Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6043-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6043-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Re-evaluating cloud chamber constraints on depositional ice growth in cirrus clouds – Part 1: Model description and sensitivity tests
Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
Jerry Y. Harrington
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA 16802, USA
Benjamin W. Clouser
Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
Elisabeth J. Moyer
Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
Laszlo Sarkozy
Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
Volker Ebert
Physikalisch Technische Bundesanstalt, Bundesallee 100, Braunschweig 38116, Germany
Institute of Physical Chemistry (PCI), University of Heidelberg, 69120 Heidelberg, Germany
Ottmar Möhler
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Harald Saathoff
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Related authors
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021, https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary
Short summary
Microscopic particles interact with sunlight and affect the earth's climate in ways that are not fully understood. Aerosols from wildfire smoke present particular challenges due to their complexity in shape and composition. We demonstrate that we can experimentally measure aerosol optical properties for many types of smoke particles, using measurements of smoke from controlled burns, but that the method does not work well for smoke with high soot content.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
Benjamin W. Clouser, Kara D. Lamb, Laszlo C. Sarkozy, Jan Habig, Volker Ebert, Harald Saathoff, Ottmar Möhler, and Elisabeth J. Moyer
Atmos. Chem. Phys., 20, 1089–1103, https://doi.org/10.5194/acp-20-1089-2020, https://doi.org/10.5194/acp-20-1089-2020, 2020
Short summary
Short summary
Previous measurements of water vapor in the upper troposphere and lower stratosphere (UT/LS) have shown unexpectedly high concentrations of water vapor in ice clouds, which may be due to an incomplete understanding of the structure of ice and the behavior of ice growth in this part of the atmosphere. Water vapor measurements during the 2013 IsoCloud campaign at the AIDA cloud chamber show no evidence of this
anomalous supersaturationin conditions similar to the real atmosphere.
Kara D. Lamb
Atmos. Meas. Tech., 12, 3885–3906, https://doi.org/10.5194/amt-12-3885-2019, https://doi.org/10.5194/amt-12-3885-2019, 2019
Short summary
Short summary
Recent atmospheric observations have indicated emissions of iron-oxide-containing aerosols from anthropogenic sources could be 8x higher than previous estimates, leading models to underestimate their climate impact. Previous studies have shown the single particle soot photometer (SP2) can quantify the atmospheric abundance of these aerosols. Here, I explore a machine learning approach to improve SP2 detection, significantly reducing misclassifications of other aerosols as iron oxide aerosols.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Katherine M. Manfred, Rebecca A. Washenfelder, Nicholas L. Wagner, Gabriela Adler, Frank Erdesz, Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, and Daniel M. Murphy
Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, https://doi.org/10.5194/acp-18-1879-2018, 2018
Short summary
Short summary
In this study, we use a new laser imaging nephelometer to measure the bulk aerosol scattering phase function for biomass burning aerosol from controlled fires. By comparing measurements to models for spherical and fractal particles, we demonstrate that the dominant morphology varies by fuel type. This instrument has unique capabilities to directly measure how morphology affects optical properties, and can be used in the future for important validations of remote sensing retrievals.
Farhan R. Nursanto, Douglas A. Day, Roy Meinen, Rupert Holzinger, Harald Saathoff, Jinglan Fu, Jan Mulder, Ulrike Dusek, and Juliane L. Fry
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-191, https://doi.org/10.5194/amt-2024-191, 2025
Preprint under review for AMT
Short summary
Short summary
It is of increasing importance to monitor nitrate pollution that can harm ecosystems. However, commonly used aerosol monitoring equipment cannot distinguish inorganic from organic forms of nitrate, which may have different consequences for the environment. We describe a method to differentiate types of nitrates that can be applied to ambient monitoring to improve understanding of its formation and impact.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-98, https://doi.org/10.5194/amt-2024-98, 2024
Preprint under review for AMT
Short summary
Short summary
The water molecule comes in several different varieties, which are nearly indistinguishable in daily life. However, slight differences between the water molecule types can be exploited to achieve better scientific understanding of parts of Earth's atmosphere. In this work we describe the design, construction, and operation of an instrument meant to measure these molecules aboard research aircraft up to altitudes of 20 kilometers.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexander Julian Böhmländer, Larissa Lacher, David Brus, Konstantinos-Matthaios Doulgeris, Zoé Brasseur, Matthew Boyer, Joel Kuula, Thomas Leisner, and Ottmar Möhler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-120, https://doi.org/10.5194/amt-2024-120, 2024
Revised manuscript under review for AMT
Short summary
Short summary
Clouds and aerosol are important for weather and climate. Typically, pure water cloud droplets stay liquid until around -35 °C, unless they come into contact with ice-nucleating particles (INPs). INPs are a rare subset of aerosol particles. Using uncrewed aerial vehicles (UAVs), it is possible to collect aerosol particles and analyse them on their ice-nucleating ability. This study describes the test and validation of a sampling setup that can be used to collect aerosol particles onto a filter.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Paul DeMott, Jessica Mirrielees, Sarah Petters, Daniel Cziczo, Markus Petters, Heinz Bingemer, Thomas Hill, Karl Froyd, Sarvesh Garimella, Gannet Hallar, Ezra Levin, Ian McCubbin, Anne Perring, Christopher Rapp, Thea Schiebel, Jann Schrod, Kaitlyn Suski, Daniel Weber, Martin Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah Brooks
