Articles | Volume 14, issue 9
Atmos. Chem. Phys., 14, 4539–4562, 2014
https://doi.org/10.5194/acp-14-4539-2014
Atmos. Chem. Phys., 14, 4539–4562, 2014
https://doi.org/10.5194/acp-14-4539-2014

Research article 09 May 2014

Research article | 09 May 2014

Borneo vortex and mesoscale convective rainfall

S. Koseki et al.

Related authors

Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model
R. M. Fonseca, T. Zhang, and K.-T. Yong
Geosci. Model Dev., 8, 2915–2928, https://doi.org/10.5194/gmd-8-2915-2015,https://doi.org/10.5194/gmd-8-2915-2015, 2015
Short summary
Theory of the norm-induced metric in atmospheric dynamics
T.-Y. Koh and F. Wan
Atmos. Chem. Phys., 15, 2571–2594, https://doi.org/10.5194/acp-15-2571-2015,https://doi.org/10.5194/acp-15-2571-2015, 2015
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020,https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
The “urban meteorology island”: a multi-model ensemble analysis
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020,https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020,https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020,https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary

Cited articles

Asai, T.: Meso-scale features of heavy snowfalls in Japan Sea coastal region of Japan, Tenki, 35, 156–161, 1988.
Braesicke, P., Ooi, S. H., and Samah, A. A.: Propeties of strong off-shore Borneo vortices: a composite analysis of flow pattern and composition as captured by ERA-Interim, Atmos. Sci. Lett., 13, 128–132, https://doi.org/10.1002/asl.372, 2012.
Chambers, C. R. S. and Li, T.: Simulation of formation of a near-equatorial typhoon Vamei (2001), Meteorol. Atmos. Phys., 98, 67–80, https://doi.org/10.1007/s00703-006-0229-0, 2007.
Chang, C.-P., Liu, C.-H., and Kuo, H.-C.: Typhoon Vamei: An equatorial tropical cyclone Formation, Geophys. Res. Lett., 30, 1150, https://doi.org/10.1029/2002GL016365, 2003.
Chang, C.-P., Harr, P. A., and Chen, H.-J.: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter, Mon. Weather Rev., 133, 489–503, https://doi.org/10.1175/MWR-2868.1, 2005.
Download
Altmetrics
Final-revised paper
Preprint