Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3265-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-3265-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Upper tropospheric water vapour variability at high latitudes – Part 1: Influence of the annular modes
Christopher E. Sioris
CORRESPONDING AUTHOR
Department of Earth and Space Science and Engineering, York
University, 4700 Keele St., Toronto, ON, M3J
1P3, Canada
Jason Zou
Department of
Physics, University of Toronto, 60 St. George Street,
Toronto, ON, M5S 1A7, Canada
David A. Plummer
Canadian Centre for Climate Modelling
and Analysis, Environment Canada, Victoria, BC, Canada
Chris D. Boone
Department
of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON,
N2L 3G1, Canada
C. Thomas McElroy
Department of Earth and Space Science and Engineering, York
University, 4700 Keele St., Toronto, ON, M3J
1P3, Canada
Patrick E. Sheese
Department of
Physics, University of Toronto, 60 St. George Street,
Toronto, ON, M5S 1A7, Canada
Omid Moeini
Department of Earth and Space Science and Engineering, York
University, 4700 Keele St., Toronto, ON, M3J
1P3, Canada
Peter F. Bernath
Department
of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON,
N2L 3G1, Canada
Department of Chemistry & Biochemistry, Old
Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529,
USA
Related authors
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Viktoria F. Sofieva, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Michael Kiefer, Johanna Tamminen, Alexey Rozanov, Carlo Arosio, Nathaniel Livesey, Robert Damadeo, Patrick Sheese, Kaley A. Walker, Doug Degenstein, Daniel Zawada, Natalya A. Kramarova, and Arno Keppens
EGUsphere, https://doi.org/10.5194/egusphere-2025-2830, https://doi.org/10.5194/egusphere-2025-2830, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
For satellite measurements of atmospheric composition, the random uncertainty estimates provided by retrieval algorithms might be imperfect due to various approximations used in the retrievals or presence of unknown error sources. This paper presents an overview of the methods used for validation of random uncertainty estimates. All methods discussed in this study are categorized, and assumptions and limitations of each method are discussed.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elizabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Peter R. Colarco, Sandip Dhomse, Lola Falletti, Eric Fleming, Ben Johnson, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
Geosci. Model Dev., 18, 5487–5512, https://doi.org/10.5194/gmd-18-5487-2025, https://doi.org/10.5194/gmd-18-5487-2025, 2025
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model–observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goals of this activity: (1) to evaluate the climate model performance and (2) to understand the Earth system responses to this eruption.
Matthew Wyatt, Peter F. Bernath, Chris Boone, Léo Lavy, and Ryan Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3116, https://doi.org/10.5194/egusphere-2025-3116, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
An improved version (v.5.3) of Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) winds is now available. The wind speeds are determined by use of the Doppler effect. Using a better set of reference molecules to determine the Doppler effect as well as a new method for determining the heading angle (look direction) of the satellite has improved our wind speeds, which has been validated by other instruments. These winds can be used to improve atmospheric models.
