Articles | Volume 17, issue 5
Atmos. Chem. Phys., 17, 3445–3452, 2017
https://doi.org/10.5194/acp-17-3445-2017
Atmos. Chem. Phys., 17, 3445–3452, 2017
https://doi.org/10.5194/acp-17-3445-2017

Research article 10 Mar 2017

Research article | 10 Mar 2017

An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

Klemens Hocke et al.

Related authors

Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020,https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020,https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Study of the dependence of long-term stratospheric ozone trends on local solar time
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020,https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
First measurements of tides in the stratosphere and lower mesosphere by ground-based Doppler microwave wind radiometry
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020,https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Diurnal cycle of short-term fluctuations of integrated water vapour above Switzerland
Klemens Hocke, Leonie Bernet, Jonas Hagen, Axel Murk, Matthias Renker, and Christian Mätzler
Atmos. Chem. Phys., 19, 12083–12090, https://doi.org/10.5194/acp-19-12083-2019,https://doi.org/10.5194/acp-19-12083-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Fifty years of balloon-borne ozone profile measurements at Uccle, Belgium: a short history, the scientific relevance, and the achievements in understanding the vertical ozone distribution
Roeland Van Malderen, Dirk De Muer, Hugo De Backer, Deniz Poyraz, Willem W. Verstraeten, Veerle De Bock, Andy W. Delcloo, Alexander Mangold, Quentin Laffineur, Marc Allaart, Frans Fierens, and Valérie Thouret
Atmos. Chem. Phys., 21, 12385–12411, https://doi.org/10.5194/acp-21-12385-2021,https://doi.org/10.5194/acp-21-12385-2021, 2021
Short summary
On the use of satellite observations to fill gaps in the Halley station total ozone record
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021,https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021,https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP)
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021,https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Indicators of Antarctic ozone depletion: 1979 to 2019
Greg E. Bodeker and Stefanie Kremser
Atmos. Chem. Phys., 21, 5289–5300, https://doi.org/10.5194/acp-21-5289-2021,https://doi.org/10.5194/acp-21-5289-2021, 2021
Short summary

Cited articles

Aura Validation Data Center (AVDC): Level-2 data, available at: http://avdc.gsfc.nasa.gov/, last access: 1 February 2017.
Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., and Manney, G. L.: Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004/2005, J. Geophys. Res.-Atmos., 118, 2673–2688, https://doi.org/10.1002/jgrd.50226, 2013.
Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, J.-F., Granier, C., and Tie, X. X.: MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description, J. Geophys. Res.-Atmos., 103, 28265–28289, https://doi.org/10.1029/98JD02397, 1998.
Dumitru, M. C., Hocke, K., Kämpfer, N., and Calisesi, Y.: Comparison and validation studies related to ground-based microwave observations of ozone in the stratosphere and mesosphere, J. Atmos. Solar Terr. Phys., 68, 745–756, 2006.
Flury, T., Hocke, K., Haefele, A., Kämpfer, N., and Lehmann, R.: Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming, J. Geophys. Res.-Atmos., 114, D18302, https://doi.org/10.1029/2009JD011940, 2009.
Download
Short summary
Observation and simulation show an Atlantic ozone streamer along the edge region of the polar vortex in the northern middle stratosphere during winter. The Atlantic streamer has wind speeds of about 100 m/s and turns equatorward at a vortex erosion region. We compare the fields of stratospheric ozone and water vapour from ground- and space-based microwave radiometry and SD-WACCM simulations for a better understanding of non-linear transport processes in the middle atmosphere.
Altmetrics
Final-revised paper
Preprint