Articles | Volume 14, issue 18
https://doi.org/10.5194/acp-14-9537-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-9537-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dôme (1465 m a.s.l.), France
H. Holmgren
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
K. Sellegri
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
M. Hervo
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
E. Freney
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
P. Villani
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
now at: Soluzioni e Sviluppo Strumentazione Scientifica, Modena, Italy
P. Laj
Laboratoire de Météorologie Physique, CNRS UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Aubière Cedex, Université Blaise Pascal, France
now at: Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS UMR5183, Université Joseph Fourier Grenoble 1, St Martin d'Hère, France
Related authors
No articles found.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-790, https://doi.org/10.5194/acp-2022-790, 2023
Preprint under review for ACP
Short summary
Short summary
The number of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of four at low seawater temperatures compared to moderate temperatures, and quantify the temperature dependence as a function of the ocean biogeochemistry.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-780, https://doi.org/10.5194/acp-2022-780, 2022
Preprint under review for ACP
Short summary
Short summary
La Paz and El Alto are two fast-growing high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, out of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Maija Peltola, Clémence Rose, Jonathan V. Trueblood, Sally Gray, Mike Harvey, and Karine Sellegri
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-307, https://doi.org/10.5194/acp-2022-307, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We measured the chemical composition of ambient ions at a coastal New Zealand site and connected these data with aerosol size distribution data to study the chemical precursors of new particle formation at the site. Our results showed that iodine oxides and sulfur species were important for particle formation in marine air while in land-influenced air sulfuric acid and organics were connected to new particle formation events.
Maija Peltola, Clémence Rose, Jonathan V. Trueblood, Sally Gray, Mike Harvey, and Karine Sellegri
Atmos. Chem. Phys., 22, 6231–6254, https://doi.org/10.5194/acp-22-6231-2022, https://doi.org/10.5194/acp-22-6231-2022, 2022
Short summary
Short summary
Despite the importance of marine aerosol measurements for constraining climate models, these measurements are scarce. We measured the aerosol particle number size distribution in coastal New Zealand over a total period of 10 months. This paper analyses the aerosol properties at the site, with a special focus on new particle formation and marine air masses. New particle formation was observed frequently, but in marine air masses it did not follow traditional event criteria.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys., 21, 12479–12493, https://doi.org/10.5194/acp-21-12479-2021, https://doi.org/10.5194/acp-21-12479-2021, 2021
Short summary
Short summary
We present the daily and seasonal variability in black carbon (BC) in surface snow inferred from two specific experiments based on the hourly and daily time resolution sampling during the Arctic spring in Svalbard. These unique data sets give us, for the first time, the opportunity to evaluate the associations between the observed surface snow BC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Clémence Rose, Matti P. Rissanen, Siddharth Iyer, Jonathan Duplissy, Chao Yan, John B. Nowak, Aurélie Colomb, Régis Dupuy, Xu-Cheng He, Janne Lampilahti, Yee Jun Tham, Daniela Wimmer, Jean-Marc Metzger, Pierre Tulet, Jérôme Brioude, Céline Planche, Markku Kulmala, and Karine Sellegri
Atmos. Chem. Phys., 21, 4541–4560, https://doi.org/10.5194/acp-21-4541-2021, https://doi.org/10.5194/acp-21-4541-2021, 2021
Short summary
Short summary
Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation. However, direct measurements of [H2SO4] remain challenging, motivating the development of proxies. Using data collected in two different volcanic plumes, we show, under these specific conditions, the good performance of a proxy from the literature and also highlight the benefit of the newly developed proxies for the prediction of the highest [H2SO4] values.
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247, https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
Short summary
This study identifies the main drivers of the formation and transformation processes of submicron particles and highlights that the thick coating of rBC was a result of active conversion of hygroscopic inorganic salts leading to fine aerosol pollution. Consequently, we suggest BC particles as a key contributor to PM2.5 mass increase, which implies that BC reduction is an effective mitigation against haze pollution as well as climate change in Northeast Asia.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-574, https://doi.org/10.5194/acp-2020-574, 2020
Preprint withdrawn
Short summary
Short summary
We present the daily and seasonal variability of Black carbon inferred from two specific experiment based on the hourly and daily time resolution sampling strategy. These unique datasets give us for the first time the opportunity to evaluate the associations between the observed surface snow rBC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters, via a multiple linear regression approach.
Jean-Luc Baray, Laurent Deguillaume, Aurélie Colomb, Karine Sellegri, Evelyn Freney, Clémence Rose, Joël Van Baelen, Jean-Marc Pichon, David Picard, Patrick Fréville, Laëtitia Bouvier, Mickaël Ribeiro, Pierre Amato, Sandra Banson, Angelica Bianco, Agnès Borbon, Lauréline Bourcier, Yannick Bras, Marcello Brigante, Philippe Cacault, Aurélien Chauvigné, Tiffany Charbouillot, Nadine Chaumerliac, Anne-Marie Delort, Marc Delmotte, Régis Dupuy, Antoine Farah, Guy Febvre, Andrea Flossmann, Christophe Gourbeyre, Claude Hervier, Maxime Hervo, Nathalie Huret, Muriel Joly, Victor Kazan, Morgan Lopez, Gilles Mailhot, Angela Marinoni, Olivier Masson, Nadège Montoux, Marius Parazols, Frédéric Peyrin, Yves Pointin, Michel Ramonet, Manon Rocco, Martine Sancelme, Stéphane Sauvage, Martina Schmidt, Emmanuel Tison, Mickaël Vaïtilingom, Paolo Villani, Miao Wang, Camille Yver-Kwok, and Paolo Laj
Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, https://doi.org/10.5194/amt-13-3413-2020, 2020
Short summary
Short summary
CO-PDD (Cézeaux-Aulnat-Opme-puy de Dôme) is a fully instrumented platform for atmospheric research. The four sites located at different altitudes from 330 to 1465 m around Clermont-Ferrand (France) host in situ and remote sensing instruments to measure atmospheric composition, including long-term trends and variability, to study interconnected processes (microphysical, chemical, biological, chemical, and dynamical) and to provide a reference point for climate models.