EGUsphere, https://doi.org/10.5194/egusphere-2024-1744, https://doi.org/10.5194/egusphere-2024-1744, 2024
Short summary
Short summary
The Fifth International Ice Nucleation Workshop 3rd Phase (FIN-03) compared the ambient atmospheric performance of ice nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, most measurements agreed within one order of magnitude. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Hengheng Zhang, Christian Rolf, Ralf Tillmann, Christian Wesolek, Frank Gunther Wienhold, Thomas Leisner, and Harald Saathoff
Aerosol Research, 2, 135–151, https://doi.org/10.5194/ar-2-135-2024, https://doi.org/10.5194/ar-2-135-2024, 2024
Short summary
Short summary
Our study employs advanced tools, including scanning lidar, balloons, and UAVs, to explore aerosol particles in the atmosphere. The scanning lidar offers distinctive near-ground-level insights, enriching our comprehension of aerosol distribution from ground level to the free troposphere. This research provides valuable data for comparing remote sensing and in situ aerosol measurements, advancing our understanding of aerosol impacts on radiative transfer, clouds, and air quality.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Wei Huang, Cheng Wu, Linyu Gao, Yvette Gramlich, Sophie L. Haslett, Joel Thornton, Felipe D. Lopez-Hilfiker, Ben H. Lee, Junwei Song, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Sachchida N. Tripathi, Dilip Ganguly, Feng Jiang, Magdalena Vallon, Siegfried Schobesberger, Taina Yli-Juuti, and Claudia Mohr
Atmos. Chem. Phys., 24, 2607–2624, https://doi.org/10.5194/acp-24-2607-2024, https://doi.org/10.5194/acp-24-2607-2024, 2024
Short summary
Short summary
We present distinct molecular composition and volatility of oxygenated organic aerosol particles in different rural, urban, and mountain environments. We do a comprehensive investigation of the relationship between the chemical composition and volatility of oxygenated organic aerosol particles across different systems and environments. This study provides implications for volatility descriptions of oxygenated organic aerosol particles in different model frameworks.
Yiwei Gong, Feng Jiang, Yanxia Li, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 167–184, https://doi.org/10.5194/acp-24-167-2024, https://doi.org/10.5194/acp-24-167-2024, 2024
Short summary
Short summary
This study investigates the role of the important atmospheric reactive intermediates in the formation of dimers and aerosol in monoterpene ozonolysis at different temperatures. Through conducting a series of chamber experiments and utilizing chemical kinetic and aerosol dynamic models, the SOA formation processes are better described, especially for colder regions. The results can be used to improve the chemical mechanism modeling of monoterpenes and SOA parameterization in transport models.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Robert Wagner, Alexander D. James, Victoria L. Frankland, Ottmar Möhler, Benjamin J. Murray, John M. C. Plane, Harald Saathoff, Ralf Weigel, and Martin Schnaiter
Atmos. Chem. Phys., 23, 6789–6811, https://doi.org/10.5194/acp-23-6789-2023, https://doi.org/10.5194/acp-23-6789-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) play an important role in the depletion of stratospheric ozone. They can consist of different chemical species, including crystalline nitric acid hydrates. We found that mineral dust or meteoric ablation material can efficiently catalyse the formation of a specific phase of nitric acid dihydrate crystals. We determined predominant particle shapes and infrared optical properties of these crystals, which are important inputs for remote sensing detection of PSCs.
Feng Jiang, Junwei Song, Jonas Bauer, Linyu Gao, Magdalena Vallon, Reiner Gebhardt, Thomas Leisner, Stefan Norra, and Harald Saathoff
Atmos. Chem. Phys., 22, 14971–14986, https://doi.org/10.5194/acp-22-14971-2022, https://doi.org/10.5194/acp-22-14971-2022, 2022
Short summary
Short summary
We studied brown carbon aerosol during typical summer and winter periods in downtown Karlsruhe in southwestern Germany. The chromophore and chemical composition of brown carbon was determined by excitation–emission spectroscopy and mass spectrometry. The chromophore types and sources were substantially different in winter and summer. Humic-like chromophores of different degrees of oxidation dominated and were associated with molecules of different molecular weight and nitrogen content.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Linyu Gao, Junwei Song, Claudia Mohr, Wei Huang, Magdalena Vallon, Feng Jiang, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 22, 6001–6020, https://doi.org/10.5194/acp-22-6001-2022, https://doi.org/10.5194/acp-22-6001-2022, 2022
Short summary
Short summary
We study secondary organic aerosol (SOA) from β-caryophyllene (BCP) ozonolysis with and without nitrogen oxides over 213–313 K in the simulation chamber. The yields and the rate constants were determined at 243–313 K. Chemical compositions varied at different temperatures, indicating a strong impact on the BCP ozonolysis pathways. This work helps to better understand the SOA from BCP ozonolysis for conditions representative of the real atmosphere from the boundary layer to the upper troposphere.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Magdalena Vallon, Linyu Gao, Feng Jiang, Bianca Krumm, Jens Nadolny, Junwei Song, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 15, 1795–1810, https://doi.org/10.5194/amt-15-1795-2022, https://doi.org/10.5194/amt-15-1795-2022, 2022
Short summary
Short summary
A LED-based light source has been constructed for the AIDA simulation chamber at the Karlsruhe Institute of Technology. It allows aerosol formation and ageing studies under atmospherically relevant illumination intensities and spectral characteristics at temperatures from –90 °C to 30 °C with the possibility of changing the photon flux and irradiation spectrum at any point. The first results of photolysis experiments with 2,3-pentanedione, iron oxalate and a brown carbon component are shown.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022, https://doi.org/10.5194/acp-22-65-2022, 2022
