational Regional Air Quality Deterministic Prediction
System Released in June 2015, Technical report, Canadian Meteorological
Centre, Canadian Meteorological Centre, Dorval, Quebec, 2015. a
Moran, M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W.,
Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur, A., and Sassi, M.:
Particulate-matter forecasting with GEM-MACH15, a new Canadian
air-quality forecast model, in: Air pollution modelling and its application
XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht,
289–292, 2010. a, b, c
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010. a
Murano, K., Mukai, H., Hatakeyama, S., Oishi, O., Utsunomiya, A., and
Shimohara, T.: Wet deposition of ammonium and atmospheric distribution of
ammonia and particulate ammonium in Japan, Environ. Pollut., 102, 321–326, https://doi.org/10.1016/S0269-7491(98)80050-X, 1998. a
Nemitz, E., Sutton, M. A., Schjoerring, J. K., Husted, S., and Wyers, G. P.:
Resistance modelling of ammonia exchange over oilseed rape, Agr. Forest
Meteorol., 105, 405–425, https://doi.org/10.1016/S0168-1923(00)00206-9, 2000. a, b
Nemitz, E., Milford, C., and Sutton, M. A.: A two-layer canopy compensation
point model for describing bi-directional biosphere-atmosphere exchange of
ammonia, Q. J. Roy. Meteor. Soc., 127, 815–833,
https://doi.org/10.1002/qj.49712757306, 2001. a
Nenes, A., Pilinis, C., and Pandis, S.: ISORROPIA: A New Thermodynamic Model
for Multiphase Multicomponent Inorganic Aerosols, Aquat. Geochem., 4,
123–152, https://doi.org/10.1023/A:1009604003981, 1998. a
Olivier, J., Bouwman, A., der Hoek, K. V., and Berdowski, J.: Global air
emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990,
Environ. Pollut., 102, 135–148,
https://doi.org/10.1016/S0269-7491(98)80026-2, 1998. a
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural
and transboundary pollution influences on sulfate-nitrate-ammonium aerosols
in the United States: Implications for policy, J. Geophys. Res., 109,
D15204, https://doi.org/10.1029/2003JD004473, 2004. a
Paugam, R., Wooster, M., Freitas, S., and Val Martin, M.: A review of
approaches to estimate wildfire plume injection height within large-scale
atmospheric chemical transport models, Atmos. Chem. Phys., 16, 907–925,
https://doi.org/10.5194/acp-16-907-2016, 2016. a, b
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze,
D. K.: Ammonia emissions in the United States, European Union, and China
derived by high-resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory (MASAGE NH3), J.
Geophys. Res., 119, 4343–4364, https://doi.org/10.1002/2013JD021130, 2014. a
Pavlovic, R., Chen, J., Anderson, K., Moran, M., Beaulieu, P.-A., Davignon, D.,
and Cousineau, S.: The FireWork air quality forecast system with
near-real-time biomass burning emissions: Recent developments and evaluation
of performance for the 2015 North American wildfire season, J. Air Waste
Manage. Assoc., 66, 819–841, https://doi.org/10.1080/10962247.2016.1158214, 2016. a, b
Pleim, J. E., Bash, J. O., Walker, J. T., and Cooter, E. J.: Development and
evaluation of an ammonia bidirectional flux parameterization for air quality
models, J. Geophys. Res., 118, 3794–3806, https://doi.org/10.1002/jgrd.50262, 2013. a, b, c, d
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary
mortality, and long-term exposure to fine particulate air pollution, JAMA,
287, 1132–1141, https://doi.org/10.1001/jama.287.9.1132, 2002. a
Robichaud, A.: Statistical links between meteorological factors and
tropospheric ozone levels at the Duchesnay forest site, Climat, 12, 31–57,
1994. a
Robichaud, A. and Lin, C. A.: The linear steady response of a stratified
baroclinic atmosphere to elevated diabatic forcing, Atmos. Ocean, 29,
619–635, https://doi.org/10.1080/07055900.1991.9649421, 1991. a
Rogers, C. D.: Inverse methods for atmospheric Sounding: Theory and Practice,
World Sci., Hackensack, NJ, 2000. a
Rooney, R. C., Bayley, S. E., and Schindler, D. W.: Oil sands mining and
reclamation cause massive loss of peatland and stored carbon, P. Natl.