Aurélien Chauvigné, Diego Aliaga, Karine Sellegri, Nadège Montoux, Radovan Krejci, Griša Močnik, Isabel Moreno, Thomas Müller, Marco Pandolfi, Fernando Velarde, Kay Weinhold, Patrick Ginot, Alfred Wiedensohler, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 19, 14805–14824, https://doi.org/10.5194/acp-19-14805-2019, https://doi.org/10.5194/acp-19-14805-2019, 2019
Short summary
Short summary
The study presents for the first time the analysis of aerosol optical properties at the unique high-altitude station of Chacaltaya, Bolivia. Ideally located, the station allows us to better understand influences of urban areas and the Amazon Forest on tropospheric properties. An emerging method is applied to characterize aerosol origins and permits us to illustrate evidence of natural and anthropogenic influences.
Clémence Rose, Brice Foucart, David Picard, Aurélie Colomb, Jean-Marc Metzger, Pierre Tulet, and Karine Sellegri
Atmos. Chem. Phys., 19, 13243–13265, https://doi.org/10.5194/acp-19-13243-2019, https://doi.org/10.5194/acp-19-13243-2019, 2019
Short summary
Short summary
New particle formation (NPF) is a significant climate-relevant source of aerosols in the atmosphere. We show that during the eruptive periods of the Piton de la Fournaise in 2015, NPF was favoured compared to regular days. Using the largest dataset ever reported in volcanic plume conditions, we quantify the emission rates of particles over a broad size range and provide a new statistically robust parameterization to take into account this important source of atmospheric particles in models.
Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, and Hans-Werner Jacobi
Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018, https://doi.org/10.5194/acp-18-14037-2018, 2018
Short summary
Short summary
The research community aims to quantify the actual contribution of soot particles to the recent Arctic warming. We discovered that mixing of soot with other components might enhance its light absorption power by 50 %. The neglection of such amplification might lead to the underestimation of radiative forcing by 0.12 W m−2. Thus a better understanding of the optical properties of soot is a crucial step for an accurate quantification of the radiative impact of soot in the Arctic atmosphere.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary
Short summary
The focus of these experiments, within the ChArMEx project, were to better understand the chemical properties of ambient aerosols over the Mediterranean region. A series of airborne measurements were performed aboard the French research aircraft, the ATR42, during the summer period. Aerosol and gas-phase chemical mass spectrometry allowed us to understand the sources and formation of organic aerosols. Numerical models were incorporated into this study to help interpret our observations.
Joel Brito, Evelyn Freney, Pamela Dominutti, Agnes Borbon, Sophie L. Haslett, Anneke M. Batenburg, Aurelie Colomb, Regis Dupuy, Cyrielle Denjean, Frederic Burnet, Thierry Bourriane, Adrien Deroubaix, Karine Sellegri, Stephan Borrmann, Hugh Coe, Cyrille Flamant, Peter Knippertz, and Alfons Schwarzenboeck
Atmos. Chem. Phys., 18, 757–772, https://doi.org/10.5194/acp-18-757-2018, https://doi.org/10.5194/acp-18-757-2018, 2018
Short summary
Short summary
This work focuses on sources of submicron aerosol particles over southern West Africa (SWA). Results have shown that isoprene, a gas-phase compound of biogenic origin, is responsible for roughly 25 % of the organic aerosol (OA) loading, under most background or urban plumes alike. This fraction represents a lower estimate from the biogenic contribution in this fairly polluted region. This work sheds light upon the role of anthropogenic and biogenic emissions on the pollution burden over SWA.
Allison N. Schwier, Karine Sellegri, Sébastien Mas, Bruno Charrière, Jorge Pey, Clémence Rose, Brice Temime-Roussel, Jean-Luc Jaffrezo, David Parin, David Picard, Mickael Ribeiro, Greg Roberts, Richard Sempéré, Nicolas Marchand, and Barbara D'Anna
Atmos. Chem. Phys., 17, 14645–14660, https://doi.org/10.5194/acp-17-14645-2017, https://doi.org/10.5194/acp-17-14645-2017, 2017
Short summary
Short summary
In the present paper, we quantify sea-to-air emission fluxes of aerosol to the atmosphere and characterize their physical and chemical properties as a function of the seawater biochemical and physical properties. Fluxes are evaluated with an original approach, a "lab in the field" experiment that preserves the seawater and atmospheric complexity while isolating air-to-sea exchanges from their surroundings. We show different features of the aerosol emission fluxes compared to previous findings.
Kevin Berland, Clémence Rose, Jorge Pey, Anais Culot, Evelyn Freney, Nikolaos Kalivitis, Giorgios Kouvarakis, José Carlos Cerro, Marc Mallet, Karine Sartelet, Matthias Beckmann, Thierry Bourriane, Greg Roberts, Nicolas Marchand, Nikolaos Mihalopoulos, and Karine Sellegri
Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, https://doi.org/10.5194/acp-17-9567-2017, 2017
Short summary
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Imad El Haddad, Emily A. Bruns, Monica Crippa, Laurent Poulain, Mikko Äijälä, Samara Carbone, Evelyn Freney, Colin O'Dowd, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7653–7669, https://doi.org/10.5194/acp-17-7653-2017, https://doi.org/10.5194/acp-17-7653-2017, 2017
Short summary
Short summary
Organic aerosol (OA) comprises the main fraction of fine particulate matter (PM1). Using a new VBS parameterization, we performed model-based source apportionment studies to assess the importance of different emission sources to the total OA loads in Europe during winter periods. Our results indicate that residential wood burning emissions represent the major source of OA, followed by non-residential emission sources (i.e. traffic and industries).
Camille Mouchel-Vallon, Laurent Deguillaume, Anne Monod, Hélène Perroux, Clémence Rose, Giovanni Ghigo, Yoann Long, Maud Leriche, Bernard Aumont, Luc Patryl, Patrick Armand, and Nadine Chaumerliac
Geosci. Model Dev., 10, 1339–1362, https://doi.org/10.5194/gmd-10-1339-2017, https://doi.org/10.5194/gmd-10-1339-2017, 2017
Short summary
Short summary
The Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) describes oxidation of water-soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) (global rate constants and branching ratios for HO• abstraction and addition) and GROMHE SAR (Henry's law constants for undocumented species). It is coupled to the MCM gas phase mechanism and is included in a model using the DSMACC model and KPP to analyze experimental and field data.