Short summary
Short summary
An important mechanism for the appearance of ice particles in the upper troposphere at low temperatures is homogeneous nucleation. This process is commonly described by the
Koop line, predicting the humidity at freezing. However, laboratory measurements suggest that the freezing humidities are above the Koop line, motivating the present study to investigate the influence of different physical parameterizations on the homogeneous freezing with the help of a detailed numerical model.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, https://doi.org/10.5194/acp-21-16925-2021, 2021
Short summary
Short summary
We investigate ice-nucleating particle properties at Jungfraujoch during the 2017 joint INUIT/CLACE field campaign, to improve the knowledge about those rare particles in a cloud-relevant environment. By quantifying ice-nucleating particles in parallel to single-particle mass spectrometry measurements, we find that mineral dust and aged sea spray particles are potential candidates for ice-nucleating particles. Our findings are supported by ice residual analysis and source region modeling.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021, https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary
Short summary
Homogeneous freezing is a relevant mechanism for the formation of cirrus clouds in the upper troposphere. Based on an extensive set of homogeneous freezing experiments at the AIDA chamber with aqueous sulfuric acid aerosol, we provide a new fit line for homogeneous freezing onset conditions of sulfuric acid aerosol focusing on cirrus temperatures. In the atmosphere, homogeneous freezing thresholds have important implications on the cirrus cloud occurrence and related cloud radiative effects.
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021, https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
Short summary
We present laboratory and field studies showing that an open-lot livestock facility is a substantial source of atmospheric ice-nucleating particles (INPs). The ambient concentration of INPs from livestock facilities in Texas is very high. It is up to several thousand INPs per liter below –20 °C and may impact regional aerosol–cloud interactions. About 50% of feedlot INPs were supermicron in diameter. No notable amount of known ice-nucleating microorganisms was found in our feedlot samples.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Hengheng Zhang, Frank Wagner, Harald Saathoff, Heike Vogel, Gholam Ali Hoshyaripour, Vanessa Bachmann, Jochen Förstner, and Thomas Leisner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-193, https://doi.org/10.5194/amt-2021-193, 2021
Revised manuscript not accepted
Short summary
Short summary
The evolution and the properties of Saharan dust plume were characterized by LIDARs, a sun photometer, and a regional transport model. Comparison between LIDAR measurements, sun photometer and ICON-ART predictions shows a good agreement for dust arrival time, dust layer height, and dust structure but also that the model overestimates the backscatter coefficients by a factor of (2.2 ± 0.16) and underestimate aerosol optical depth by a factor of (1.5 ± 0.11).
Barbara Bertozzi, Robert Wagner, Junwei Song, Kristina Höhler, Joschka Pfeifer, Harald Saathoff, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 10779–10798, https://doi.org/10.5194/acp-21-10779-2021, https://doi.org/10.5194/acp-21-10779-2021, 2021
Short summary
Short summary
Internally mixed particles composed of sulfate and organics are among the most abundant aerosol types. Their ice nucleation (IN) ability influences the formation of cirrus and, thus, the climate. We show that the presence of a thin organic coating suppresses the heterogeneous IN ability of crystalline ammonium sulfate particles. However, the IN ability of the same particle can substantially change if subjected to atmospheric processing, mainly due to differences in the resulting morphology.
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021, https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary
Short summary
Microscopic particles interact with sunlight and affect the earth's climate in ways that are not fully understood. Aerosols from wildfire smoke present particular challenges due to their complexity in shape and composition. We demonstrate that we can experimentally measure aerosol optical properties for many types of smoke particles, using measurements of smoke from controlled burns, but that the method does not work well for smoke with high soot content.
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021, https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Short summary
By triggering the formation of ice crystals, ice-nucleating particles (INP) strongly influence cloud formation. Continuous, long-term measurements are needed to characterize the atmospheric INP variability. Here, a first long-term time series of INP spectra measured in the boreal forest for more than 1 year is presented, showing a clear seasonal cycle. It is shown that the seasonal dependency of INP concentrations and prevalent INP types is driven by the abundance of biogenic aerosol.
Robert Wagner, Baptiste Testa, Michael Höpfner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, Jörn Ungermann, and Thomas Leisner
Atmos. Meas. Tech., 14, 1977–1991, https://doi.org/10.5194/amt-14-1977-2021, https://doi.org/10.5194/amt-14-1977-2021, 2021
Short summary
Short summary
During the Asian summer monsoon period, air pollutants are transported from layers near the ground to high altitudes of 13 to 18 km in the atmosphere. Infrared measurements have shown that particles composed of solid ammonium nitrate are a major part of these pollutants. To enable the quantitative analysis of the infrared spectra, we have determined for the first time accurate optical constants of ammonium nitrate for the low-temperature conditions of the upper atmosphere.