Acad. Sci. USA, 109, 4933–4937, https://doi.org/10.1073/pnas.1117693108, 2012. a
Shephard, M. W. and Cady-Pereira, K. E.: Cross-track Infrared Sounder (CrIS)
satellite observations of tropospheric ammonia, Atmos. Meas. Techn., 8,
1323–1336, https://doi.org/10.5194/amt-8-1323-2015, 2015. a, b
Shephard, M. W., Cady-Pereira, K. E., Luo, M., Henze, D. K., Pinder, R. W.,
Walker, J. T., Rinsland, C. P., Bash, J. O., Zhu, L., Payne, V. H., and
Clarisse, L.: TES ammonia retrieval strategy and global observations of the
spatial and seasonal variability of ammonia, Atmos. Chem. Phys., 11,
10743–10763, https://doi.org/10.5194/acp-11-10743-2011, 2011. a
Shephard, M. W., McLinden, C. A., Cady-Pereira, K. E., Luo, M., Moussa, S. G.,
Leithead, A., Liggio, J., Staebler, R. M., Akingunola, A., Makar, P., Lehr,
P., Zhang, J., Henze, D. K., Millet, D. B., Bash, J. O., Zhu, L., Wells,
K. C., Capps, S. L., Chaliyakunnel, S., Gordon, M., Hayden, K., Brook, J. R.,
Wolde, M., and Li, S.-M.: Tropospheric Emission Spectrometer (TES)
satellite observations of ammonia, methanol, formic acid, and carbon monoxide
over the Canadian oil sands: validation and model evaluation, Atmos. Meas.
Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, 2015. a, b, c, d, e, f, g, h, i, j, k, l
Shinozuka, Y., Redemann, J., Livingston, J. M., Russell, P. B., Clarke, A. D.,
Howell, S. G., Freitag, S., O'Neill, N. T., Reid, E. A., Johnson, R.,
Ramachandran, S., McNaughton, C. S., Kapustin, V. N., Brekhovskikh, V.,
Holben, B. N., and McArthur, L. J. B.: Airborne observation of aerosol
optical depth during ARCTAS: vertical profiles, inter-comparison and
fine-mode fraction, Atmos. Chem. Phys., 11, 3673–3688,
https://doi.org/10.5194/acp-11-3673-2011, 2011. a
Stensland, G. J., Bowersox, V. C., Larson, B., and Claybrooke, R. D.:
Comparison of Ammonium in USA Wet Deposition to Ammonia emission estimates,
technical report, Illinois State Water Survey, 2204 Griffith Drive,
Champaign, IL, 61820,
available at: https://www3.epa.gov/ttn/chief/conference/ei10/ammonia/stensland.pdf (last access: 7 February 2018), 2000. a
Sutton, M., Milford, C., Dragosits, U., Place, C., Singles, R., Smith, R.,
Pitcairn, C., Fowler, D., Hill, J., ApSimon, H., Ross, C., Hill, R., Jarvis,
S., Pain, B., Phillips, V., Harrison, R., Moss, D., Webb, J., Espenhahn, S.,
Lee, D., Hornung, M., Ullyett, J., Bull, K., Emmett, B., Lowe, J., and Wyers,
G.: Dispersion, deposition and impacts of atmospheric ammonia: quantifying
local budgets and spatial variability, Environ. Pollut., 102, 349–361, https://doi.org/10.1016/S0269-7491(98)80054-7, 1998. a
Sutton, M. A., Fowler, D., and Moncrieff, J. B.: The Exchange of Atmospheric
Ammonia with Vegetated Surfaces .1. Unfertilized Vegetation, Q. J. Roy.
