Articles | Volume 16, issue 22
https://doi.org/10.5194/acp-16-14755-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-14755-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Movement, drivers and bimodality of the South Asian High
Matthias Nützel
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Martin Dameris
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Hella Garny
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Related authors
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Martin Dameris, Patrick Jöckel, and Matthias Nützel
Atmos. Chem. Phys., 19, 13759–13771, https://doi.org/10.5194/acp-19-13759-2019, https://doi.org/10.5194/acp-19-13759-2019, 2019
Short summary
Short summary
A chemistry–climate model (CCM) study is performed, investigating the consequences of a constant CFC-11 surface mixing ratio for stratospheric ozone in the future. The total column ozone is particularly affected in both polar regions in winter and spring. It turns out that the calculated ozone changes, especially in the upper stratosphere, are smaller than expected. In this attitudinal region the additional ozone depletion due to the catalysis by reactive chlorine is partly compensated for.
Matthias Nützel, Aurélien Podglajen, Hella Garny, and Felix Ploeger
Atmos. Chem. Phys., 19, 8947–8966, https://doi.org/10.5194/acp-19-8947-2019, https://doi.org/10.5194/acp-19-8947-2019, 2019
Short summary
Short summary
We investigate the transport pathways of water vapour from the upper troposphere in the Asian monsoon region to the stratosphere. In the employed chemistry-transport model we use a tagging method, such that the impact of different source regions on the stratospheric water vapour budget can be quantified. A key finding is that the Asian monsoon (compared to other source regions) is very efficient in transporting air masses and water vapour to the tropical and extratropical stratosphere.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, and Laura Saunders
EGUsphere, https://doi.org/10.5194/egusphere-2023-1862, https://doi.org/10.5194/egusphere-2023-1862, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The transport circulation in the stratosphere is important for the distribution of tracers but its strength is difficult to measure. Mean transport times can be inferred from observations of trace gases with certain properties, such as SF6. However, this gas does have a chemical sink in the high atmosphere which can lead to substantial biases in inferred transport times. In this paper we present a method to correct mean transport times derived from SF6 for the effects of chemical sinks.
Ryan Williams, Michaela Hegglin, Patrick Jöckel, Hella Garny, and Keith Shine
EGUsphere, https://doi.org/10.5194/egusphere-2023-1175, https://doi.org/10.5194/egusphere-2023-1175, 2023
Short summary
Short summary
Almost every other winter, a brief but abrupt reversal of the mean stratospheric westerly flow (~8–50 km) around the Arctic occurs. Using a chemistry-climate model, half of these events are shown to invoke large anomalies in Arctic ozone (>25 %) and water vapour (>±25 %) around ~8–12 km for up to 2–3 months; important for weather forecasting. We also calculate a doubling to trebling of the risk in breaches of mid-latitude surface air quality (ozone) standards (~60 ppbv).
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchar, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
EGUsphere, https://doi.org/10.5194/egusphere-2023-270, https://doi.org/10.5194/egusphere-2023-270, 2023
Short summary
Short summary
Dynamical model biases result from the columnar approach of gravity wave (GW) schemes, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray-tracer. More spread-out GW drag helps reconciling the model with observations and closing the 60S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Kostas Eleftheratos, John Kapsomenakis, Ilias Fountoulakis, Christos S. Zerefos, Patrick Jöckel, Martin Dameris, Alkiviadis F. Bais, Germar Bernhard, Dimitra Kouklaki, Kleareti Tourpali, Scott Stierle, J. Ben Liley, Colette Brogniez, Frédérique Auriol, Henri Diémoz, Stana Simic, Irina Petropavlovskikh, Kaisa Lakkala, and Kostas Douvis
Atmos. Chem. Phys., 22, 12827–12855, https://doi.org/10.5194/acp-22-12827-2022, https://doi.org/10.5194/acp-22-12827-2022, 2022
Short summary
Short summary
We present the future evolution of DNA-active ultraviolet (UV) radiation in view of increasing greenhouse gases (GHGs) and decreasing ozone depleting substances (ODSs). It is shown that DNA-active UV radiation might increase after 2050 between 50° N–50° S due to GHG-induced reductions in clouds and ozone, something that is likely not to happen at high latitudes, where DNA-active UV radiation will continue its downward trend mainly due to stratospheric ozone recovery from the reduction in ODSs.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Frauke Fritsch, Hella Garny, Andreas Engel, Harald Bönisch, and Roland Eichinger
Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020, https://doi.org/10.5194/acp-20-8709-2020, 2020
Short summary
Short summary
We test two methods to derive age of air as a diagnostic of the Brewer–Dobson circulation from non-linear increasing trace gases such as SF6 using a chemistry-climate model and observations. Both the model and the observations show systematic variation of the age of air trend dependent on the chosen assumptions that are required when deriving age of air from measurements. This provides insight into the differences in age of air trends of observations and models.