Ottmar Möhler, Michael Adams, Larissa Lacher, Franziska Vogel, Jens Nadolny, Romy Ullrich, Cristian Boffo, Tatjana Pfeuffer, Achim Hobl, Maximilian Weiß, Hemanth S. K. Vepuri, Naruki Hiranuma, and Benjamin J. Murray
Atmos. Meas. Tech., 14, 1143–1166, https://doi.org/10.5194/amt-14-1143-2021, https://doi.org/10.5194/amt-14-1143-2021, 2021
Short summary
Short summary
The Earth's climate is influenced by clouds, which are impacted by ice-nucleating particles (INPs), a minor fraction of atmospheric aerosols. INPs induce ice formation in clouds and thus often initiate precipitation formation. The Portable Ice Nucleation Experiment (PINE) is the first fully automated instrument to study cloud ice formation and to obtain long-term records of INPs. This is a timely development, and the capabilities it offers for research and atmospheric monitoring are significant.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
Isabelle Steinke, Naruki Hiranuma, Roger Funk, Kristina Höhler, Nadine Tüllmann, Nsikanabasi Silas Umo, Peter G. Weidler, Ottmar Möhler, and Thomas Leisner
Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, https://doi.org/10.5194/acp-20-11387-2020, 2020
Short summary
Short summary
In this study, we highlight the potential impact of particles from certain terrestrial sources on the formation of ice crystals in clouds. In particular, we focus on biogenic particles consisting of various organic compounds, which makes it very difficult to predict the ice nucleation properties of complex ambient particles. We find that these ambient particles are often more ice active than individual components.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Juraj Balkovic, Philippe Ciais, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, Munir Hoffmann, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Nikolay Khabarov, Marian Koch, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Xuhui Wang, Karina Williams, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020, https://doi.org/10.5194/gmd-13-2315-2020, 2020
Short summary
Short summary
Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Crop models, which represent plant biology, are necessary tools for this purpose since they allow representing future climate, farmer choices, and new agricultural geographies. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, under the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to evaluate and improve crop models.
Benjamin W. Clouser, Kara D. Lamb, Laszlo C. Sarkozy, Jan Habig, Volker Ebert, Harald Saathoff, Ottmar Möhler, and Elisabeth J. Moyer
Atmos. Chem. Phys., 20, 1089–1103, https://doi.org/10.5194/acp-20-1089-2020, https://doi.org/10.5194/acp-20-1089-2020, 2020
Short summary
Short summary
Previous measurements of water vapor in the upper troposphere and lower stratosphere (UT/LS) have shown unexpectedly high concentrations of water vapor in ice clouds, which may be due to an incomplete understanding of the structure of ice and the behavior of ice growth in this part of the atmosphere. Water vapor measurements during the 2013 IsoCloud campaign at the AIDA cloud chamber show no evidence of this
anomalous supersaturationin conditions similar to the real atmosphere.
Xiaoli Shen, Heike Vogel, Bernhard Vogel, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, Thomas Leisner, André S. H. Prévôt, and Harald Saathoff
Atmos. Chem. Phys., 19, 13189–13208, https://doi.org/10.5194/acp-19-13189-2019, https://doi.org/10.5194/acp-19-13189-2019, 2019
Short summary
Short summary
This study provides good insight into the chemical nature and complex origin of aerosols by combining comprehensive field observations and transport modelling. We suggest that factors related to topography, metrological conditions, local emissions, in situ formation and growth, regional transport, and the interaction of biogenic and anthropogenic compounds need to be considered for a comprehensive understanding of aerosol processes.
Wei Huang, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Thomas Leisner, and Claudia Mohr
Atmos. Chem. Phys., 19, 11687–11700, https://doi.org/10.5194/acp-19-11687-2019, https://doi.org/10.5194/acp-19-11687-2019, 2019
Short summary
Short summary
We investigate the molecular composition and volatility of oxygenated organic aerosol (OOA) particles in summer and winter in Stuttgart, Germany. OOA in summer is more influenced by biogenic emissions, while in winter biomass burning emissions are an important source. OOA in winter is also less volatile. Potential reasons are discussed in our paper. Our study shows the important contributions of nonfossil OA from biogenic and biomass burning even in an urban area with high traffic emissions.
Xianda Gong, Heike Wex, Thomas Müller, Alfred Wiedensohler, Kristina Höhler, Konrad Kandler, Nan Ma, Barbara Dietel, Thea Schiebel, Ottmar Möhler, and Frank Stratmann
Atmos. Chem. Phys., 19, 10883–10900, https://doi.org/10.5194/acp-19-10883-2019, https://doi.org/10.5194/acp-19-10883-2019, 2019
Short summary
Short summary
For the diverse aerosol on Cyprus, we found the following: new particle formation can be a source of cloud condensation nuclei. Particle hygroscopicity showed that particles ~<100 nm contained mostly organic material, while larger ones were more hygroscopic. Two separate methods obtained similar concentrations of ice-nucleating particles (INP), with mostly no evidence of a local origin. Different parameterizations overestimated INP concentration in this rather polluted region.