Simone Tilmes, Ewa M. Bednarz, Andrin Jörimann, Daniele Visioni, Douglas E. Kinnison, Gabriel Chiodo, and David Plummer
Atmos. Chem. Phys., 25, 6001–6023, https://doi.org/10.5194/acp-25-6001-2025, https://doi.org/10.5194/acp-25-6001-2025, 2025
Short summary
Short summary
In this paper, we describe the details of a new multi-model intercomparison experiment to assess the effects of Stratospheric Aerosol Intervention (SAI) on stratospheric chemistry and dynamics and, therefore, ozone. Second, we discuss the advantages and differences of the more constrained experiment compared to fully interactive model experiments. This way, we advance the process-level understanding of the drivers of SAI-induced atmospheric responses.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, and David A. Plummer
Atmos. Chem. Phys., 25, 5199–5213, https://doi.org/10.5194/acp-25-5199-2025, https://doi.org/10.5194/acp-25-5199-2025, 2025
Short summary
Short summary
Observations from Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS) are used to examine global stratospheric water vapour trends for 2004–2021. The satellite measurements are used to quantify trend contributions arising from changes in tropical tropopause temperatures, general circulation patterns, and methane concentrations. While most of the observed trends can be explained by these changes, there remains an unaccounted-for and increasing source of water vapour in the lower mid-stratosphere at mid-latitudes, which is discussed.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
Atmos. Chem. Phys., 25, 4185–4209, https://doi.org/10.5194/acp-25-4185-2025, https://doi.org/10.5194/acp-25-4185-2025, 2025
Short summary
Short summary
We present a 17-year stratospheric age-of-air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age-of-air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Preprint withdrawn
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
Atmos. Meas. Tech., 18, 569–602, https://doi.org/10.5194/amt-18-569-2025, https://doi.org/10.5194/amt-18-569-2025, 2025
Short summary
Short summary
The MAESTRO instrument has been monitoring ozone and NO2 since February 2004. A new version of these data products has recently been released; however, these new products must be validated against other datasets to ensure their validity. This study presents such an assessment, using measurements from 11 satellite instruments to characterize the new MAESTRO products. In the stratosphere, good agreement is found for ozone and acceptable agreement is found for NO2 with these other datasets.
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
Atmos. Meas. Tech., 17, 6983–7005, https://doi.org/10.5194/amt-17-6983-2024, https://doi.org/10.5194/amt-17-6983-2024, 2024
Short summary
Short summary
Ozone measurements from the ACE-FTS satellite instrument have been compared to worldwide balloon-borne ozonesonde profiles using pairs of closely spaced profiles and monthly averaged profiles. ACE-FTS typically measures more ozone in the stratosphere by up to 10 %. The long-term stability of the ACE-FTS ozone data is good, exhibiting small (but non-significant) drifts of less than 3 % per decade in the stratosphere. Lower in the profiles, the calculated drifts are larger (up to 10 % per decade).
Selena Zhang, Susan Solomon, Chris D. Boone, and Ghassan Taha
Atmos. Chem. Phys., 24, 11727–11736, https://doi.org/10.5194/acp-24-11727-2024, https://doi.org/10.5194/acp-24-11727-2024, 2024
Short summary
Short summary
This paper investigates the vertical impacts of the anomalous 2023 Canadian wildfire season using multiple satellite instruments. Our results highlight that despite a record-breaking area burned, only a small amount of smoke managed to enter the stratosphere. This shows that the conditions for deep convection were rarely met in the 2023 wildfire season, suggesting that even a massive area burned is not necessarily an indicator of stratospheric perturbations.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024, https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary
Short summary
The MOPITT instrument has been monitoring carbon monoxide (CO) since March 2000. This dataset has been used for many applications; however, episodic emission events, which release large amounts of CO into the atmosphere, are a major source of uncertainty. This study presents a method for identifying these events by determining measurements that are unlikely to have typically arisen. The distribution and frequency of these flagged measurements in the MOPITT dataset are presented and discussed.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Marina Friedel, Gabriel Chiodo, Timofei Sukhodolov, James Keeble, Thomas Peter, Svenja Seeber, Andrea Stenke, Hideharu Akiyoshi, Eugene Rozanov, David Plummer, Patrick Jöckel, Guang Zeng, Olaf Morgenstern, and Béatrice Josse
Atmos. Chem. Phys., 23, 10235–10254, https://doi.org/10.5194/acp-23-10235-2023, https://doi.org/10.5194/acp-23-10235-2023, 2023
Short summary
Short summary
Previously, it has been suggested that springtime Arctic ozone depletion might worsen in the coming decades due to climate change, which might counteract the effect of reduced ozone-depleting substances. Here, we show with different chemistry–climate models that springtime Arctic ozone depletion will likely decrease in the future. Further, we explain why models show a large spread in the projected development of Arctic ozone depletion and use the model spread to constrain future projections.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022, https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
Short summary
Satellite observations are important for monitoring changes in atmospheric composition. Here we describe an improved version of the NO2 retrieval for the Optical Spectrograph and InfraRed Imager System. The resulting NO2 profiles are compared to those from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer and the Stratospheric Aerosol and Gas Experiment III on the International Space Station. All datasets agree within 20 % throughout the stratosphere.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Cited articles
Ambaum, M. H. P. and Hoskins, B. J.: The NAO troposphere–stratosphere
connection, J. Climate, 10, 1969–1978, 2002.