Saehee Lim, Xavier Faïn, Patrick Ginot, Vladimir Mikhalenko, Stanislav Kutuzov, Jean-Daniel Paris, Anna Kozachek, and Paolo Laj
Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, https://doi.org/10.5194/acp-17-3489-2017, 2017
Short summary
Short summary
A record of light-absorbing refractory black carbon (rBC), emitted by fossil fuel combustion and biomass burning, was reconstructed from the ice cores drilled at a high-altitude eastern European site in Mt. Elbrus. This record reports for the first time the high-resolution rBC mass concentrations in the European outflows over the past 189 years. Our study suggests that the past changes in BC emissions of eastern Europe need to be considered in assessing ongoing air quality regulations.
Jenni Kontkanen, Katrianne Lehtipalo, Lauri Ahonen, Juha Kangasluoma, Hanna E. Manninen, Jani Hakala, Clémence Rose, Karine Sellegri, Shan Xiao, Lin Wang, Ximeng Qi, Wei Nie, Aijun Ding, Huan Yu, Shanhu Lee, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 2163–2187, https://doi.org/10.5194/acp-17-2163-2017, https://doi.org/10.5194/acp-17-2163-2017, 2017
Short summary
Short summary
The concentrations of ~1–3 nm particles were investigated at nine sites around the world. Sub-3 nm particle concentrations were highest at the sites with strong anthropogenic influence. Electrically neutral particles dominated sub-3 nm particle concentrations in polluted environments and in boreal forest during spring and summer. Sub-3 nm particle concentrations were observed to be determined by the availability of precursor vapors rather than the sink caused by preexisting aerosol particles.
Clémence Rose, Karine Sellegri, Isabel Moreno, Fernando Velarde, Michel Ramonet, Kay Weinhold, Radovan Krejci, Marcos Andrade, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 17, 1529–1541, https://doi.org/10.5194/acp-17-1529-2017, https://doi.org/10.5194/acp-17-1529-2017, 2017
Short summary
Short summary
Using an indirect method based on particle size distribution measurements, we show that new particle formation (NPF) is responsible for a large contribution to the cloud condensation nuclei concentration at the highest observatory in the world (Bolivia, 5240 m a.s.l.) as expected from some global model predictions. We also provide unique results related to the influence of the boundary layer on the NPF process, showing direct evidence for the important NPF frequency in the free troposphere.
C. Denjean, F. Cassola, A. Mazzino, S. Triquet, S. Chevaillier, N. Grand, T. Bourrianne, G. Momboisse, K. Sellegri, A. Schwarzenbock, E. Freney, M. Mallet, and P. Formenti
Atmos. Chem. Phys., 16, 1081–1104, https://doi.org/10.5194/acp-16-1081-2016, https://doi.org/10.5194/acp-16-1081-2016, 2016
Short summary
Short summary
This study investigates the size distribution, chemical composition, and optical properties of Saharan mineral dust transported over the western Mediterranean using in situ measurements collected from aircraft. Their variability due to altitude, time of transport, and mixing rate with pollution particles are discussed. We found moderate light absorption of the dust plumes even in the presence of pollution particles and the persistence of large dust particles after transport in the Mediterranean.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
Q. J. Zhang, M. Beekmann, E. Freney, K. Sellegri, J. M. Pichon, A. Schwarzenboeck, A. Colomb, T. Bourrianne, V. Michoud, and A. Borbon
Atmos. Chem. Phys., 15, 13973–13992, https://doi.org/10.5194/acp-15-13973-2015, https://doi.org/10.5194/acp-15-13973-2015, 2015
Short summary
Short summary
Secondary organic aerosol (SOA) is an important pollutant formed from megacity emissions at a regional scale. An original method based on ratios of different pollutants is used to specifically validate the aerosol scheme (the volatility basis set approach) within a CTM. The method is applied to airborne measurements performed within the Paris plume during the MEGAPOLI summer campaign. Simulations indicate that SOA of anthropogenic origin has a significant impact on regional air quality.
M. Lopez, M. Schmidt, M. Ramonet, J.-L. Bonne, A. Colomb, V. Kazan, P. Laj, and J.-M. Pichon
Atmos. Meas. Tech., 8, 3941–3958, https://doi.org/10.5194/amt-8-3941-2015, https://doi.org/10.5194/amt-8-3941-2015, 2015
C. Rose, K. Sellegri, E. Freney, R. Dupuy, A. Colomb, J.-M. Pichon, M. Ribeiro, T. Bourianne, F. Burnet, and A. Schwarzenboeck
Atmos. Chem. Phys., 15, 10203–10218, https://doi.org/10.5194/acp-15-10203-2015, https://doi.org/10.5194/acp-15-10203-2015, 2015
Short summary
Short summary
In the present paper we report airborne measurements of new particle formation (NPF) above the Mediterranean Sea (HYMEX campaign). We show that NPF occurs over large areas above the sea, but the process is clearly promoted at high altitude, above 1000m, i.e. frequently in the free troposphere. NPF also seems to be mainly influenced by local processes occurring above the sea. After their formation, particles slowly grow at high altitude while not being greatly depleted or affected by coagulation.
H.-W. Jacobi, S. Lim, M. Ménégoz, P. Ginot, P. Laj, P. Bonasoni, P. Stocchi, A. Marinoni, and Y. Arnaud
The Cryosphere, 9, 1685–1699, https://doi.org/10.5194/tc-9-1685-2015, https://doi.org/10.5194/tc-9-1685-2015, 2015
Short summary
Short summary
We detected up to 70 ppb of black carbon (BC) in surface snow in the upper Khumbu Valley, Nepal. With an upgraded snowpack model, including radiative transfer inside the snow, we studied the impact of BC on snow albedo, melting and radiative forcing for the sensitive high altitude regions of the Himalayas. We found that due to BC, the melting of the snow can be shifted by several days up to several weeks depending on meteorological conditions. The impact of BC is larger in dirty snow.