Kara D. Lamb
Atmos. Meas. Tech., 12, 3885–3906, https://doi.org/10.5194/amt-12-3885-2019, https://doi.org/10.5194/amt-12-3885-2019, 2019
Short summary
Short summary
Recent atmospheric observations have indicated emissions of iron-oxide-containing aerosols from anthropogenic sources could be 8x higher than previous estimates, leading models to underestimate their climate impact. Previous studies have shown the single particle soot photometer (SP2) can quantify the atmospheric abundance of these aerosols. Here, I explore a machine learning approach to improve SP2 detection, significantly reducing misclassifications of other aerosols as iron oxide aerosols.
Nsikanabasi Silas Umo, Robert Wagner, Romy Ullrich, Alexei Kiselev, Harald Saathoff, Peter G. Weidler, Daniel J. Cziczo, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, https://doi.org/10.5194/acp-19-8783-2019, 2019
Short summary
Short summary
Annually, over 600 Tg of coal fly ash (CFA) is produced; a significant proportion of this amount is injected into the atmosphere, which could significantly contribute to heterogeneous ice formation in clouds. This study presents an improved understanding of CFA particles' behaviour in forming ice in clouds, especially when exposed to lower temperatures before being re-circulated in the upper troposphere or entrained into the lower troposphere.
Zamin A. Kanji, Ryan C. Sullivan, Monika Niemand, Paul J. DeMott, Anthony J. Prenni, Cédric Chou, Harald Saathoff, and Ottmar Möhler
Atmos. Chem. Phys., 19, 5091–5110, https://doi.org/10.5194/acp-19-5091-2019, https://doi.org/10.5194/acp-19-5091-2019, 2019
Short summary
Short summary
The ice nucleation ability of two natural desert dusts coated with a proxy of secondary organic aerosol is presented for temperatures and relative humidity conditions relevant for mixed-phase clouds. We find that at the tested conditions, there is no effect on the ice nucleation ability of the particles due to the organic coating. Furthermore, the two dust samples do not show variability within measurement uncertainty. Particle size and surface area may play a role in any difference observed.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Matz A. Haugen, Michael L. Stein, Ryan L. Sriver, and Elisabeth J. Moyer
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 37–55, https://doi.org/10.5194/ascmo-5-37-2019, https://doi.org/10.5194/ascmo-5-37-2019, 2019
Short summary
Short summary
This work uses current temperature observations combined with climate models to project future temperature estimates, e.g., 100 years into the future. We accomplish this by modeling temperature as a smooth function of time both in the seasonal variation as well as in the annual trend. These smooth functions are estimated at multiple quantiles that are all projected into the future. We hope that this work can be used as a template for how other climate variables can be projected into the future.
Xiaoli Shen, Harald Saathoff, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, and Thomas Leisner
Atmos. Meas. Tech., 12, 2219–2240, https://doi.org/10.5194/amt-12-2219-2019, https://doi.org/10.5194/amt-12-2219-2019, 2019
Short summary
Short summary
Based on single-particle mass spectra from field measurements in the upper Rhine valley, we identified characteristic particle classes and estimated their mass contributions without the need of a reference instrument in the field. Our study provides a good example for quantitative interpretation of single-particle data. Together with the complimentary results from bulk measurements, we have shown how a better understanding of the mixing state of ambient aerosol particles can be achieved.
Nicholas A. Marsden, Romy Ullrich, Ottmar Möhler, Stine Eriksen Hammer, Konrad Kandler, Zhiqiang Cui, Paul I. Williams, Michael J. Flynn, Dantong Liu, James D. Allan, and Hugh Coe
Atmos. Chem. Phys., 19, 2259–2281, https://doi.org/10.5194/acp-19-2259-2019, https://doi.org/10.5194/acp-19-2259-2019, 2019
Short summary
Short summary
The composition of airborne dust influences climate and ecosystems but its measurements presents a huge analytical challenge. Using online single-particle mass spectrometry, we demonstrate differences in mineralogy and mixing state can be detected in real time in both laboratory studies and ambient measurements. The results provide insights into the temporal and spatial evolution of dust properties that will be useful for aerosol–cloud interaction studies and dust cycle modelling.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Kaitlyn J. Suski, David M. Bell, Naruki Hiranuma, Ottmar Möhler, Dan Imre, and Alla Zelenyuk
Atmos. Chem. Phys., 18, 17497–17513, https://doi.org/10.5194/acp-18-17497-2018, https://doi.org/10.5194/acp-18-17497-2018, 2018
Short summary
Short summary
This work investigates the cloud condensation nuclei and ice nucleation activity of bacteria using cloud chamber data and a single particle mass spectrometer. The size and chemical composition of the cloud residuals show that bacterial fragments mixed with agar growth media activate preferentially over intact bacteria cells as cloud condensation nuclei. Intact bacteria cells do not make it into cloud droplets; they thus cannot serve as immersion-mode ice nucleating particles.
