Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5537-2015
https://doi.org/10.5194/acp-15-5537-2015
Research article
 | 
21 May 2015
Research article |  | 21 May 2015

Simulation of the isotopic composition of stratospheric water vapour – Part 1: Description and evaluation of the EMAC model

R. Eichinger, P. Jöckel, S. Brinkop, M. Werner, and S. Lossow

Related authors

Large-ensemble assessment of the Arctic stratospheric polar vortex morphology and disruptions
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024,https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215, https://doi.org/10.5194/acp-24-4193-2024,https://doi.org/10.5194/acp-24-4193-2024, 2024
Short summary
Emulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023,https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
On the impact of Himalaya-induced gravity waves on the polar vortex, Rossby wave activity and ozone
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2022-474,https://doi.org/10.5194/egusphere-2022-474, 2022
Preprint archived
Short summary
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022,https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary

Related subject area

Subject: Isotopes | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO / H2O variations
R. Eichinger, P. Jöckel, and S. Lossow
Atmos. Chem. Phys., 15, 7003–7015, https://doi.org/10.5194/acp-15-7003-2015,https://doi.org/10.5194/acp-15-7003-2015, 2015
Influence of model resolution on the atmospheric transport of 10Be
U. Heikkilä and A. M. Smith
Atmos. Chem. Phys., 12, 10601–10612, https://doi.org/10.5194/acp-12-10601-2012,https://doi.org/10.5194/acp-12-10601-2012, 2012

Cited articles

Bolot, M., Legras, B., and Moyer, E. J.: Modelling and interpreting the isotopic composition of water vapour in convective updrafts, Atmos. Chem. Phys., 13, 7903–7935, https://doi.org/10.5194/acp-13-7903-2013, 2013.
Brass, M. and Röckmann, T.: Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane, Atmos. Meas. Tech., 3, 1707–1721, https://doi.org/10.5194/amt-3-1707-2010, 2010.
Craig, H. and Gordon, L. I.: Stable Isotopes in Oceanographic Studies and Paleotemperatures, chapter Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, 9–130, V. Lischi, Pisa, Italy, 1965.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Altmetrics
Final-revised paper
Preprint