Marta Abalos, Clara Orbe, Douglas E. Kinnison, David Plummer, Luke D. Oman, Patrick Jöckel, Olaf Morgenstern, Rolando R. Garcia, Guang Zeng, Kane A. Stone, and Martin Dameris
Atmos. Chem. Phys., 20, 6883–6901, https://doi.org/10.5194/acp-20-6883-2020, https://doi.org/10.5194/acp-20-6883-2020, 2020
Short summary
Short summary
A set of state-of-the art chemistry–climate models is used to examine future changes in downward transport from the stratosphere, a key contributor to tropospheric ozone. The acceleration of the stratospheric circulation results in increased stratosphere-to-troposphere transport. In the subtropics, downward advection into the troposphere is enhanced due to climate change. At higher latitudes, the ozone reservoir above the tropopause is enlarged due to the stronger circulation and ozone recovery.
Martin Dameris, Patrick Jöckel, and Matthias Nützel
Atmos. Chem. Phys., 19, 13759–13771, https://doi.org/10.5194/acp-19-13759-2019, https://doi.org/10.5194/acp-19-13759-2019, 2019
Short summary
Short summary
A chemistry–climate model (CCM) study is performed, investigating the consequences of a constant CFC-11 surface mixing ratio for stratospheric ozone in the future. The total column ozone is particularly affected in both polar regions in winter and spring. It turns out that the calculated ozone changes, especially in the upper stratosphere, are smaller than expected. In this attitudinal region the additional ozone depletion due to the catalysis by reactive chlorine is partly compensated for.
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary
Short summary
We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation (RC) in chemistry–climate models. Nudging meteorology does not constrain the mean strength of RC compared to free-running simulations, and despite the lack of agreement in the mean circulation, nudging tightly constrains the inter-annual variability in the tropical upward mass flux in the lower stratosphere. In summary, nudging strongly affects the representation of RC.
Matthias Nützel, Aurélien Podglajen, Hella Garny, and Felix Ploeger
Atmos. Chem. Phys., 19, 8947–8966, https://doi.org/10.5194/acp-19-8947-2019, https://doi.org/10.5194/acp-19-8947-2019, 2019
Short summary
Short summary
We investigate the transport pathways of water vapour from the upper troposphere in the Asian monsoon region to the stratosphere. In the employed chemistry-transport model we use a tagging method, such that the impact of different source regions on the stratospheric water vapour budget can be quantified. A key finding is that the Asian monsoon (compared to other source regions) is very efficient in transporting air masses and water vapour to the tropical and extratropical stratosphere.
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019, https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Short summary
Climate models robustly project a Brewer–Dobson circulation (BDC) acceleration in the course of climate change. Analyzing mean age of stratospheric air (AoA) from a subset of climate projection simulations, we find a remarkable agreement in simulating the largest AoA trends in the extratropical stratosphere. This is shown to be related with the upward shift of the circulation, resulting in a so-called stratospheric shrinkage, which could be one of the so-far-omitted BDC acceleration drivers.
Franziska Winterstein, Fabian Tanalski, Patrick Jöckel, Martin Dameris, and Michael Ponater
Atmos. Chem. Phys., 19, 7151–7163, https://doi.org/10.5194/acp-19-7151-2019, https://doi.org/10.5194/acp-19-7151-2019, 2019
Short summary
Short summary
The atmospheric concentrations of the anthropogenic greenhouse gas methane are predicted to rise in the future. In this paper we investigate how very strong methane concentrations will impact the atmosphere. We analyse two experiments, one with doubled and one with quintupled methane concentrations and focus on the rapid atmospheric changes before the ocean adjusts to the induced
forcing. In particular these are changes in temperature, ozone, the hydroxyl radical and stratospheric water vapour.
Marius Hauck, Frauke Fritsch, Hella Garny, and Andreas Engel
Atmos. Chem. Phys., 19, 5269–5291, https://doi.org/10.5194/acp-19-5269-2019, https://doi.org/10.5194/acp-19-5269-2019, 2019
Short summary
Short summary
The paper presents a modified method to invert mixing ratios of chemically active tracers into stratospheric age spectra. It features an imposed seasonal cycle to include transport seasonality into the spectra. An idealized set of tracers from a model is used as proof of concept and results are in good agreement with the model reference, except for the lowermost stratosphere. Applicability is studied with focus on number of tracers and error tolerance, providing a starting point for future work.
Roland Eichinger, Simone Dietmüller, Hella Garny, Petr Šácha, Thomas Birner, Harald Bönisch, Giovanni Pitari, Daniele Visioni, Andrea Stenke, Eugene Rozanov, Laura Revell, David A. Plummer, Patrick Jöckel, Luke Oman, Makoto Deushi, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, https://doi.org/10.5194/acp-19-921-2019, 2019
Short summary
Short summary
To shed more light upon the changes in stratospheric circulation in the 21st century, climate projection simulations of 10 state-of-the-art global climate models, spanning from 1960 to 2100, are analyzed. The study shows that in addition to changes in transport, mixing also plays an important role in stratospheric circulation and that the properties of mixing vary over time. Furthermore, the influence of mixing is quantified and a dynamical framework is provided to understand the changes.
