Articles | Volume 15, issue 14
Atmos. Chem. Phys., 15, 8439–8454, 2015
https://doi.org/10.5194/acp-15-8439-2015
Atmos. Chem. Phys., 15, 8439–8454, 2015
https://doi.org/10.5194/acp-15-8439-2015

Research article 28 Jul 2015

Research article | 28 Jul 2015

Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China

L. Zhang et al.

Related authors

Separating emission and meteorological contribution to PM2.5 trends over East China during 2000–2018
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-28,https://doi.org/10.5194/acp-2021-28, 2021
Preprint under review for ACP
Short summary
Measurement report: Chemical characteristics of PM2.5 during typical biomass burning season at an agricultural site of the North China Plain
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 3181–3192, https://doi.org/10.5194/acp-21-3181-2021,https://doi.org/10.5194/acp-21-3181-2021, 2021
Short summary
Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021,https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020,https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Enhancement of nanoparticle formation and growth during the COVID-19 lockdown period in urban Beijing
Xiaojing Shen, Junying Sun, Fangqun Yu, Xiaoye Zhang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, and Sinan Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1064,https://doi.org/10.5194/acp-2020-1064, 2020
Revised manuscript accepted for ACP
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po Valley
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, and Ezio Bolzacchini
Atmos. Chem. Phys., 21, 4869–4897, https://doi.org/10.5194/acp-21-4869-2021,https://doi.org/10.5194/acp-21-4869-2021, 2021
Short summary
Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021,https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021,https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021,https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes in the Baltic Sea
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021,https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary

Cited articles

Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.
Anderson, T., Covert, D., Marshall, S., Laucks, M., Charlson, R., Waggoner, A., Ogren, J., Caldow, R., Holm, R., and Quant, F.: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, 1996.
Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998.
Berner, A., Lürzer, C., Pohl, F., Preining, O., and Wagner, P.: The size distribution of the urban aerosol in Vienna, Sci. Total Environ., 13, 245–261, 1979.
Birmili, W., Stratmann, F., and Wiedensohler, A.: Design of a DMA-based size spectrometer for a large particle size range and stable operation, J. Aerosol Sci., 30, 549–553, 1999.
Download
Short summary
The aerosol hygroscopic properties at a rural background site in the Yangtze River delta of China was discussed. The results show the scattering coefficient and backscattering coefficient increased by 58 and 25% as relative humidity (RH) increased from 40 to 85%, while the hemispheric backscatter fraction decreased by 21%. Aerosol hygroscopic growth caused a 47% increase in calculated aerosol direct radiative forcing at 85% RH compared to the forcing at 40% RH. Nitrate played a vital role.
Altmetrics
Final-revised paper
Preprint