A. N. Schwier, C. Rose, E. Asmi, A. M. Ebling, W. M. Landing, S. Marro, M.-L. Pedrotti, A. Sallon, F. Iuculano, S. Agusti, A. Tsiola, P. Pitta, J. Louis, C. Guieu, F. Gazeau, and K. Sellegri
Atmos. Chem. Phys., 15, 7961–7976, https://doi.org/10.5194/acp-15-7961-2015, https://doi.org/10.5194/acp-15-7961-2015, 2015
Short summary
Short summary
The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect, we deployed mesocosms in the Mediterranean Sea for several weeks during both winter pre-bloom and summer oligotrophic conditions and subjected them to various levels of CO2. We observed larger effects due to the differences between a pre-bloom and oligotrophic environment than due to CO2 levels.
C. Barbet, L. Deguillaume, N. Chaumerliac, M. Leriche, A. Berger, E. Freney, A. Colomb, K. Sellegri, L. Patryl, and P. Armand
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-13395-2015, https://doi.org/10.5194/acpd-15-13395-2015, 2015
Preprint withdrawn
C. Rose, K. Sellegri, E. Asmi, M. Hervo, E. Freney, A. Colomb, H. Junninen, J. Duplissy, M. Sipilä, J. Kontkanen, K. Lehtipalo, and M. Kulmala
Atmos. Chem. Phys., 15, 3413–3428, https://doi.org/10.5194/acp-15-3413-2015, https://doi.org/10.5194/acp-15-3413-2015, 2015
Y. Wang, K. N. Sartelet, M. Bocquet, P. Chazette, M. Sicard, G. D'Amico, J. F. Léon, L. Alados-Arboledas, A. Amodeo, P. Augustin, J. Bach, L. Belegante, I. Binietoglou, X. Bush, A. Comerón, H. Delbarre, D. García-Vízcaino, J. L. Guerrero-Rascado, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, F. Molero, N. Montoux, A. Muñoz, C. Muñoz, D. Nicolae, A. Papayannis, G. Pappalardo, J. Preissler, V. Rizi, F. Rocadenbosch, K. Sellegri, F. Wagner, and F. Dulac
Atmos. Chem. Phys., 14, 12031–12053, https://doi.org/10.5194/acp-14-12031-2014, https://doi.org/10.5194/acp-14-12031-2014, 2014
M. Hervo, K. Sellegri, J. M. Pichon, J. C. Roger, and P. Laj
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-27731-2014, https://doi.org/10.5194/acpd-14-27731-2014, 2014
Revised manuscript not accepted
S. Lim, X. Faïn, M. Zanatta, J. Cozic, J.-L. Jaffrezo, P. Ginot, and P. Laj
Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, https://doi.org/10.5194/amt-7-3307-2014, 2014
P. Ginot, M. Dumont, S. Lim, N. Patris, J.-D. Taupin, P. Wagnon, A. Gilbert, Y. Arnaud, A. Marinoni, P. Bonasoni, and P. Laj
The Cryosphere, 8, 1479–1496, https://doi.org/10.5194/tc-8-1479-2014, https://doi.org/10.5194/tc-8-1479-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols, A. Marinoni, P. Amato, A.-M. Delort, V. Vinatier, A. Flossmann, N. Chaumerliac, J. M. Pichon, S. Houdier, P. Laj, K. Sellegri, A. Colomb, M. Brigante, and G. Mailhot
Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, https://doi.org/10.5194/acp-14-1485-2014, 2014
E. J. Freney, K. Sellegri, F. Canonaco, A. Colomb, A. Borbon, V. Michoud, J.-F. Doussin, S. Crumeyrolle, N. Amarouche, J.-M. Pichon, T. Bourianne, L. Gomes, A. S. H. Prevot, M. Beekmann, and A. Schwarzenböeck
Atmos. Chem. Phys., 14, 1397–1412, https://doi.org/10.5194/acp-14-1397-2014, https://doi.org/10.5194/acp-14-1397-2014, 2014
C. Rose, J. Boulon, M. Hervo, H. Holmgren, E. Asmi, M. Ramonet, P. Laj, and K. Sellegri
Atmos. Chem. Phys., 13, 11573–11594, https://doi.org/10.5194/acp-13-11573-2013, https://doi.org/10.5194/acp-13-11573-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
A. M. Gabey, M. Vaitilingom, E. Freney, J. Boulon, K. Sellegri, M. W. Gallagher, I. P. Crawford, N. H. Robinson, W. R. Stanley, and P. H. Kaye
Atmos. Chem. Phys., 13, 7415–7428, https://doi.org/10.5194/acp-13-7415-2013, https://doi.org/10.5194/acp-13-7415-2013, 2013
A. Asmi, M. Collaud Coen, J. A. Ogren, E. Andrews, P. Sheridan, A. Jefferson, E. Weingartner, U. Baltensperger, N. Bukowiecki, H. Lihavainen, N. Kivekäs, E. Asmi, P. P. Aalto, M. Kulmala, A. Wiedensohler, W. Birmili, A. Hamed, C. O'Dowd, S. G Jennings, R. Weller, H. Flentje, A. M. Fjaeraa, M. Fiebig, C. L. Myhre, A. G. Hallar, E. Swietlicki, A. Kristensson, and P. Laj
Atmos. Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-2013, https://doi.org/10.5194/acp-13-895-2013, 2013
M. Collaud Coen, E. Andrews, A. Asmi, U. Baltensperger, N. Bukowiecki, D. Day, M. Fiebig, A. M. Fjaeraa, H. Flentje, A. Hyvärinen, A. Jefferson, S. G. Jennings, G. Kouvarakis, H. Lihavainen, C. Lund Myhre, W. C. Malm, N. Mihapopoulos, J. V. Molenar, C. O'Dowd, J. A. Ogren, B. A. Schichtel, P. Sheridan, A. Virkkula, E. Weingartner, R. Weller, and P. Laj
Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013, https://doi.org/10.5194/acp-13-869-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Quantifying particle-to-particle heterogeneity in aerosol hygroscopicity
Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport
Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin
Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor Observatory: larger and black carbon (BC)-dominant particles transported from Siberian wildfires
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
New particle formation and growth during summer in an urban environment: a dual chamber study
An evaluation of biomass burning aerosol mass, extinction, and size distribution in GEOS using observations from CAMP2Ex
Elucidating ozone and PM2.5 pollution in Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Constraining the particle-scale diversity of black carbon light absorption using a unified framework
Ice Nucleating Particles in Northern Greenland: annual cycles, biological contribution and parameterizations
Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm
Predicting atmospheric background number concentration of ice-nucleating particles in the Arctic
Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes
Fluorescence characteristics, absorption properties, and radiative effects of water-soluble organic carbon in seasonal snow across northeastern China
Measurement report: Size distributions of urban aerosols down to 1 nm from long-term measurements
Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China
On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments
Aerosol deposition to the boreal forest in the vicinity of the Alberta Oil Sands
Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP2Ex
Comparison of particle number size distribution trends in ground measurements and climate models
Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
Long-range transported continental aerosol in the Eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei
Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