Bates, J. J. and Jackson, D. L.: Trends in upper-tropospheric humidity,
Geophys. Res. Lett., 28, 1695–1698, 2001.
Berk, A.: Voigt equivalent widths and spectral-bin single-line
transmittances: Exact expansions and the MODTRAN® 5
implementation, J. Quant. Spectrosc. Ra., 118, 102–120, 2013.
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M.,
Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R.,
DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J.,
Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe,
R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R.,
Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P.,
Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J.
J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A.,
Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric
Chemistry Experiment (ACE): mission overview, Geophys. Res. Lett., 32,
L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Bernstein, L. S., Berk, A., Acharya, P. K., Robertson, D. C., Anderson, G.
P., Chetwynd, J. H., and Kimball, L. M.: Very narrow band model calculations
of atmospheric fluxes and cooling rates, J. Atmos. Sci., 53, 2887–2904,
1996.
Boer, G. J., Fourest, S., and Yu, B.: The signature of the annular modes in
the moisture budget, J. Climate, 14, 3655–3665, 2001.
Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 retrievals for the
Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS),
in: The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation
Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Hampton,
Virginia, 103–127, 2013.
Brewer, A. W.: Evidence for a world circulation provided by the measurements
of helium and water vapour distribution in the stratosphere, Q. J. Roy.
Meteor. Soc., 75, 351–363, 1949.
Brown, L. R., Toth, R. A., and Dulick, M.: Empirical line parameters of
H216O near 0.94 µm: Positions, intensities and air-broadening
coefficients, J. Mol. Spectrosc., 212, 57–82, 2002.
Cai, M. and Ren, R.-C.: Meridional and downward propagation of atmospheric
circulation anomalies. Part I: Northern hemisphere cold season variability,
J. Atmos. Sci., 64, 1880–1901, 2007.
Carleer, M. R., Boone, C. D., Walker, K. A., Bernath, P. F., Strong, K.,
Sica, R. J., Randall, C. E., Vömel, H., Kar, J., Höpfner, M., Milz,
M., von Clarmann, T., Kivi, R., Valverde-Canossa, J., Sioris, C. E., Izawa,
M. R. M., Dupuy, E., McElroy, C. T., Drummond, J. R., Nowlan, C. R., Zou, J.,
Nichitiu, F., Lossow, S., Urban, J., Murtagh, D., and Dufour, D. G.:
Validation of water vapour profiles from the Atmospheric Chemistry Experiment
(ACE), Atmos. Chem. Phys. Discuss., 8, 4499–4559,
https://doi.org/10.5194/acpd-8-4499-2008, 2008.
Chen, M., Rood, R. R., and Read, W. G.: Seasonal variations of upper
tropospheric water vapor and high clouds observed from satellites, J.
Geophys. Res., 104, 6193–6197, 1999.
Del Genio, A. D., Kovari Jr., W., and Yao, M.-S.: Climatic implications of the
seasonal variation of upper troposphere water vapor, Geophys. Res. Lett.,
21, 2701–2704, 1994.
Dessler, A. E. and Sherwood, S. C.: A matter of humidity, Science, 323,
1020–1021, https://doi.org/10.1126/science.1171264, 2009.
Dessler, A. E., Hintsa, E. J., Weinstock, E. M., and Anderson, J. G., Chan,
K. R.: Mechanisms controlling water vapor in the lower stratosphere: “A tale
of two stratospheres”, J. Geophys. Res., 100, 23167–23172, 1995.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K.
H.: Stratospheric water vapor feedback, P. Natl. Acad. Sci. USA, 110,
8087–18091, 2013.
