Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13429-2018
https://doi.org/10.5194/acp-18-13429-2018
Research article
 | 
21 Sep 2018
Research article |  | 21 Sep 2018

Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer

Konrad Kandler, Kilian Schneiders, Martin Ebert, Markus Hartmann, Stephan Weinbruch, Maria Prass, and Christopher Pöhlker

Related authors

Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content
Claudia Di Biagio, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, Sophie Nowak, Meinrat O. Andreae, Konrad Kandler, Thuraya Saeed, Stuart Piketh, David Seibert, Earle Williams, and Jean-François Doussin
Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019,https://doi.org/10.5194/acp-19-15503-2019, 2019
Short summary
Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541–579, https://doi.org/10.5194/gmd-12-541-2019,https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024,https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024,https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024,https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024,https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024,https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary

Cited articles

Agresti, A. and Coull, B. A.: Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions, Am. Stat., 52, 119–126, https://doi.org/10.2307/2685469, 1998. 
Aluko, O. and Noll, K. E.: Deposition and Suspension of Large, Airborne Particles, Aerosol Sci. Tech., 40, 503–513, 2006. 
Andreae, M. O.: Climatic effects of changing atmospheric aerosol levels, in: Future climates of the world: a modelling perspective, edited by: Henderson-Sellers, A., World Survey of Climatology, Elsevier, Amsterdam, the Netherlands, 347–398, 1995. 
Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Grieken, R. V., and Maenhaut, W.: Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols, Science, 232, 1620–1623, 1986. 
Andreae, M. O., Elbert, W., Gabriel, R., Johnson, D. W., Osborne, S., and Wood, R.: Soluble ion chemistry of the atmospheric aerosol and SO2 concentrations over the eastern North Atlantic during ACE-2, Tellus B, 52, 1066–1087, https://doi.org/10.3402/tellusb.v52i4.17087, 2000. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Aging of transported Saharan dust in the Caribbean was observed by electron microscopy, yielding size, chemical composition and mixing state for each individual particle. Models were developed for assessing mixing relevant for the atmosphere. Particles become internally mixed with sulfate during transport and sea salt in the Caribbean boundary layer. The mixing increases deposition velocity and dust cloud activation, and thus may impact on radiative and cloud nucleating properties.
Altmetrics
Final-revised paper
Preprint