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018, https://doi.org/10.5194/essd-10-1473-2018, 2018
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Franziska Frank, Patrick Jöckel, Sergey Gromov, and Martin Dameris
Atmos. Chem. Phys., 18, 9955–9973, https://doi.org/10.5194/acp-18-9955-2018, https://doi.org/10.5194/acp-18-9955-2018, 2018
Short summary
Short summary
It is frequently assumed that one methane molecule produces two water molecules. Applying various modeling concepts, we find that the yield of water from methane is vertically not constantly 2. In the upper stratosphere and lower mesosphere, transport of intermediate H2 molecules even led to a yield greater than 2. We conclude that for a realistic chemical source of stratospheric water vapor, one must also take other sources (H2), intermediates and the chemical removal of water into account.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
Short summary
Trend estimates of lower stratospheric H2O derived from the FPH observations at Boulder and a merged zonal mean satellite data set clearly differ for the time period from the late 1980s to 2010. We investigate if a sampling bias between Boulder and the zonal mean around the Boulder latitude can explain these trend discrepancies. Typically they are small and not sufficient to explain the trend discrepancies in the observational database.
Simone Dietmüller, Roland Eichinger, Hella Garny, Thomas Birner, Harald Boenisch, Giovanni Pitari, Eva Mancini, Daniele Visioni, Andrea Stenke, Laura Revell, Eugene Rozanov, David A. Plummer, John Scinocca, Patrick Jöckel, Luke Oman, Makoto Deushi, Shibata Kiyotaka, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, https://doi.org/10.5194/acp-18-6699-2018, 2018
Stefan Lossow, Hella Garny, and Patrick Jöckel
Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017, https://doi.org/10.5194/acp-17-11521-2017, 2017
Simone Dietmüller, Hella Garny, Felix Plöger, Patrick Jöckel, and Duy Cai
Atmos. Chem. Phys., 17, 7703–7719, https://doi.org/10.5194/acp-17-7703-2017, https://doi.org/10.5194/acp-17-7703-2017, 2017
Duy Cai, Martin Dameris, Hella Garny, Felix Bunzel, Patrick Jöckel, and Phoebe Graf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-870, https://doi.org/10.5194/acp-2016-870, 2016
Revised manuscript not accepted
Short summary
Short summary
Reliable information on weather and climate are of increasing interest for economy, politics and society.
In particular decadal timescales become more and more important. This study focuses on stratospheric processes relevant for the dynamical variability on intra decadal timescale. We apply a so called power spectra analysis. With this method and further analyses we could determine a minimum vertical resolution for numerical models, which is required to capture these processes.
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Hella Garny and William J. Randel
Atmos. Chem. Phys., 16, 2703–2718, https://doi.org/10.5194/acp-16-2703-2016, https://doi.org/10.5194/acp-16-2703-2016, 2016
Short summary
Short summary
We investigate the fate of air that originates in the monsoon region in the upper troposphere, where it was transported to by convection. We find that almost half of the air parcels released in the monsoon region in the upper troposphere reach the stratosphere within 60 days, and most ascend to the tropical lower stratosphere. This suggests that trace gases, including pollutants, that are transported into the stratosphere via the Asian monsoon are in a position to enter the deep stratosphere.
L. E. Revell, F. Tummon, A. Stenke, T. Sukhodolov, A. Coulon, E. Rozanov, H. Garny, V. Grewe, and T. Peter
Atmos. Chem. Phys., 15, 5887–5902, https://doi.org/10.5194/acp-15-5887-2015, https://doi.org/10.5194/acp-15-5887-2015, 2015
Short summary
Short summary
We have examined the effects of ozone precursor emissions and climate change on the tropospheric ozone budget. Under RCP 6.0, ozone in the future is governed primarily by changes in nitrogen oxides (NOx). Methane is also important, and induces an increase in tropospheric ozone that is approximately one-third of that caused by NOx. This study highlights the critical role that emission policies globally have to play in determining tropospheric ozone evolution through the 21st century.