Devasthale, A., Tjernström, M., Caian, M., Thomas, M. A., Kahn, B. H.,
and Fetzer, E. J.: Influence of the Arctic Oscillation on the vertical
distribution of clouds as observed by the A-Train constellation of
satellites, Atmos. Chem. Phys., 12, 10535–10544,
https://doi.org/10.5194/acp-12-10535-2012, 2012.
Gettelman, A., Weinstock, E. M., Fetzer, E. J., Irion, F. W., Eldering, A.,
Richard, E. C., Rosenlof, K. H., Thompson, T. L., Pittman, J. V., Webster,
C. R., and Herman, R. L.: Validation of Aqua satellite data in the upper
troposphere and lower stratosphere with in situ aircraft instruments,
Geophys. Res. Lett., 31, L22107, https://doi.org/10.1029/2004GL020730, 2004.
Groves, D. G. and Francis, J. A.: Variability of the Arctic atmospheric
moisture budget from TOVS satellite data, J. Geophys. Res., 107, 4785,
https://doi.org/10.1029/2002JD002285, 2002.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 159–254,
2013.
Hegglin, M. I., Tegtmeier, S., Anderson, J., Froidevaux, L., Fuller, R.,
Funke, B., Jones, A., Lingenfelser, G., Lumpe, J., Pendlebury, D., Remsberg,
E., Rozanov, A., Toohey, M., Urban, J., von Clarmann, T., Walker, K. A.,
Wang, R., and Weigel, K.: SPARC Data Initiative: Comparison of water vapor
climatologies from international satellite limb sounders, J. Geophys. Res.-Atmos., 118, 11824–11846, https://doi.org/10.1002/jgrd.50752, 2013.
Herbin, H., Hurtmans, D., Clerbaux, C., Clarisse, L., and Coheur, P.-F.: H216O and HDO
measurements with IASI/MetOp, Atmos. Chem. Phys., 9, 9433–9447, https://doi.org/10.5194/acp-9-9433-2009, 2009.
Hess, P. G. and Lamarque, J.-F.: Ozone source attribution and its
modulation by the Arctic oscillation during spring months, J. Geophys. Res.,
112, D11303, https://doi.org/10.1029/2006JD007557, 2007.
Highwood, E. J., Hoskins, B. J., and Berrisford, P.: Properties of the
Arctic tropopause, Q. J. Roy. Meteorol. Soc., 126, 1515–1532, 2000.
Jakobson, E. and Vihma, T.: Atmospheric moisture budget in the Arctic based
on the ERA-40 reanalysis, Int. J. Climatol., 30, 2175–2194, 2010.
Lacis, A. A., Schmidt, G. A., Rind, D., and Ruedy, R. A.: Atmospheric CO2:
Principal control knob governing Earth's temperature, Science, 330, 356–359,
2010.
Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L.,
Froidevaux, L., Wu, D. L., Schwartz, M. J., Pumphrey, H. C., Jimenez, C.,
Nedoluha, G. E., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J.,
Fuller, R. A., Jarnot, R. F., Knosp, B. W., Pickett, H. M., Perun, V. S.,
Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W.,
Jucks, K. W., Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D.,
Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.:
Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor
and nitrous oxide measurements, J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724, 2007.
Laroche, S., Gauthier, P., St-James, J., and Morneau, J.: Implementation of a 3D
variational data assimilation system at the Canadian Meteorological Centre.
Part II: The regional analysis, Atmos. Ocean, 37, 281–307, 1999.
Larson, J., Zhou, Y., and Higgins, R. W.: Characteristics of landfalling
tropical cyclones in the United States and Mexico: Climatology and
interannual variability, J. Climate, 18, 1247–1262, 2005.
Li, Y., Thompson, D. W. J., Huang, Y., and Zhang, M.: Observed linkages between
the northern annular mode/North Atlantic Oscillation, cloud incidence, and
cloud radiative forcing, Geophys. Res. Lett., 41, 1681–1688,
https://doi.org/10.1002/2013GL059113, 2014.