Meteor. Soc., 119, 1023–1045, https://doi.org/10.1002/qj.49711951309, 1993. a
Sutton, M. A., Schjorring, J. K., and Wyers, G. P.: Plant Atmosphere Exchange
of Ammonia, Philos. T. R. Soc. A., 351, 261–276,
1995. a
Urbanski, S.: Wildland fire emissions, carbon, and climate: Emission factors,
Forest Ecol. Manag., 317, 51–60,
https://doi.org/10.1016/j.foreco.2013.05.045, 2014. a, b, c
Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux,
C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.: Global distributions,
time series and error characterization of atmospheric ammonia (NH3) from
IASI satellite observations, Atmos. Chem. Phys., 14, 2905–2922,
https://doi.org/10.5194/acp-14-2905-2014, 2014. a
Vile, M. A., Kelman Wieder, R., Živković, T., Scott, K. D., Vitt,
D. H., Hartsock, J. A., Iosue, C. L., Quinn, J. C., Petix, M., Fillingim,
H. M., Popma, J. M. A., Dynarski, K. A., Jackman, T. R., Albright, C. M., and
Wykoff, D. D.: N2-fixation by methanotrophs sustains carbon and nitrogen
accumulation in pristine peatlands, Biogeochemistry, 121, 317–328,
https://doi.org/10.1007/s10533-014-0019-6, 2014. a
Vitt, D. H.: Nitrogen addition experiments in boreal ecosystems: understanding
the fate of atmospheric deposited nitrogen in order to determine nitrogen
critical loads, Cema report, Wood Buffalo Environmental Agency, Alberta,
2016. a
Wen, D., Zhang, L., Lin, J. C., Vet, R., and Moran, M. D.: An evaluation of
ambient ammonia concentrations over sourthern Ontario simulated with
different dry deposition schemes within STILT-Chem v0.8, Geosci. Model
Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, 2014. a, b, c, d
Wentworth, G. R., Murphy, J. G., Gregoire, P. K., Cheyne, C. A. L., Tevlin,
A. G., and Hems, R.: Soil-atmosphere exchange of ammonia in a
non-fertilized grassland: measured emission potentials and inferred fluxes,
Biogeosciences, 11, 5675–5686, https://doi.org/10.5194/bg-11-5675-2014, 2014. a
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
a
Wichink Kruit, R., van Pul, W., Sauter, F., van den Broek, M., Nemitz, E.,
Sutton, M., Krol, M., and Holtslag, A.: Modeling the surface-atmosphere
exchange of ammonia, Atmos. Environ., 44, 945–957,
https://doi.org/10.1016/j.atmosenv.2009.11.049, 2010. a, b, c
Wieder, R. K., Vile, M. A., Albright, C. M., Scott, K. D., Vitt, D. H., Quinn,
J. C., and Burke-Scoll, M.: Effects of altered atmospheric nutrient
deposition from Alberta oil sands development on Sphagnum fuscum growth and
C, N and S accumulation in peat, Biogeochemistry, 129, 1–19,
https://doi.org/10.1007/s10533-016-0216-6, 2016a. a
Wieder, R. K., Vile, M. A., Scott, K. D., Albright, C. M., McMillen, K. J.,
Vitt, D. H., and Fenn, M. E.: Differential effects of high atmospheric N and
S deposition on bog plant/lichen tissue and porewater chemistry across the
Athabasca Oil Sands Region, Environ. Sci. Technol., 50, 12630–12640,
https://doi.org/10.1021/acs.est.6b03109, 2016b. a
Wu, Y., Walker, J., Schwede, D., Peters-Lidard, C., Dennis, R., and Robarge,
W.: A new model of bi-directional ammonia exchange between the atmosphere and
biosphere: Ammonia stomatal compensation point, Agr. Forest Meterol., 149,
263–280, https://doi.org/10.1016/j.agrformet.2008.08.012, 2009. a
Zhang, L., Moran, M., Makar, P., Brook, J., and Gong, S.: Gaseous Dry
Deposition in AURAMS A Unified Regional Air-quality Modelling System, Atmos.
Environ., 36, 537–560, https://doi.org/10.1016/S1352-2310(01)00447-2, 2002. a
Zhang, L., Brook, J. R., and Vet, R.: A revised parametrization for gaseous dry
deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082,
https://doi.org/10.5194/acp-3-2067-2003, 2003. a
Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface
exchange of atmospheric ammonia: A review of measurements and a development
of a big-leaf model for applications in regional-scale air-quality models, J.
Geophys. Res., 115, D20310, https://doi.org/10.1029/2009JD013589, 2010. a, b, c, d, e, f, g
Zhu, L., Henze, D. K., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder,
R. W., Bash, J. O., and Jeong, G.-R.: Constraining U.S. ammonia emissions
using TES remote sensing observations and the GEOS-Chem adjoint model, J.
Geophys. Res., 118, 3355–3368, https://doi.org/10.1002/jgrd.50166, 2013. a
Zhu, L., Henze, D., Bash, J., Jeong, G.-R., Cady-Pereira, K., Shephard, M.,
Luo, M., Paulot, F., and Capps, S.: Global evaluation of ammonia
bidirectional exchange and livestock diurnal variation schemes, Atmos. Chem.
Phys., 15, 12823–12843, https://doi.org/10.5194/acp-15-12823-2015, 2015. a, b, c, d, e, f, g, h
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Using a modified air quality forecasting model, we have found that a significant fraction...
Altmetrics
Final-revised paper
Preprint