Articles | Volume 15, issue 18
https://doi.org/10.5194/acp-15-10263-2015
https://doi.org/10.5194/acp-15-10263-2015
Technical note
 | 
16 Sep 2015
Technical note |  | 16 Sep 2015

Technical Note: A proposal for ice nucleation terminology

G. Vali, P. J. DeMott, O. Möhler, and T. F. Whale

Related authors

Comment on “A universally applicable method of calculating confidence bands for ice nucleation spectra derived from droplet freezing experiments” by Fahy et al. (2022)
Gabor Vali
Atmos. Meas. Tech., 16, 4303–4306, https://doi.org/10.5194/amt-16-4303-2023,https://doi.org/10.5194/amt-16-4303-2023, 2023
Short summary
Exploratory experiments on pre-activated freezing nucleation on mercuric iodide
Gabor Vali
Atmos. Chem. Phys., 21, 2551–2568, https://doi.org/10.5194/acp-21-2551-2021,https://doi.org/10.5194/acp-21-2551-2021, 2021
Short summary
Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, and confidence limits
Gabor Vali
Atmos. Meas. Tech., 12, 1219–1231, https://doi.org/10.5194/amt-12-1219-2019,https://doi.org/10.5194/amt-12-1219-2019, 2019
Short summary
Time-dependent freezing rate parcel model
G. Vali and J. R. Snider
Atmos. Chem. Phys., 15, 2071–2079, https://doi.org/10.5194/acp-15-2071-2015,https://doi.org/10.5194/acp-15-2071-2015, 2015
Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces
G. Vali
Atmos. Chem. Phys., 14, 5271–5294, https://doi.org/10.5194/acp-14-5271-2014,https://doi.org/10.5194/acp-14-5271-2014, 2014

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024,https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023,https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023,https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary

Cited articles

Anderson, B. J. and Hallett, J.: Supersaturation and time dependence of ice nucleation from the vapor on single crystal substrates, J. Atmos. Sci., 33, 822–832, 1976.
Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012.
Connolly, P. J., Möhler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T., and Gallagher, M.: Studies of heterogeneous freezing by three different desert dust samples, Atmos. Chem. Phys., 9, 2805–2824, https://doi.org/10.5194/acp-9-2805-2009, 2009.
Hartmann, S., Augustin, S., Clauss, T., Wex, H., Šantl-Temkiv, T., Voigtländer, J., Niedermeier, D., and Stratmann, F.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751–5766, https://doi.org/10.5194/acp-13-5751-2013, 2013.
Herbert, R. J., Murray, B. J., Whale, T. F., Dobbie, S. J., and Atkinson, J. D.: Representing time-dependent freezing behaviour in immersion mode ice nucleation, Atmos. Chem. Phys., 14, 8501–8520, https://doi.org/10.5194/acp-14-8501-2014, 2014.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Clarification is needed in the terminology used to discuss ice nucleation in the literature. Conflicting interpretations coupled with uncertainties about the details of the processes have led to difficulties in the clear communication of results and ideas. This paper contains a proposal for future usage. This proposed terminology was arrived at as a result of a year-long exchange of suggestions by a number of scientists.
Altmetrics
Final-revised paper
Preprint