Stefan Kaufmann, Christiane Voigt, Romy Heller, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, Martin Zöger, Andreas Giez, Bernhard Buchholz, Volker Ebert, Troy Thornberry, and Ulrich Schumann
Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, https://doi.org/10.5194/acp-18-16729-2018, 2018
Short summary
Short summary
We present an intercomparison of the airborne water vapor measurements during the ML-CIRRUS mission. Although the agreement of the hygrometers significantly improved compared to studies from recent decades, systematic differences remain under specific meteorological conditions. We compare the measurements to model data, where we observe a model wet bias in the lower stratosphere close to the tropopause, likely caused by a blurred humidity gradient in the model tropopause.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Matthias Hummel, Corinna Hoose, Bernhard Pummer, Caroline Schaupp, Janine Fröhlich-Nowoisky, and Ottmar Möhler
Atmos. Chem. Phys., 18, 15437–15450, https://doi.org/10.5194/acp-18-15437-2018, https://doi.org/10.5194/acp-18-15437-2018, 2018
Short summary
Short summary
How important for clouds is the ability of biological particles to glaciate droplets at little supercooling? In a case study, the regional atmospheric model COSMO–ART is used. Perturbed and control runs are compared.
The number of ice particles that are nucleated by biological particles is highest at around −10 °C. No significant influence on the average state of the cloud ice phase was found. However, the number of ice crystals is slightly enhanced in the absence of other ice nucleators.
Costa D. Christopoulos, Sarvesh Garimella, Maria A. Zawadowicz, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Meas. Tech., 11, 5687–5699, https://doi.org/10.5194/amt-11-5687-2018, https://doi.org/10.5194/amt-11-5687-2018, 2018
Short summary
Short summary
Compositional analysis of atmospheric and laboratory aerosols is often conducted with mass spectrometry. In this study, machine learning is used to automatically differentiate particles on the basis of chemistry and size. The ability of the machine learning algorithm was then tested on a data set for which the particles were not initially known to judge its ability.
Annette Filges, Christoph Gerbig, Chris W. Rella, John Hoffnagle, Herman Smit, Martina Krämer, Nicole Spelten, Christian Rolf, Zoltán Bozóki, Bernhard Buchholz, and Volker Ebert
Atmos. Meas. Tech., 11, 5279–5297, https://doi.org/10.5194/amt-11-5279-2018, https://doi.org/10.5194/amt-11-5279-2018, 2018
Ramakrishna Ramisetty, Ahmed Abdelmonem, Xiaoli Shen, Harald Saathoff, Thomas Leisner, and Claudia Mohr
Atmos. Meas. Tech., 11, 4345–4360, https://doi.org/10.5194/amt-11-4345-2018, https://doi.org/10.5194/amt-11-4345-2018, 2018
Short summary
Short summary
In this study we coupled a laser ablation aerosol time-of-flight (LAAPTOF) single-particle mass spectrometer, originally equipped with an excimer laser, to a femtosecond laser. The objective was to assess the influence of the higher laser power density of the femtosecond laser on ablation–ionization of atmospheric particles, ion signal, and ultimately quantitative abilities of the single-particle mass spectrometer.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Xiaoli Shen, Ramakrishna Ramisetty, Claudia Mohr, Wei Huang, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 11, 2325–2343, https://doi.org/10.5194/amt-11-2325-2018, https://doi.org/10.5194/amt-11-2325-2018, 2018
Short summary
Short summary
This paper presents performance data and reference spectra from the commercially available single-particle mass spectrometer LAAPTOF. The main characteristics of the instrument, like its detection efficiency, are given for a wide particle size range. Furthermore, reference mass spectra for 32 well-defined different particle types relevant for atmospheric aerosol compounds are presented. It is shown that these reference mass spectra are very useful in analysis of atmospheric aerosol particles.
Wei Huang, Harald Saathoff, Aki Pajunoja, Xiaoli Shen, Karl-Heinz Naumann, Robert Wagner, Annele Virtanen, Thomas Leisner, and Claudia Mohr
Atmos. Chem. Phys., 18, 2883–2898, https://doi.org/10.5194/acp-18-2883-2018, https://doi.org/10.5194/acp-18-2883-2018, 2018
Katherine M. Manfred, Rebecca A. Washenfelder, Nicholas L. Wagner, Gabriela Adler, Frank Erdesz, Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, and Daniel M. Murphy
Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, https://doi.org/10.5194/acp-18-1879-2018, 2018
Short summary
Short summary
In this study, we use a new laser imaging nephelometer to measure the bulk aerosol scattering phase function for biomass burning aerosol from controlled fires. By comparing measurements to models for spherical and fractal particles, we demonstrate that the dominant morphology varies by fuel type. This instrument has unique capabilities to directly measure how morphology affects optical properties, and can be used in the future for important validations of remote sensing retrievals.
Bernhard Buchholz and Volker Ebert
Atmos. Meas. Tech., 11, 459–471, https://doi.org/10.5194/amt-11-459-2018, https://doi.org/10.5194/amt-11-459-2018, 2018
Short summary
Short summary
This paper describes the absolute validation of the novel, calibration-free SEALDH-II hygrometer at a traceable humidity generator. During 23 days of permanent operation, 15 H2O mole fractions levels (5–1200 ppmv) at 6 gas pressures (65–950 hPa) were validated. With this validation, SEALDH-II is the first metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.