Parameterizations of size distribution and refractive index of biomass burning organic aerosol with black carbon content
Newly identified climatically and environmentally significant high-latitude dust sources
Measurement Report: Understanding the seasonal cycle of Southern Ocean aerosols
Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties
Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site
Measurement report: A multi-year study on the impacts of Chinese New Year celebrations on air quality in Beijing, China
Mixing state of black carbon at different atmospheres in north and southwest China
Columnar and surface urban aerosol in the Moscow megacity according to measurements and simulations with the COSMO-ART model
Vertical aerosol particle exchange in the marine boundary layer estimated from helicopter-borne measurements in the Azores region
Circum-Antarctic abundance and properties of CCN and INPs
The ice-nucleating activity of African mineral dust in the Caribbean boundary layer
Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis
Volatility parameterization of ambient organic aerosols at a rural site of the North China Plain
Light absorption by brown carbon over the South-East Atlantic Ocean
Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas
Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions
Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic
Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Haichao Wang, Yongbo Tan, Zheng Shi, Ning Yang, and Tianxue Zheng
Atmos. Chem. Phys., 23, 2843–2857, https://doi.org/10.5194/acp-23-2843-2023, https://doi.org/10.5194/acp-23-2843-2023, 2023
Short summary
Short summary
The effects of aerosols on lightning are complex and still far from understood. We analysed the impacts of aerosols on lightning activity in the Sichuan Basin. Results show that lightning flashes first increase with aerosol loading during all periods and then behave differently (decrease in the afternoon and flatten at night). This suggests that the changes in solar radiation can modulate the aerosol effects on the occurrence and development of convection and lightning activity.
Nathaniel W. May, Noah Bernays, Ryan Farley, Qi Zhang, and Daniel A. Jaffe
Atmos. Chem. Phys., 23, 2747–2764, https://doi.org/10.5194/acp-23-2747-2023, https://doi.org/10.5194/acp-23-2747-2023, 2023
Short summary
Short summary
In summer 2019 at Mt. Bachelor Observatory, we observed smoke from wildfires with transport times ranging from less than a day up to 2 weeks. Aerosol absorption of multi-day transported smoke was dominated by black carbon, while smoke with shorter transport times had greater brown carbon absorption. Notably, Siberian smoke exhibited aerosol scattering and physical properties indicative of contributions from larger particles than typically observed in smoke.
Adelaide Dinoi, Daniel Gulli, Kay Weinhold, Ivano Ammoscato, Claudia R. Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023, https://doi.org/10.5194/acp-23-2167-2023, 2023
Short summary
Short summary
In this study, particle number size distribution analysis was performed with the purpose of characterizing new particle formation (NPF) events occurring in two areas of southern Italy over 5 years of measurements. The identification of NPF events produced different results in terms of frequency and seasonality. Some of the main variables involved in the process, the local atmospheric conditions in which the events occurred, and the role of the air masses were discussed and compared.
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023, https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic analysis of atmospheric particles and for scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups of atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles has been completed, which has potential significance in predicting the contribution of the atmospheric particulate hygroscopicity and particle growth mechanism.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Chunshui Lin, Ru-Jin Huang, Haobin Zhong, Jing Duan, Zixi Wang, Wei Huang, and Wei Xu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1440, https://doi.org/10.5194/egusphere-2022-1440, 2022
Short summary
Short summary
The complex interaction between O3 and PM2.5, coupled with the topology of the Fenwei Plain and the evolution of the boundary layer height, highlight the challenges in further reducing particulate pollution in winter despite years of efforts to reduce emissions. Through scenario analysis in a chemical box model constrained by observation, we show the co-benefits of reducing NOx and VOCs simultaneously in reducing ozone and SOA.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022, https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Short summary
Understanding and parameterizing the influences of black carbon (BC) particle morphology and compositional heterogeneity on its light absorption represent a fundamental problem. We develop scaling laws using a single unifying parameter that effectively encompasses large-scale diversity observed in BC light absorption on a per-particle basis. The laws help reconcile the disparities between field observations and model predictions. Our framework is packaged in an open-source Python application.
Kevin Cheuk Hang Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, and Frank Stratmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-761, https://doi.org/10.5194/acp-2022-761, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Ice nucleating particles (INPs) play an important role in cloud formation, thus on our climate. But little is known about the abundance and properties of INPs, especially in the Arctic, where the temperature increases almost four times as fast as that of the rest of the globe. We observe higher INP concentrations and more biological INPs in summer than in winter, likely from local sources. We also provide three equations for estimating INP concentration in models at different times of the year.
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Short summary
The survival probability of new particles is the key parameter governing their influences on the atmosphere and climate, yet the knowledge of particle survival in the atmosphere is rather limited. We propose methods to compute the size-resolved particle survival probability and validate them using simulations and measurements from diverse environments. Using these methods, we could explain particle survival from the cluster size to the cloud condensation nuclei size.