Lumpe, J., Bevilacqua, R., Randall, C., Nedoluha, G., Hoppel, K., Russell,
J., Harvey, V. L., Schiller, C., Sen, B., Taha, G., Toon, G., and Vömel,
H.: Validation of Polar Ozone and Aerosol Measurement (POAM) III version 4
stratospheric water vapor, J. Geophys. Res., 111, D11301,
https://doi.org/10.1029/2005JD006763, 2006.
McElroy, C. T., Nowlan, C. R., Drummond, J. R., Bernath, P. F., Barton, D.
V., Dufour, D. G., Midwinter, C., Hall, R. B., Ogyu, A., Ullberg, A.,
Wardle, D. I., Kar, J., Zou, J., Nichitiu, F., Boone, C. D., Walker, K. A.,
and Rowlands, N.: The ACE-MAESTRO instrument on SCISAT: description,
performance, and preliminary results, Appl. Opt., 46, 4341–4356, 2007.
Mo, K. C.: Relationships between low-frequency variability in the southern
hemisphere and sea surface temperature anomalies, J. Climate, 13, 3599–3610,
2000.
Moss, A., Sica, R. J., McCullough, E., Strawbridge, K., Walker, K., and
Drummond, J.: Calibration and validation of water vapour lidar measurements
from Eureka, Nunavut, using radiosondes and the Atmospheric Chemistry
Experiment Fourier Transform Spectrometer, Atmos. Meas. Tech., 6, 741–749,
https://doi.org/10.5194/amt-6-741-2013, 2013.
Murray, F. W.: On the computation of saturation vapor pressure, J. Appl.
Meteorol., 6, 203–204, 1967.
Nedoluha, G. E., Bevilacqua, R. M., Hoppel, K. W., Lumpe, J. D., and Smit,
H.: Polar Ozone and Aerosol Measurement III measurements of water vapor in
the upper troposphere and lowermost stratosphere, J. Geophys. Res., 107,
ACH7-1–ACH7-10, https://doi.org/10.1029/2001JD000793, 2002.
Oman, L., Waugh, D. W., Pawson, S., Stolarski, R. S., and Nielsen, J. E.:
Understanding the changes of stratospheric water vapor in coupled
chemistry–climate model simulations, J. Atmos. Sci., 65, 3278–3291, 2008.
Prospero, J. M., Charlson, R. J., Mohnen, V., Jaenicke, R., Delany, C.,
Moyer, J., Zoller, W., and Rahn, K.: The atmospheric aerosol system: An
overview, Rev. Geophys., 21, 1607–1629, 1983.
Randel, W. J., Moyer, E., Park, M., Jensen, E., Bernath, P., Walker, K., and
Boone, C.: Global variations of HDO and HDO/H2O ratios in the upper
troposphere and lower stratosphere derived from ACE-FTS satellite
measurements, J. Geophys. Res., 117, D06303, https://doi.org/10.1029/2011JD016632, 2012.
Rydberg, B., Eriksson, P., Buehler, S. A., and Murtagh, D. P.: Non-Gaussian
Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour
from Odin-SMR measurements, Atmos. Meas. Tech., 2, 621–637,
https://doi.org/10.5194/amt-2-621-2009, 2009.
Shi, L. and Bates, J. J.: Three decades of intersatellite-calibrated
High-Resolution Infrared Radiation Sounder upper tropospheric water vapor, J.
Geophys. Res., 116, D04108, https://doi.org/10.1029/2010JD014847, 2011.
Sioris, C. E., Zou, J., McElroy, C. T., McLinden, C. A., and Vömel, H.:
High vertical resolution water vapour profiles in the upper troposphere and
lower stratosphere retrieved from MAESTRO solar occultation spectra, Adv.
Space Res., 46, 642–650, 2010.
Sioris, C. E., Zou, J., McElroy, C. T., Boone, C. D., Sheese, P. E., and
Bernath, P. F.: Water vapour variability in the high-latitude upper
troposphere – Part 2: Impact of volcanic eruptions, Atmos. Chem. Phys., 16,
2207–2219, https://doi.org/10.5194/acp-16-2207-2016, 2016.