Leonid Nichman, Emma Järvinen, James Dorsey, Paul Connolly, Jonathan Duplissy, Claudia Fuchs, Karoliina Ignatius, Kamalika Sengupta, Frank Stratmann, Ottmar Möhler, Martin Schnaiter, and Martin Gallagher
Atmos. Meas. Tech., 10, 3231–3248, https://doi.org/10.5194/amt-10-3231-2017, https://doi.org/10.5194/amt-10-3231-2017, 2017
Short summary
Short summary
Optical probes are frequently used for the detection of cloud particles. The detected microphysical properties may affect particle growth and accretion mechanisms and the light scattering properties of cirrus clouds. In the CLOUD chamber study at CERN, we compared four optical measurement techniques. We show that shape derivation alone is not sufficient to determine the phase of the small cloud particles. None of the instruments were able to unambiguously determine the phase of small particles.
Giancarlo Ciarelli, Imad El Haddad, Emily Bruns, Sebnem Aksoyoglu, Ottmar Möhler, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 10, 2303–2320, https://doi.org/10.5194/gmd-10-2303-2017, https://doi.org/10.5194/gmd-10-2303-2017, 2017
Short summary
Short summary
In Europe, residential wood-burning emissions constitute one of the main anthropogenic sources of air pollution. Novel wood-burning experiments performed in a state-of-the-art smog chamber provide valuable information on the chemical properties of wood-burning emissions and the transformation in the atmosphere. In this study, these new data were used in a box model to constrain a parameterization suitable for predicting the contribution of wood burning to air pollution with large-scale models.
Andrew Poppick, Elisabeth J. Moyer, and Michael L. Stein
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 33–53, https://doi.org/10.5194/ascmo-3-33-2017, https://doi.org/10.5194/ascmo-3-33-2017, 2017
Short summary
Short summary
We show that ostensibly empirical methods of analyzing trends in the global mean temperature record, which appear to de-emphasize assumptions, can nevertheless produce misleading inferences about trends and associated uncertainty. We illustrate how a simple but physically motivated trend model can provide better-fitting and more broadly applicable results, and show the importance of adequately characterizing internal variability for estimating trend uncertainty.
Bernhard Buchholz, Armin Afchine, Alexander Klein, Cornelius Schiller, Martina Krämer, and Volker Ebert
Atmos. Meas. Tech., 10, 35–57, https://doi.org/10.5194/amt-10-35-2017, https://doi.org/10.5194/amt-10-35-2017, 2017
Short summary
Short summary
HAI is a fully autonomous, airborne hygrometer for atmospheric investigations for simultaneous gas-phase/total H2O detection on the HALO aircraft. HAI employs first-principle, direct, tunable diode laser absorption spectroscopy (dTDLAS) for calibration-free, absolute H2O detection. HAI simultaneously measures at 1.4/2.6 µm and in closed-/open-path configuration, covers a H2O range of 1–40 000ppmv at up to 1.4 ms time resolution and achieves precisions of 0.18/0.055 ppmv at 1.4/2.6 µm.
Emrys G. Hall, Allen F. Jordan, Dale F. Hurst, Samuel J. Oltmans, Holger Vömel, Benjamin Kühnreich, and Volker Ebert
Atmos. Meas. Tech., 9, 4295–4310, https://doi.org/10.5194/amt-9-4295-2016, https://doi.org/10.5194/amt-9-4295-2016, 2016
Short summary
Short summary
This work focuses on the balloon borne NOAA frost point hygrometer (FPH) instrument flown at three locations around the world: Boulder, Colorado, Lauder, New Zealand, and Hilo, Hawaii. The ongoing 36-year record is the longest continuous water vapor record with profiles reaching 28 km. Significant instrument updates in 2008 decreased the weight, cost, power consumption, and manufacturing time offering greater precision and ease of use.
Naruki Hiranuma, Ottmar Möhler, Gourihar Kulkarni, Martin Schnaiter, Steffen Vogt, Paul Vochezer, Emma Järvinen, Robert Wagner, David M. Bell, Jacqueline Wilson, Alla Zelenyuk, and Daniel J. Cziczo
Atmos. Meas. Tech., 9, 3817–3836, https://doi.org/10.5194/amt-9-3817-2016, https://doi.org/10.5194/amt-9-3817-2016, 2016
Short summary
Short summary
A new pumped counterflow virtual impactor (PCVI) called the ice-selecting PCVI (IS-PCVI) has been developed to collect ice crystal residuals for investigating physico-chemical properties of ice-nucleating particles. The results show that the ice crystals of volume-equivalent diameter ~ 10 to 30 µm can be efficiently separated from the supercooled droplets and interstitial particles. The IS-PCVI is efficient when the counterflow-to-input flow ratio is within 0.09 to 0.18.
Whitney K. Huang, Michael L. Stein, David J. McInerney, Shanshan Sun, and Elisabeth J. Moyer
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 79–103, https://doi.org/10.5194/ascmo-2-79-2016, https://doi.org/10.5194/ascmo-2-79-2016, 2016
Ann M. Fridlind, Rachel Atlas, Bastiaan van Diedenhoven, Junshik Um, Greg M. McFarquhar, Andrew S. Ackerman, Elisabeth J. Moyer, and R. Paul Lawson
Atmos. Chem. Phys., 16, 7251–7283, https://doi.org/10.5194/acp-16-7251-2016, https://doi.org/10.5194/acp-16-7251-2016, 2016
Short summary
Short summary
Images of crystals within mid-latitude cirrus clouds are used to derive consistent ice physical and optical properties for a detailed cloud microphysics model, including size-dependent mass, projected area, and fall speed. Based on habits found, properties are derived for bullet rosettes, their aggregates, and crystals with irregular shapes. Derived bullet rosette fall speeds are substantially greater than reported in past studies, owing to differences in mass, area, or diameter representation.