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022, https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary
Short summary
The concentration of ice-nucleating particles (INPs) is atmospherically relevant for primary ice formation in clouds. In this work, from 12 weeks of field measurement data in the Arctic, we developed a new parameterization to predict INP concentrations applicable for pristine background conditions based only on temperature. The INP parameterization could improve the cloud microphysical representation in climate models, aiding in Arctic climate predictions.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Chenjuan Deng, Yiran Li, Chao Yan, Jin Wu, Runlong Cai, Dongbin Wang, Yongchun Liu, Juha Kangasluoma, Veli-Matti Kerminen, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 22, 13569–13580, https://doi.org/10.5194/acp-22-13569-2022, https://doi.org/10.5194/acp-22-13569-2022, 2022
Short summary
Short summary
The size distributions of urban atmospheric particles convey important information on their origins and impacts. This study investigates the characteristics of typical particle size distributions and key gaseous precursors in the long term in urban Beijing. A fitting function is proposed to represent and help interpret size distribution including particles and gaseous precursors. In addition to NPF (new particle formation) as the major source, vehicles can emit sub-3 nm particles as well
Qian Liu, Guixing Chen, Lifang Sheng, and Toshiki Iwasaki
Atmos. Chem. Phys., 22, 13371–13388, https://doi.org/10.5194/acp-22-13371-2022, https://doi.org/10.5194/acp-22-13371-2022, 2022
Short summary
Short summary
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO. By quantifying the CAO properties, we find the coldness and depth of the cold air mass are key factors affecting the rapid (slow) reappearance of air pollution through modulating the atmospheric boundary layer height and stability. We also find that the spatial pattern of CAO in high-latitude Eurasia a few days ahead can be recognized as a precursor for the reappearance of air pollution.
Loïc Gonzalez Carracedo, Katrianne Lehtipalo, Lauri R. Ahonen, Nina Sarnela, Sebastian Holm, Juha Kangasluoma, Markku Kulmala, Paul M. Winkler, and Dominik Stolzenburg
Atmos. Chem. Phys., 22, 13153–13166, https://doi.org/10.5194/acp-22-13153-2022, https://doi.org/10.5194/acp-22-13153-2022, 2022
Short summary
Short summary
Fast nanoparticle growth is essential for the survival of new aerosol particles in the atmosphere and hence their contribution to the climate. We show that using naturally charged ions for growth calculations can cause a significant error. During the diurnal cycle, the importance of ion-induced and neutral nucleation varies, causing the ion population to have a slower measurable apparent growth. Results suggest that data from ion spectrometers need to be considered with great care below 3 nm.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-656, https://doi.org/10.5194/acp-2022-656, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Measurements of sub-micron aerosols (small particles of size less than 1/1000 of a mm) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-637, https://doi.org/10.5194/acp-2022-637, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport events influences on aerosol physical properties and cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the Eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at ENA is successively assessed.
Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, and Min Hu
Atmos. Chem. Phys., 22, 12387–12399, https://doi.org/10.5194/acp-22-12387-2022, https://doi.org/10.5194/acp-22-12387-2022, 2022
Short summary
Short summary
Regional and total deposition doses for different age groups were quantified based on explicit hygroscopicity measurements. We found that particle hygroscopic growth led to a reduction (~24 %) in the total dose. The deposition rate of hygroscopic particles was higher in the daytime, while hydrophobic particles exhibited a higher rate at night and during rush hours. The results will deepen the understanding of the impact of hygroscopicity and the mixing state on deposition patterns in the lungs.
Biao Luo, Ye Kuang, Shan Huang, Qicong Song, Weiwei Hu, Wei Li, Yuwen Peng, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 22, 12401–12415, https://doi.org/10.5194/acp-22-12401-2022, https://doi.org/10.5194/acp-22-12401-2022, 2022
Short summary
Short summary
We performed comprehensive analysis on biomass burning organic aerosol (BBOA) size distributions, as well as mass scattering and absorption efficiencies, with an improved method of on-line quantification of brown carbon absorptions. Both BBOA volume size distribution and retrieved refractive index depend highly on combustion conditions represented by the black carbon content, which has significant implications for BBOA climate effect simulations.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-568, https://doi.org/10.5194/acp-2022-568, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Observations of aerosols in pristine regions are rare, but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia, and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Natalia E. Chubarova, Heike Vogel, Elizaveta E. Androsova, Alexander A. Kirsanov, Olga B. Popovicheva, Bernhard Vogel, and Gdaliy S. Rivin
Atmos. Chem. Phys., 22, 10443–10466, https://doi.org/10.5194/acp-22-10443-2022, https://doi.org/10.5194/acp-22-10443-2022, 2022
Short summary
Short summary
Effects of urban aerosol pollution in Moscow were analyzed using the COSMO-ART chemical transport model and intensive measurement campaigns. We show that urban aerosol comprises about 15–20% of columnar aerosol content, consisting mainly of fine aerosol mode. The black carbon (BC) fraction is about 5 %, depending on particle dispersion intensity (IPD). The BC fraction low value explains weak absorbing properties of the Moscow atmosphere. IPD also defines the daily cycle of urban aerosol species.
Janine Lückerath, Andreas Held, Holger Siebert, Michel Michalkow, and Birgit Wehner
Atmos. Chem. Phys., 22, 10007–10021, https://doi.org/10.5194/acp-22-10007-2022, https://doi.org/10.5194/acp-22-10007-2022, 2022
Short summary
Short summary
Three different methods were applied to estimate the vertical aerosol particle flux in the marine boundary layer (MBL) and between the MBL and free troposphere. For the first time, aerosol fluxes derived from these three methods were estimated and compared using airborne aerosol measurements using data from the ACORES field campaign in the northeastern Atlantic Ocean in July 2017. The amount of fluxes was small and directed up and down for different cases, but the methods were applicable.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Siman Ren, Lei Yao, Yuwei Wang, Gan Yang, Yiliang Liu, Yueyang Li, Yiqun Lu, Lihong Wang, and Lin Wang
Atmos. Chem. Phys., 22, 9283–9297, https://doi.org/10.5194/acp-22-9283-2022, https://doi.org/10.5194/acp-22-9283-2022, 2022
Short summary
Short summary
We improved the empirical functions between volatility and chemical formulas of organic aerosols based on lab experiments and field observations. It was found that organic compounds in ambient aerosols can be divided into two groups according to their O / C ratios and that there should be specialized volatility parameterizations for different O / C organic compounds.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Cited articles
Allan, J. D., Baumgardner, D., Raga, G. B., Mayol-Bracero, O. L., Morales-García, F., García-García, F., Montero-Martínez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G. P., and Krämer, M.: Clouds and aerosols in Puerto Rico – a new evaluation, Atmos. Chem. Phys., 8, 1293–1309, https://doi.org/10.5194/acp-8-1293-2008, 2008.
Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505–5538, https://doi.org/10.5194/acp-11-5505-2011, 2011.
Asmi, E., Freney, E., Hervo, M., Picard, D., Rose, C., Colomb, A., and Sellegri, K.: Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France, Atmos. Chem. Phys., 12, 11589–11607, https://doi.org/10.5194/acp-12-11589-2012, 2012.
Baltensperger, I., Kalberer, M., Dommen, J., Paulsen, D., Alfarra, M. R., Coe, H., Fisseha, R., Gascho, A., Gysel, M., Nyeki, S., Sax, M., Steinbacher, M., Prevot, A. S. H., Sjögren, S., Weingartner, E., and Zenobi, R.: Secondary organic aerosols from anthropogenic and biogenic precursors, Faraday Discuss., 130, 265–278, 2005.
Boulon, J., Sellegri, K., Hervo, M., Picard, D., Pichon, J.-M., Fréville, P., and Laj, P.: Investigation of nucleation events vertical extent: a long term study at two different altitude sites, Atmos. Chem. Phys., 11, 5625–5639, https://doi.org/10.5194/acp-11-5625-2011, 2011.
Bourcier, L., Sellegri, K., Chausse, P., Pichon, J. M., and Laj, P.: Seasonal variation of water-soluble inorganic components in aerosol size-segregated at the Puy de Dôme station (1465 m a.s.l.), France, J. Atmos. Chem., 69, 47–66, 2012.
Chan, M. N. and Chan, C. K.: Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance, Environ. Sci. Technol., 37, 5109–5115, 2003.
Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, 2014.
Cocker, D. R., Whitlock, N. E., Flagen, R. C., and Seinfeld, J. H.: Hygroscopic properties of Pasadena, California aerosol, Aerosol Sci. Tech., 35, 637–647, 2001.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT 4 modeling system of trajectories, dispersion, and deposition, Aust. Meteor. Mag., 47, 295–308, 1998.
Duplissy, J., Gysel, M., Sjogren, S., Meyer, N., Good, N., Kammermann, L., Michaud, V., Weigel, R., Martins dos Santos, S., Gruening, C., Villani, P., Laj, P., Sellegri, K., Metzger, A., McFiggans, G. B., Wehrle, G., Richter, R., Dommen, J., Ristovski, Z., Baltensperger, U., and Weingartner, E.: Intercomparison study of six HTDMAs: results and recommendations, Atmos. Meas. Tech., 2, 363–378, https://doi.org/10.5194/amt-2-363-2009, 2009.
Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot, A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J., and Baltensperger, U.: Relating hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11, 1155–1165, https://doi.org/10.5194/acp-11-1155-2011, 2011.
Freney, E. J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J. M., Colomb, A., Prévôt, A. S. H., and Laj, P.: Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France, Atmos. Chem. Phys., 11, 13047–13059, https://doi.org/10.5194/acp-11-13047-2011, 2011.
Gard, E. E., Kleeman, M. J., Gross, D. S., Hughes, L. S., Allen, J. O., Morrical, B. D., Fergenson, D. P., Dienes, T., Gälli, M. E., Johnson, R. J., Cass, G. R., and Prather, K. A.: Direct observation of heterogeneous chemistry in the atmosphere, Science, 20, 1184–1187, https://doi.org/10.1126/science.279.5354.1184, 1997.
Gysel, M., Weingartner, E., and Baltensperger, U.: Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols, Environ. Sci. Technol., 36, 63–68, 2002.
Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–144, https://doi.org/10.5194/acp-7-6131-2007, 2007.
Gysel, M., McFiggans, G. B., and Coe, H.: Inversion of tandem differential mobility analyser (TDMA) measurements, J. Aerosol Sci., 40, 134–151, 2009.
Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., and Buchmann, B.: Assessment of parameters describing representativeness of air quality in-situ measurement sites, Atmos. Chem. Phys., 10, 3561–3581, https://doi.org/10.5194/acp-10-3561-2010, 2010.
Huff Hartz, K. E. H., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M., and Pandis, S. N.: Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40, 605–617, 2006.
Hõrrak, U., Aalto, P. P., Salm, J., Komsaare, K., Tammet, H., Mäkelä, J. M., Laakso, L., and Kulmala, M.: Variation and balance of positive air ion concentrations in a boreal forest, Atmos. Chem. Phys., 8, 655–675, https://doi.org/10.5194/acp-8-655-2008, 2008.
IPCC: Climate change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, United Kingdom and NY, USA, 2013.
Laakso, L., Petäjä, T., Lehtinen, K. E. J., Kulmala, M., Paatero, J., Hõrrak, U., Tammet, H., and Joutsensaari, J.: Ion production rate in a boreal forest based on ion, particle and radiation measurements, Atmos. Chem. Phys., 4, 1933–1943, https://doi.org/10.5194/acp-4-1933-2004, 2004.
Kammermann, L., Gysel, M., Weingartner, E., and Baltensperger, U.: 13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.), Atmos. Chem. Phys., 10, 10717–10732, https://doi.org/10.5194/acp-10-10717-2010, 2010.
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Prenni, A. J., Carrico, C. M., Ervens, B., and Feingold, G.: Water activity and activation diameters from hygroscopicity data – Part II: Application to organic species, Atmos. Chem. Phys., 6, 795–809, https://doi.org/10.5194/acp-6-795-2006, 2006.
Köhler, H.: The nucleus in the growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152–1161, 1936.
Marinoni, A., Laj, P., Sellegri, K., and Mailhot, G.: Cloud chemistry at the Puy de Dôme: variability and relationships with environmental factors, Atmos. Chem. Phys., 4, 715–728, https://doi.org/10.5194/acp-4-715-2004, 2004.