P. Valks, N. Hao, S. Gimeno Garcia, D. Loyola, M. Dameris, P. Jöckel, and A. Delcloo
Atmos. Meas. Tech., 7, 2513–2530, https://doi.org/10.5194/amt-7-2513-2014, https://doi.org/10.5194/amt-7-2513-2014, 2014
S. Meul, U. Langematz, S. Oberländer, H. Garny, and P. Jöckel
Atmos. Chem. Phys., 14, 2959–2971, https://doi.org/10.5194/acp-14-2959-2014, https://doi.org/10.5194/acp-14-2959-2014, 2014
V. Grewe, C. Frömming, S. Matthes, S. Brinkop, M. Ponater, S. Dietmüller, P. Jöckel, H. Garny, E. Tsati, K. Dahlmann, O. A. Søvde, J. Fuglestvedt, T. K. Berntsen, K. P. Shine, E. A. Irvine, T. Champougny, and P. Hullah
Geosci. Model Dev., 7, 175–201, https://doi.org/10.5194/gmd-7-175-2014, https://doi.org/10.5194/gmd-7-175-2014, 2014
H. Garny, G. E. Bodeker, D. Smale, M. Dameris, and V. Grewe
Atmos. Chem. Phys., 13, 7279–7300, https://doi.org/10.5194/acp-13-7279-2013, https://doi.org/10.5194/acp-13-7279-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter
A mountain ridge model for quantifying oblique mountain wave propagation and distribution
Weakening of the tropical tropopause layer cold trap with global warming
Vortex Preconditioning of the 2021 Sudden Stratospheric Warming: Barotropic/Baroclinic Instability Associated with the Double Westerly Jets
On the magnitude and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption
The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing
The Holton–Tan mechanism under stratospheric aerosol intervention
Stratospherically induced tropospheric circulation changes under the extreme conditions of the No-Montreal-Protocol scenario
Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
The semi-annual oscillation (SAO) in the upper troposphere and lower stratosphere (UTLS)
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs
Long-range prediction and the stratosphere
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Specified dynamics scheme impacts on wave-mean flow dynamics, convection, and tracer transport in CESM2 (WACCM6)
Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet
Observation and modeling of high-7Be concentration events at the surface in northern Europe associated with the instability of the Arctic polar vortex in early 2003
Eastward-propagating planetary waves in the polar middle atmosphere
The Brewer–Dobson circulation in CMIP6
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Reappraising the appropriate calculation of a common meteorological quantity: potential temperature
Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model
Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption
Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry
Characterizing quasi-biweekly variability of the Asian monsoon anticyclone using potential vorticity and large-scale geopotential height field
Climatological impact of the Brewer–Dobson circulation on the N2O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses
Polar stratospheric clouds initiated by mountain waves in a global chemistry–climate model: a missing piece in fully modelling polar stratospheric ozone depletion
Using the climate feedback response analysis method to quantify climate feedbacks in the middle atmosphere
Deep-convective influence on the upper troposphere–lower stratosphere composition in the Asian monsoon anticyclone region: 2017 StratoClim campaign results
The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 23, 7447–7460, https://doi.org/10.5194/acp-23-7447-2023, https://doi.org/10.5194/acp-23-7447-2023, 2023
Short summary
Short summary
Here, we show how projected changes to tropical circulation will impact the water vapor concentration in the lower stratosphere, which has implications for surface climate and stratospheric chemistry. In our transport scenarios with slower east–west winds, air parcels ascending into the stratosphere do not experience the same cold temperatures that they would today. This effect could act in concert with previously modeled changes to stratospheric water vapor to amplify surface warming.
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1044, https://doi.org/10.5194/egusphere-2023-1044, 2023
Short summary
Short summary
The January 2021 Sudden stratospheric warming is preceded by the unusual double westerly jets with the polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Dillon Elsbury, Amy H. Butler, John R. Albers, Melissa L. Breeden, and Andrew O'Neil Langford
Atmos. Chem. Phys., 23, 5101–5117, https://doi.org/10.5194/acp-23-5101-2023, https://doi.org/10.5194/acp-23-5101-2023, 2023
Short summary
Short summary
One of the global hotspots where stratosphere-to-troposphere transport (STT) of ozone takes place is over Pacific North America (PNA). However, we do not know how or if STT over PNA will change in response to climate change. Using climate model experiments forced with
worst-casescenario Representative Concentration Pathway 8.5 climate change, we find that changes in net chemical production and transport of ozone in the lower stratosphere increase STT of ozone over PNA in the future.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
EGUsphere, https://doi.org/10.5194/egusphere-2023-326, https://doi.org/10.5194/egusphere-2023-326, 2023
Short summary
Short summary
The Montreal Protocol (MP) has successfully reduced the Antarctic ozone hole by banning chlorofluorocarbons (CFCs) that destroy the ozone layer. Moreover, CFCs are strong greenhouse gases (GHGs) that would have strengthened global warming. In this study, we investigate the surface weather and climate in a world without the MP at the end of the 21st century disentangling ozone-mediated and GHG impacts of CFCs. Overall, we avoided 1.9 K global surface warming and a poleward shift of storm tracks.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023, https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
Short summary
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be self-excited (internal) in the atmosphere, i.e. non-anthropogenic. They are found at all altitudes up to 110 km and at four very different geographical locations (75° N, 70° E; 75° N, 280° E; 50° N, 7° E; 50° S, 7° E). Therefore, they hint at a global-oscillation mode. Their amplitudes are on the order of present-day climate trends, and it is therefore difficult to disentangle them.
Samuel Benito-Barca, Natalia Calvo, and Marta Abalos
Atmos. Chem. Phys., 22, 15729–15745, https://doi.org/10.5194/acp-22-15729-2022, https://doi.org/10.5194/acp-22-15729-2022, 2022
Short summary
Short summary
The impact of different El Niño flavors (eastern (EP) and central (CP) Pacific El Niño) and La Niña on the stratospheric ozone is studied in a state-of-the-art chemistry–climate model. Ozone reduces in the tropics and increases in the extratropics when an EP El Niño event occurs, the opposite of La Niña. However, CP El Niño has no impact on extratropical ozone. These ozone variations are driven by changes in the stratospheric transport circulation, with an important contribution of mixing.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022, https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring–summer time in the Southern Hemisphere. Using chemistry-climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models' circulations.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339, https://doi.org/10.5194/acp-22-13325-2022, https://doi.org/10.5194/acp-22-13325-2022, 2022
Short summary
Short summary
Here, we tested the impact of spatial and temporal resolution on Lagrangian trajectory studies in a key region of interest for climate feedbacks and stratospheric chemistry. Our analysis shows that new higher-resolution input data provide an opportunity for a better understanding of physical processes that control how air moves from the troposphere to the stratosphere. Future studies of how these processes will change in a warming climate will benefit from these results.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022, https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño–Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards are assessed.
