Articles | Volume 14, issue 24
Atmos. Chem. Phys., 14, 13471–13481, 2014
https://doi.org/10.5194/acp-14-13471-2014
Atmos. Chem. Phys., 14, 13471–13481, 2014
https://doi.org/10.5194/acp-14-13471-2014

Research article 18 Dec 2014

Research article | 18 Dec 2014

Dynamical analysis of sea-breeze hodograph rotation in Sardinia

N. Moisseeva and D. G. Steyn

Related authors

Wildfire smoke-plume rise: a simple energy balance parameterization
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 21, 1407–1425, https://doi.org/10.5194/acp-21-1407-2021,https://doi.org/10.5194/acp-21-1407-2021, 2021
Short summary
Technical note: A noniterative approach to modelling moist thermodynamics
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 17, 15037–15043, https://doi.org/10.5194/acp-17-15037-2017,https://doi.org/10.5194/acp-17-15037-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020,https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
The “urban meteorology island”: a multi-model ensemble analysis
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020,https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020,https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020,https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary

Cited articles

Crosman, E. and Horel, J.: Sea and Lake Breezes: A Review of Numerical Studies, Bound.-Lay. Meteorol., 137, 1–29, 2010.
Dalu, G. and Cima, A.: Three-dimensional airflow over Sardinia, Il Nuovo Cimento, 6, 453–472, 1983.
Furberg, M.: Sea breezes on Sardinia, Master's thesis, Uppsala University, Sweden, 2000.
Furberg, M., Steyn, D., and Baldi, M.: The climatology of sea breezes on Sardinia, Int. J. Climatol., 22, 917–932, 2002.
Haurwitz, B.: Comments on the sea-breeze circulation, J. Meteorol., 4, 1–8, 1947.
Download
Altmetrics
Final-revised paper
Preprint