Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 18
Atmos. Chem. Phys., 15, 10263–10270, 2015
https://doi.org/10.5194/acp-15-10263-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 10263–10270, 2015
https://doi.org/10.5194/acp-15-10263-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Technical note 16 Sep 2015

Technical note | 16 Sep 2015

Technical Note: A proposal for ice nucleation terminology

G. Vali et al.

Related authors

Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, and confidence limits
Gabor Vali
Atmos. Meas. Tech., 12, 1219–1231, https://doi.org/10.5194/amt-12-1219-2019,https://doi.org/10.5194/amt-12-1219-2019, 2019
Short summary
Time-dependent freezing rate parcel model
G. Vali and J. R. Snider
Atmos. Chem. Phys., 15, 2071–2079, https://doi.org/10.5194/acp-15-2071-2015,https://doi.org/10.5194/acp-15-2071-2015, 2015
Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces
G. Vali
Atmos. Chem. Phys., 14, 5271–5294, https://doi.org/10.5194/acp-14-5271-2014,https://doi.org/10.5194/acp-14-5271-2014, 2014

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Equilibrium droplet size distributions in a turbulent cloud chamber with uniform supersaturation
Steven K. Krueger
Atmos. Chem. Phys., 20, 7895–7909, https://doi.org/10.5194/acp-20-7895-2020,https://doi.org/10.5194/acp-20-7895-2020, 2020
Short summary
Protein aggregates nucleate ice: the example of apoferritin
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020,https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
No anomalous supersaturation in ultracold cirrus laboratory experiments
Benjamin W. Clouser, Kara D. Lamb, Laszlo C. Sarkozy, Jan Habig, Volker Ebert, Harald Saathoff, Ottmar Möhler, and Elisabeth J. Moyer
Atmos. Chem. Phys., 20, 1089–1103, https://doi.org/10.5194/acp-20-1089-2020,https://doi.org/10.5194/acp-20-1089-2020, 2020
Short summary
Lateral facet growth of ice and snow – Part 1: Observations and applications to secondary habits
Jon Nelson and Brian D. Swanson
Atmos. Chem. Phys., 19, 15285–15320, https://doi.org/10.5194/acp-19-15285-2019,https://doi.org/10.5194/acp-19-15285-2019, 2019
Short summary
The Role of Contact Angle and Pore Width on Pore Condensation and Freezing
Robert O. David, Jonas Fahrni, Claudia Marcolli, Fabian Mahrt, Dominik Brühwiler, and Zamin A. Kanji
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1019,https://doi.org/10.5194/acp-2019-1019, 2019
Revised manuscript accepted for ACP
Short summary

Cited articles

Anderson, B. J. and Hallett, J.: Supersaturation and time dependence of ice nucleation from the vapor on single crystal substrates, J. Atmos. Sci., 33, 822–832, 1976.
Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012.
Connolly, P. J., Möhler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T., and Gallagher, M.: Studies of heterogeneous freezing by three different desert dust samples, Atmos. Chem. Phys., 9, 2805–2824, https://doi.org/10.5194/acp-9-2805-2009, 2009.
Hartmann, S., Augustin, S., Clauss, T., Wex, H., Šantl-Temkiv, T., Voigtländer, J., Niedermeier, D., and Stratmann, F.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751–5766, https://doi.org/10.5194/acp-13-5751-2013, 2013.
Herbert, R. J., Murray, B. J., Whale, T. F., Dobbie, S. J., and Atkinson, J. D.: Representing time-dependent freezing behaviour in immersion mode ice nucleation, Atmos. Chem. Phys., 14, 8501–8520, https://doi.org/10.5194/acp-14-8501-2014, 2014.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Clarification is needed in the terminology used to discuss ice nucleation in the literature. Conflicting interpretations coupled with uncertainties about the details of the processes have led to difficulties in the clear communication of results and ideas. This paper contains a proposal for future usage. This proposed terminology was arrived at as a result of a year-long exchange of suggestions by a number of scientists.
Clarification is needed in the terminology used to discuss ice nucleation in the literature....
Citation
Final-revised paper
Preprint