Axel Gabriel
Atmos. Chem. Phys., 22, 10425–10441, https://doi.org/10.5194/acp-22-10425-2022, https://doi.org/10.5194/acp-22-10425-2022, 2022
Short summary
Short summary
Recent measurements show some evidence that the amplitudes of atmospheric gravity waves (horizontal wavelengths of 100–2000 km), which propagate from the troposphere (0–10 km) to the stratosphere and mesosphere (10–100 km), increase more strongly with height during daytime than during nighttime. This study shows that ozone–temperature coupling in the upper stratosphere can principally produce such an amplification. The results will help to improve atmospheric circulation models.
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Ming Shangguan and Wuke Wang
Atmos. Chem. Phys., 22, 9499–9511, https://doi.org/10.5194/acp-22-9499-2022, https://doi.org/10.5194/acp-22-9499-2022, 2022
Short summary
Short summary
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for decision makers. Here we show the global spatiotemporal variation of the temperature SAO in the UTLS with GNSS RO and reanalysis data. The formation of the SAO is explained by an energy budget analysis. The results show that the SAO in the UTLS is partly modified by the SSTs according to model simulations. The results may provide an important source for seasonal predictions of the surface weather.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022, https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022, https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Short summary
Specified dynamics schemes attempt to constrain the atmospheric circulation in a climate model to isolate the role of transport in chemical variability, evaluate model physics, and interpret field campaign observations. We show that the specified dynamics scheme in CESM2 erroneously suppresses convection and induces circulation errors that project onto errors in tracers, even using the most optimal settings. Development of a more sophisticated scheme is necessary for future progress.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Erika Brattich, Hongyu Liu, Bo Zhang, Miguel Ángel Hernández-Ceballos, Jussi Paatero, Darko Sarvan, Vladimir Djurdjevic, Laura Tositti, and Jelena Ajtić
Atmos. Chem. Phys., 21, 17927–17951, https://doi.org/10.5194/acp-21-17927-2021, https://doi.org/10.5194/acp-21-17927-2021, 2021
Short summary
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635, https://doi.org/10.5194/acp-21-8615-2021, https://doi.org/10.5194/acp-21-8615-2021, 2021
Short summary
Short summary
Stratospheric aerosol modification (SAM) can alter the quasi-biennial oscillation (QBO). Our simulations with two different models show that the characteristics of the QBO response are primarily determined by the meridional structure of the aerosol-induced heating. Therefore, the QBO response to SAM depends primarily on the location of injection, while injection type and rate act to scale the specific response. Our results have important implications for evaluating adverse side effects of SAM.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021, https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021, https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary
Short summary
Inter-hemispheric transport is important for understanding atmospheric tracers because of the asymmetry in emissions between the Southern Hemisphere (SH) and Northern Hemisphere (NH). This study finds that the air masses from the NH extratropics to the atmosphere are about 5 times larger than those from the SH extratropics. The interplay between the Asian summer monsoon and westerly ducts triggers the cross-Equator transport from the NH to the SH in boreal summer and fall.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger
Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020, https://doi.org/10.5194/acp-20-15585-2020, 2020
Short summary
Short summary
The potential temperature is routinely used in atmospheric science. We review its derivation and suggest a new potential temperature, based on a temperature-dependent parameterization of the dry air's specific heat capacity. Moreover, we compare the new potential temperature to the common one and discuss the differences which become more important at higher altitudes. Finally, we indicate some consequences of using the new potential temperature in typical applications.
Edward J. Charlesworth, Ann-Kristin Dugstad, Frauke Fritsch, Patrick Jöckel, and Felix Plöger
Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020, https://doi.org/10.5194/acp-20-15227-2020, 2020
Short summary
Short summary
Modeling the stratosphere requires models with good representations of chemical transport. To do this, nearly all models divide the atmosphere into boxes. This creates some unwanted problems. However, the only other option is to divide the atmosphere into balloons, and this method is very complicated. Here, we use a model which uses this balloon-like method to estimate the impacts of this method on chemical transport. We find significant differences in sensitive regions of the stratosphere.
