Articles | Volume 16, issue 10
Atmos. Chem. Phys., 16, 6241–6261, 2016
https://doi.org/10.5194/acp-16-6241-2016
Atmos. Chem. Phys., 16, 6241–6261, 2016
https://doi.org/10.5194/acp-16-6241-2016

Research article 24 May 2016

Research article | 24 May 2016

Fast descent routes from within or near the stratosphere to the surface at Fukuoka, Japan, studied using 7Be measurements and trajectory calculations

Hisanori Itoh and Yukinori Narazaki

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020,https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
The “urban meteorology island”: a multi-model ensemble analysis
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020,https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020,https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020,https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary

Cited articles

Ambrose, J. L., Reidmiller, D. R., and Jaffe, D. A.: Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory, Atmos. Environ. 45, 5302–5315, 2011.
Añel, J. A., Antuña, J. C., de la Torre, L., Castanheira, J. M., and Gimeno, L.: Climatological features of global multiple tropopause events, J. Geophys. Res., 113, D00B08, https://doi.org/10.1029/2007JD009697, 2008.
Bezuglov, M. V., Malyshevsky, V. S., Fomin, G. V., Torgovkin, A. V., Shramenko, B. I., and Malykhina, T. V.: Photonuclear production of cosmogenic beryllium-7 in the terrestrial atmosphere, Phys. Rev. C, 86, 024609, https://doi.org/10.1103/PhysRevC.86.024609, 2012.
Bracci, A., Cristofanelli, P., Sprenger, M., Bonafe, U., Calzolari, F., Duchi, R., Laj, P., Marinoni, A., Roccato, F., E. Vuillermoz, E., and Bonasoni, P.: Transport of stratospheric air masses to the Nepal Climate Observatory-Pyramid (Himalaya; 5079 m MSL): A synoptic-scale investigation, J. Appl. Meteorol. Clim., 51, 1489–1507, 2012.
Buraeva, E. A., Davydov, M. G., Zorina, L. V., Malyshevskii, V. S., and Stasov, V. V.: Content of cosmogenic 7Be in the air layer at the ground at temperate latitudes, Atom Energy+, 102, 463–468, 2007.
Download
Short summary
By using high concentrations of 7Be as an indicator, we clarify fast descent routes from the stratosphere to Earth's surface in Japan. Most routes arise from high latitudes through the following processes: descent associated with a tropopause fold, southward movement with slow descent at the rear side of a strong trough, and strong descent at the south edge of the trough. The reason that high concentrations of 7Be occur most frequently in spring is explained.
Altmetrics
Final-revised paper
Preprint