Pagels, J., Strand, M., Rissler, J., Szpila, A., Gudmundsson, A., and Bohgard, M.: Characteristics of aerosol particles formed during grate combustion of moist forest residue, J. Aerosol. Sci., 34, 1043–1059, 2003.
Peng, C., Chan, M. N., and Chan, C. K.: The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Environ. Sci. Technol., 25, 4495–4501, 2001.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Piazzola, J., Sellegri, K., Bourcier, L., Mallet, M., Tedeschi, G., and Missamou, T.: Physicochemical characteristics of aerosols measured in the spring time in the Mediterranean coastal zone, Atmos. Environ., 54, 545–556, 2012.
Prenni, A. J., DeMorr, P. J., and Kreidenweis, S. M.: Water uptake of internally mixed particles containing ammonium sulphate and dicarboxylic acid, Atmos. Environ., 37, 4243–4251, 2003.
Prenni, A. J., Petters, M. D., Kreidenweis, S. D., DeMott, P. J., and Ziemann, P. J.: Cloud droplet activation of secondary organic aerosol, J. Geophys. Res., 112, D10223, https://doi.org/10.1029/2006JD007963, 2007.
Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggeman, E., Facchini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulus, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., Ten Brink, H., Tørseth, K., and Wiedensohler, A.: A European Aerosol Phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, https://doi.org/10.5194/acp-6-471-2006, 2006.
Rose, C., Boulon, J., Hervo, M., Holmgren, H., Asmi, E., Ramonet, M., Laj, P., and Sellegri, K.: Long-term observations of positive cluster ion concentration, sources and sinks at the high altitude site of the Puy de Dôme, Atmos. Chem. Phys. Discuss., 13, 14927–14975, https://doi.org/10.5194/acpd-13-14927-2013, 2013.
Saathoff, H., Naumann, K.-H., Schnaiter, M., Schöck, W., Möhler, O., Schurath, U., Weingartner, E., Gysel, P., and Baltensperger, U.: Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene, J. Aerosol Sci., 34, 1297–1321, 2003.
Sellegri, K., Gourdeau, J., Putaud, J.-P., and Despiau, S.: Chemical composition of marine aerosol in a Mediterranean coastal zone during the FETCH experiment, J. Geophys. Res., 106, 12023–12038, 2001.
Sellegri, K., Laj, P., Peron, F., Dupuy, R., Legrand, R., Preunkert, S., Putuad, J.-P., Cachier, H., and Ghermandi, G.: Mass balance of free tropospheric aerosol at the puy de Dôme (France) in winter, J. Geophys. Res., 108, D10223, https://doi.org/10.1029/2006JD007963, 2003.
Sjogren, S., Gysel, M., Weingartner, E., Alfarra, M. R., Duplissy, J., Cozic, J., Crosier, J., Coe, H., and Baltensperger, U.: Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland, Atmos. Chem. Phys., 8, 5715–5729, https://doi.org/10.5194/acp-8-5715-2008, 2008.
Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503, https://doi.org/10.5194/acp-10-7489-2010, 2010.
Swietlicki, E., Zhou, J. C., Covert, D. S., Hämeri, K., Busch, B., Väkeva, M., Dusek, U., Berg, O. H., Wiedensohler, A., Aalto, P., Mäkelä, J., Martinsson, B. G., Papaspiropoulos, G., Mentes, B., Frank, G., and Stramann, F.: Hygroscopic properties of aerosol particles in the northeastern Atlantic during ACE-2, Tellus B, 52, 201–229, 2000.
Swietlicki, E., Hansson, H.-C., Hameri, K., Svenningson, B., Maßling, A., McFiggans, G., Mc-Murry, P. H., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments – a review, Tellus B, 60, 432–469, 2008.
Van Dingenen, R., Putaud, J.-P., Martins-Dos Santos, S., and Raes, F.: Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign, Atmos. Chem. Phys., 5, 2203–2226, https://doi.org/10.5194/acp-5-2203-2005, 2005.
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006.
Venzac, H., Sellegri, K., and Laj, P.: Nucleation events detected at the high altitude site of the Puy de Dôme research station, France, Boreal Environ. Res., 12, 345–359, 2007.
Venzac, H., Sellegri, K., Villani, P., Picard, D., and Laj, P.: Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France, Atmos. Chem. Phys., 9, 1465–1478, https://doi.org/10.5194/acp-9-1465-2009, 2009.
Virkkula, A., Van Dingenen, R., Raes, F., and Hjorth, J.: Hygroscopic properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene, J. Geophys. Res., 104, 3569–3579, 1999.
Vlasenko, A., Sjögren, S., Weingartner, E., Gäggeler, H. W., and Ammann, M.: Generation of submicron test dust aerosol: chemical and hygroscopic properties, Aerosol Sci. Tech., 39, 452–460, 2005.
Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties of carbon and diesel soot particles, Atmos. Environ., 31, 2311–2327, 1997.
Weingartner, W., Gysel, M., and Baltensperger, U.: Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: setup and first applications, Environ. Sci. Technol., 36, 55–62, 2002.
Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert, M. A.: Hygroscopic growth of ammonium sulfate/dicarboxylic acids, J. Geophys. Res., 108, 4638, https://doi.org/10.1029/2003JD003775, 2003.
Wobrock, W., Flossmann, A. I., Monier, M., Pichon, J.-M., Cortez, L., Fournol, J.F., Scwarzenbäck, A., Mertes, S., Heintzenberg, J., Laj, P., Orsi, G., Ricci, L., Fuzzi, S., Brink, H. T., Jongejan, P., and Otjes, R.: The cloud mountain experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion, Atmos. Res., 58, 231–265, 2001.
Zhou, J., Swietlicki, E., Berg, O. H., Aalto, P. P., Hameri, K., Nilsson, E. D., and Leck, C.: Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer, J.Geophys. Res., 106, 32111–32123, https://doi.org/10.1029/2000JD900426, 2001.
Altmetrics
Final-revised paper
Preprint