Min-Jee Kang, Hye-Yeong Chun, and Rolando R. Garcia
Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, https://doi.org/10.5194/acp-20-14669-2020, 2020
Short summary
Short summary
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was interrupted by easterly winds. We find that Rossby–gravity and inertia–gravity waves weaken the jet core in early stages, and small-scale convective gravity waves, as well as horizontal and vertical components of Rossby waves, reverse the wind sign in later stages. The strong negative wave forcing in the tropics results from the enhanced convection, an anomalous wind profile, and barotropic instability.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Arata Amemiya and Kaoru Sato
Atmos. Chem. Phys., 20, 13857–13876, https://doi.org/10.5194/acp-20-13857-2020, https://doi.org/10.5194/acp-20-13857-2020, 2020
Short summary
Short summary
The spatial pattern of subseasonal variability of the Asian monsoon anticyclone (AMA) is analyzed using long-term reanalysis data, integrating two different views using potential vorticity and the geopotential height anomaly. This study provides a link between two existing description of the Asian monsoon anticyclone, which is important for the understanding of the whole life cycle of its characteristic subseasonal variability pattern.
Daniele Minganti, Simon Chabrillat, Yves Christophe, Quentin Errera, Marta Abalos, Maxime Prignon, Douglas E. Kinnison, and Emmanuel Mahieu
Atmos. Chem. Phys., 20, 12609–12631, https://doi.org/10.5194/acp-20-12609-2020, https://doi.org/10.5194/acp-20-12609-2020, 2020
Short summary
Short summary
The climatology of the N2O transport budget in the stratosphere is studied in the transformed Eulerian mean framework across a variety of datasets: a chemistry climate model, a chemistry transport model driven by four reanalyses and a chemical reanalysis. The impact of vertical advection on N2O agrees well in the datasets, but horizontal mixing presents large differences above the Antarctic and in the whole Northern Hemisphere.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Maartje Sanne Kuilman, Qiong Zhang, Ming Cai, and Qin Wen
Atmos. Chem. Phys., 20, 12409–12430, https://doi.org/10.5194/acp-20-12409-2020, https://doi.org/10.5194/acp-20-12409-2020, 2020
Short summary
Short summary
In this study, we quantify the temperature changes in the middle atmosphere due to different feedback processes using the climate feedback response analysis method. We have found that the change due to the increase in CO2 alone cools the middle atmosphere. The combined effect of the different feedbacks causes the atmosphere to cool less. The ozone feedback is the most important feedback process, while the cloud, water vapour and albedo feedback play only a minor role.
Silvia Bucci, Bernard Legras, Pasquale Sellitto, Francesco D'Amato, Silvia Viciani, Alessio Montori, Antonio Chiarugi, Fabrizio Ravegnani, Alexey Ulanovsky, Francesco Cairo, and Fred Stroh
Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, https://doi.org/10.5194/acp-20-12193-2020, 2020
Short summary
Short summary
The paper presents and evaluates a transport analysis method to study the convective injection of air in the upper troposphere–lower stratosphere of the Asian monsoon anticyclone region. The approach is thereby used to analyse the trace gas data collected during the StratoClim aircraft campaign. The results showed that fresh convective air can be injected fast at a high level of the atmosphere (above 17 km), with potential impacts on the stratospheric chemistry of the Northern Hemisphere.
Jessica Oehrlein, Gabriel Chiodo, and Lorenzo M. Polvani
Atmos. Chem. Phys., 20, 10531–10544, https://doi.org/10.5194/acp-20-10531-2020, https://doi.org/10.5194/acp-20-10531-2020, 2020
Short summary
Short summary
Winter winds in the stratosphere 10–50 km above the surface impact climate at the surface. Prior studies suggest that this interaction between the stratosphere and the surface is affected by ozone. We compare two ways of including ozone in computer simulations of climate. One method is more realistic but more expensive. We find that the method of including ozone in simulations affects the surface climate when the stratospheric winds are unusually weak but not when they are unusually strong.
Cited articles
Adler, R., Huffman, G., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, 2003.
Chirkov, M., Stiller, G. P., Laeng, A., Kellmann, S., von Clarmann, T., Boone, C. D., Elkins, J. W., Engel, A., Glatthor, N., Grabowski, U., Harth, C. M., Kiefer, M., Kolonjari, F., Krummel, P. B., Linden, A., Lunder, C. R., Miller, B. R., Montzka, S. A., Mühle, J., O'Doherty, S., Orphal, J., Prinn, R. G., Toon, G., Vollmer, M. K., Walker, K. A., Weiss, R. F., Wiegele, A., and Young, D.: Global HCFC-22 measurements with MIPAS: retrieval, validation, global distribution and its evolution over 2005–2012, Atmos. Chem. Phys., 16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dethof, A., Oneill, A., Slingo, J. M., and Smit, H. G. J.: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon, Q. J. Roy. Meteor. Soc., 125, 1079–1106, https://doi.org/10.1256/smsqj.55601, 1999.
ESMVal: Earth System Model Validation, available at: http://www.pa.op.dlr.de/ESMVal/index.html (last access: 6 April 2016), 2012.
Garny, H. and Randel, W. J.: Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions, J. Geophys. Res.-Atmos., 118, 13421–13433, https://doi.org/10.1002/2013JD020908, 2013.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905, 1980.
Heath, N. K. and Fuelberg, H. E.: Using a WRF simulation to examine regions where convection impacts the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 14, 2055–2070, https://doi.org/10.5194/acp-14-2055-2014, 2014.