Soden, B. J. and Held, I. M.: An assessment of climate feedbacks in coupled
ocean-atmosphere models, J. Climate, 19, 3354–3360, https://doi.org/10.1175/JCLI3799.1,
2006.
Soden, B. J., Jackson, D. L., Ramaswamy, V., Schwarzkopf, M. D., and Huang,
X.: The radiative signature of upper tropospheric moistening, Science, 310,
841–844, 2005.
Steinbrecht, W., Köhler, U., Claude, H., Weber, M., Burrows, J. P., and
van der A, R. J.: Very high ozone columns at northern mid-latitudes in 2010,
Geophys. Res. Lett., 38, L06803, https://doi.org/10.1029/2010GL046634, 2011.
Su, H., Read, W. G., Jiang, J. H., Waters, J. W., Wu, D. L., and Fetzer, E.
J.: Enhanced positive water vapor feedback associated with tropical deep
convection: New evidence from Aura MLS, Geophys. Res. Lett., 33, L05709,
https://doi.org/10.1029/2005GL025505, 2006.
Suen, J. Y., Fang, M. T., and Lubin, P. M.: Global distribution of water
vapor and cloud cover sites for high-performance THz applications, IEEE
Trans. Terahertz Sci. Technol., 4, 86–100, 2014.
Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical
circulation. Part I: Month-to-month variability, J. Climate, 13, 1000–1016,
2000.
Toohey, M., Hegglin, M. I., Tegtmeier, S., Anderson, J., Añel, J. A.,
Bourassa, A., Brohede, S., Degenstein, D., Froidevaux, L., Fuller, R., Funke,
B., Gille, J., Jones, A., Kasai, Y., Krüger, K., Kyrölä, E., Neu,
J. L., Rozanov, A., Smith, L., Urban, J., von Clarmann, T., Walker, K. A.,
and Wang, R. H. J.: Characterizing sampling biases in the trace gas
climatologies of the SPARC Data Initiative, J. Geophys. Res.-Atmos., 118,
11847–11862, https://doi.org/10.1002/jgrd.50874, 2013.
Treffeisen, R., Krejci, R., Ström, J., Engvall, A. C., Herber, A., and
Thomason, L.: Humidity observations in the Arctic troposphere over
Ny-Ålesund, Svalbard based on 15 years of radiosonde data, Atmos. Chem.
Phys., 7, 2721–2732, https://doi.org/10.5194/acp-7-2721-2007, 2007.
Waymark, C., Walker, K. A., Boone, C. D., and Bernath, P. F.: ACE-FTS
version 3.0 data set: validation and data processing update, Ann. Geophys.,
56, 6339, https://doi.org/10.4401/ag-6339, 2013.
Wiegele, A., Schneider, M., Hase, F., Barthlott, S., García, O. E.,
Sepúlveda, E., González, Y., Blumenstock, T., Raffalski, U., Gisi,
M., and Kohlhepp, R.: The MUSICA MetOp/IASI H2O and δD products:
characterisation and long-term comparison to NDACC/FTIR data, Atmos. Meas.
Tech., 7, 2719–2732, https://doi.org/10.5194/amt-7-2719-2014, 2014.
Worden, J., Kulawik, S. S., Shephard, M. W., Clough, S. A., Worden, H.,
Bowman, K., and Goldman, A.: Predicted errors of tropospheric emission
spectrometer nadir retrievals from spectral window selection, J. Geophys.
Res., 109, D09308, https://doi.org/10.1029/2004JD004522, 2004.
Short summary
The AM (annular mode) is the most important internal mode of climatic variability at high latitudes. Upper tropospheric water vapour (UTWV) at high latitudes increases by up to ~ 50 % during the negative phase of the AMs. The response of water vapour to the AMs vanishes above the tropopause. The ultimate goal of the study was to improve UTWV trend uncertainties by explaining shorter-term variability, and this was achieved by accounting for the AM-related response in a multiple linear regression.
The AM (annular mode) is the most important internal mode of climatic variability at high...
Altmetrics
Final-revised paper
Preprint