Hoskins, B. J. and Rodwell, M. J.: A Model of the Asian Summer Monsoon. Part I: The Global Scale, J. Atmos. Sci., 52, 1329–1340, https://doi.org/10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2, 1995.
Hsu, C. J. and Plumb, R. A.: Nonaxisymmetric Thermally Driven Circulations and Upper-Tropospheric Monsoon Dynamics, J. Atmos. Sci., 57, 1255–1276, https://doi.org/10.1175/1520-0469(2000)057<1255:NTDCAU>2.0.CO;2, 2000.
Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., and Zhang, H.-M.: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons, J. Climate, 28, 911–930, https://doi.org/10.1175/JCLI-D-14-00006.1, 2015.
Huang, B., Thorne, P. W., Smith, T. M., Liu, W., Lawrimore, J., Banzon, V. F., Zhang, H.-M., Peterson, T. C., and Menne, M.: Further Exploring and Quantifying Uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) Version 4 (v4), J. Climate, 29, 3119–3142, https://doi.org/10.1175/JCLI-D-15-0430.1, 2016.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., and Susskind, J.: Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations, J. Hydrometeorol., 2, 36–50, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Lau, K.-M., Yang, G. J., and Shen, S. H.: Seasonal and Intraseasonal Climatology of Summer Monsoon Rainfall over Eeat Asia, Mon. Weather Rev., 116, 18–37, https://doi.org/10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2, 1988.
Li, Q., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J., Waters, J. W., Zhang, Y., Wang, B., Filipiak, M. J., Davis, C. P., Turquety, S., Wu, S., Park, R. J., Yantosca, R. M., and Jacob, D. J.: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations, Geophys. Res. Lett., 32, L14826, https://doi.org/10.1029/2005GL022762, 2005.
Liebman, B. and Smith, C.: Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset, B. Am. Meteorol. Soc., 77, 1275–1277, 1996.
Liu, C. and Zipser, E. J.: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations, Geophys. Res. Lett., 35, L04819, https://doi.org/10.1029/2007GL032437, 2008.
Liu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H.-M., Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M., and Woodruff, S. D.: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4): Part II. Parametric and Structural Uncertainty Estimations, J. Climate, 28, 931–951, https://doi.org/10.1175/JCLI-D-14-00007.1, 2015.
Liu, Y., Hoskins, B., and Blackburn, M.: Impact of Tibetan Orography and Heating on the Summer Flow over Asia, J. Meteorol. Soc. Jpn., 85B, 1–19, https://doi.org/10.2151/jmsj.85B.1, 2007.
Mason, R. B. and Anderson, C. E.: The development and decay of the 100-mb. summertime anticyclone over southern Asia, Mon. Weather Rev., 91, 3–12, https://doi.org/10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2, 1963.
Mooley, D. A. and Parthasarathy, B.: Indian summer monsoon and El Nino, pure and applied geophysics, 121, 339–352, https://doi.org/10.1007/BF02590143, 1983.
Müller, S., Hoor, P., Bozem, H., Gute, E., Vogel, B., Zahn, A., Bönisch, H., Keber, T., Krämer, M., Rolf, C., Riese, M., Schlager, H., and Engel, A.: Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012, Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, 2016.
OMO: Oxidation Mechanism Observations, available at: http://www.mpic.de/en/research/collaborative-projects/halo/omo.html (last access: 6 April 2016), 2015.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-25 Reanalysis, J. Meteorol. Soc. Jpn., 85, 369–432, https://doi.org/10.2151/jmsj.85.369, 2007.
Park, M., Randel, W. J., Emmons, L. K., and Livesey, N. J.: Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART), J. Geophys. Res.-Atmos., 114, D08303, https://doi.org/10.1029/2008JD010621, 2009.
Ploeger, F., Gottschling, C., Griessbach, S., Grooß, J.-U., Guenther, G., Konopka, P., Müller, R., Riese, M., Stroh, F., Tao, M., Ungermann, J., Vogel, B., and von Hobe, M.: A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, 2015.
Popovic, J. M. and Plumb, R. A.: Eddy Shedding from the Upper-Tropospheric Asian Monsoon Anticyclone, J. Atmos. Sci., 58, 93–104, https://doi.org/10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2, 2001.
Qian, Y., Zhang, Q., Yao, Y., and Zhang, X.: Seasonal variation and heat preference of the south asia high, Adv. Atmos. Sci., 19, 821–836, https://doi.org/10.1007/s00376-002-0047-3, 2002.
Randel, W. J. and Park, M.: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS), J. Geophys. Res., 111, D12314, https://doi.org/10.1029/2005JD006490, 2006.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone, C., and Pumphrey, H.: Asian Monsoon Transport of Pollution to the Stratosphere, Science, 328, 611–613, https://doi.org/10.1126/science.1182274, 2010.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rodwell, M. J. and Hoskins, B. J.: A Model of the Asian Summer Monsoon. Part II: Cross-Equatorial Flow and PV Behavior, J. Atmos. Sci., 52, 1341–1356, https://doi.org/10.1175/1520-0469(1995)052<1341:AMOTAS>2.0.CO;2, 1995.
Rodwell, M. J. and Hoskins, B. J.: Monsoons and the dynamics of deserts, Q. J. Roy. Meteor. Soc., 122, 1385–1404, https://doi.org/10.1002/qj.49712253408, 1996.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H. V. D., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
StratoClim: Stratospheric and upper tropospheric processes for better climate predictions, available at: http://www.stratoclim.org (last access: 6 April 2016), 2016/2017.
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., Hoor, P., Krämer, M., Müller, S., Zahn, A., and Riese, M.: Fast transport from Southeast Asia boundary layer sources to northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone, Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, 2014.
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., and Riese, M.: Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere, Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, 2015.
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., Afchine, A., Bozem, H., Hoor, P., Krämer, M., Müller, S., Riese, M., Rolf, C., Spelten, N., Stiller, G. P., Ungermann, J., and Zahn, A.: Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-463, in review, 2016.
Wei, W., Zhang, R., Wen, M., Rong, X., and Li, T.: Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China, Clim. Dynam., 43, 1257–1269, https://doi.org/10.1007/s00382-013-1938-y, 2014.
Wei, W., Zhang, R., Wen, M., Kim, B.-J., and Nam, J.-C.: Interannual Variation of the South Asian High and Its Relation with Indian and East Asian Summer Monsoon Rainfall, J. Climate, 28, 2623–2634, https://doi.org/10.1175/JCLI-D-14-00454.1, 2015.
Wright, J. S. and Fueglistaler, S.: Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 13, 9565–9576, https://doi.org/10.5194/acp-13-9565-2013, 2013.
Wu, G., Zhang, Q., Duan, A., and Mao, J.: Thermal-Dynamical effects of the Tibetan Plateau on the East Asian Monsoon, in: Monsoon Asia Integrated Regional Study on Global Change Changes in the Human-Monsoon System of East Asia in the Context of Global Change, edited by: Fu, C., Freney, J., and Stewart, J., vol. 1, 9–22, World Scientific Publishing Company, https://doi.org/10.1142/9789812832429_0002, 2008.
Xu, Z. and Zhang, Y.: Effects of the Tibetan Plateau on the Climate of China, in: Regional Climate Studies of China, edited by: Fu, C., Jiang, Z., Guan, Z., He, J., and Xu, Z., 219–270, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-540-79242-0, 2008.
Yan, R., Bian, J., and Fan, Q.: The Impact of the South Asia High Bimodality on the Chemical Composition of the Upper Troposphere and Lower Stratosphere, Atmospheric and Oceanic Science Letters, 4, 229–234, https://doi.org/10.1080/16742834.2011.11446934, 2011.
Yanai, M. and Wu, G.: Effects of the Tibetan Plateau, in: The Asian Monsoon, edited by: Wang, B., 513–549, Springer Berlin Heidelberg, https://doi.org/10.1007/3-540-37722-0, 2006.
Yihui, D. and Chan, L. J. C.: The East Asian summer monsoon: an overview, Meteorol. Atmos. Phys., 89, 117–142, https://doi.org/10.1007/s00703-005-0125-z, 2005.
Zarrin, A., Ghaemi, H., Azadi, M., and Farajzadeh, M.: The spatial pattern of summertime subtropical anticyclones over Asia and Africa: A climatological review, Int. J. Climatol., 30, 159–173, https://doi.org/10.1002/joc.1879, 2010.
Zhang, L. and Zhi, X.: Longitudinal Oscillations of the South Asian High and the Subtropical Western Pacific High during boreal summer, in: Advances in Geosciences, edited by: Ip, W.-H. and Oh, J. H., vol. 16, 93–107, World Scientific Publishing Company, https://doi.org/10.1142/9789812838100_0009, 2010.
Zhang, Q., Wu, G., and Qian, Y.: The Bimodality of the 100 hPa South Asia High and its Relationship to the Climate Anomaly over East Asia in Summer, J. Meteorol. Soc. Jpn., 80, 733–744, https://doi.org/10.2151/jmsj.80.733, 2002.
Zhou, N., Yu, Y., and Qian, Y.: Simulations of the 100 hPa South Asian High and precipitation over East Asia with IPCC coupled GCMs, Adv. Atmos. Sci., 23, 375–390, https://doi.org/10.1007/s00376-006-0375-9, 2006.
Zhou, N., Yu, Y., and Qian, Y.: Bimodality of the South Asia High simulated by coupled models, Adv. Atmos. Sci., 26, 1226–1234, https://doi.org/10.1007/s00376-009-7219-3, 2009.
Short summary
Using seven reanalyses, we study the movement and drivers of the upper tropospheric–lower stratospheric anticyclone (AC) that forms during the Asian summer monsoon and is debated to be an important pathway for air masses to the stratosphere. We find that the distribution of the AC's centre position, and especially the so-called bimodality, largely depends on the reanalysis. Furthermore, we can connect shifts of the AC to precipitation and convection anomalies over India and the western Pacific.
Using seven reanalyses, we study the movement and drivers of the upper tropospheric–lower...
Altmetrics
Final-revised paper
Preprint