Karoliina Ignatius, Thomas B. Kristensen, Emma Järvinen, Leonid Nichman, Claudia Fuchs, Hamish Gordon, Paul Herenz, Christopher R. Hoyle, Jonathan Duplissy, Sarvesh Garimella, Antonio Dias, Carla Frege, Niko Höppel, Jasmin Tröstl, Robert Wagner, Chao Yan, Antonio Amorim, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Martin W. Gallagher, Jasper Kirkby, Markku Kulmala, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Antonio Tomé, Annele Virtanen, Douglas Worsnop, and Frank Stratmann
Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, https://doi.org/10.5194/acp-16-6495-2016, 2016
Short summary
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
Martina Krämer, Christian Rolf, Anna Luebke, Armin Afchine, Nicole Spelten, Anja Costa, Jessica Meyer, Martin Zöger, Jessica Smith, Robert L. Herman, Bernhard Buchholz, Volker Ebert, Darrel Baumgardner, Stephan Borrmann, Marcus Klingebiel, and Linnea Avallone
Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, https://doi.org/10.5194/acp-16-3463-2016, 2016
Short summary
Short summary
A guide to cirrus clouds is compiled from extensive model simulations and aircraft observations. Two types of cirrus are found: rather thin in situ cirrus that form directly as ice and thicker liquid origin cirrus consisting of uplifted frozen liquid drops. Over Europe, thinner in situ and liquid origin cirrus occur often together with frontal systems, while over the US and the Tropics, thick liquid origin cirrus formed in large convective systems are detected more frequently.
Robert Wagner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, and Isabelle Steinke
Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, https://doi.org/10.5194/acp-16-2025-2016, 2016
Short summary
Short summary
We have investigated the enhancement of the ice nucleation ability of well-known and abundant ice nucleating particles like dust grains due to pre-activation. Temporary exposure to a low temperature (228 K) provokes that pores and surface cracks of the particles are filled with ice, which makes them better nuclei for the growth of macroscopic ice crystals at high temperatures (245–260 K).
C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, and U. Baltensperger
Atmos. Chem. Phys., 16, 1693–1712, https://doi.org/10.5194/acp-16-1693-2016, https://doi.org/10.5194/acp-16-1693-2016, 2016
Short summary
Short summary
A significant portion of sulphate, an important constituent of atmospheric aerosols, is formed via the aqueous phase oxidation of sulphur dioxide by ozone. The rate of this reaction has previously only been measured over a relatively small temperature range. Here, we use the state of the art CLOUD chamber at CERN to perform the first measurements of this reaction rate in super-cooled droplets, confirming that the existing extrapolation of the reaction rate to sub-zero temperatures is accurate.
G. Vali, P. J. DeMott, O. Möhler, and T. F. Whale
Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, https://doi.org/10.5194/acp-15-10263-2015, 2015
Short summary
Short summary
Clarification is needed in the terminology used to discuss ice nucleation in the literature. Conflicting interpretations coupled with uncertainties about the details of the processes have led to difficulties in the clear communication of results and ideas. This paper contains a proposal for future usage. This proposed terminology was arrived at as a result of a year-long exchange of suggestions by a number of scientists.
J. Diab, T. Streibel, F. Cavalli, S. C. Lee, H. Saathoff, A. Mamakos, J. C. Chow, L.-W. A. Chen, J. G. Watson, O. Sippula, and R. Zimmermann
Atmos. Meas. Tech., 8, 3337–3353, https://doi.org/10.5194/amt-8-3337-2015, https://doi.org/10.5194/amt-8-3337-2015, 2015
Short summary
Short summary
This paper depicts several fields of application of a new analytical method, which expands the well-established EC/OC method, which enables one to measure the carbon content (organic and elemental) of particulate aerosols. It was coupled to photo-ionization mass spectrometry to get structural information of the evolving carbonaceous species. Application fields such as smoke chamber-, ambient - and wood combustion particles were addressed, covering exemplary primary and secondary aerosol sources.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
J. Meyer, C. Rolf, C. Schiller, S. Rohs, N. Spelten, A. Afchine, M. Zöger, N. Sitnikov, T. D. Thornberry, A. W. Rollins, Z. Bozóki, D. Tátrai, V. Ebert, B. Kühnreich, P. Mackrodt, O. Möhler, H. Saathoff, K. H. Rosenlof, and M. Krämer
Atmos. Chem. Phys., 15, 8521–8538, https://doi.org/10.5194/acp-15-8521-2015, https://doi.org/10.5194/acp-15-8521-2015, 2015
P. Amato, M. Joly, C. Schaupp, E. Attard, O. Möhler, C. E. Morris, Y. Brunet, and A.-M. Delort
Atmos. Chem. Phys., 15, 6455–6465, https://doi.org/10.5194/acp-15-6455-2015, https://doi.org/10.5194/acp-15-6455-2015, 2015
Short summary
Short summary
Mortality rate of typical bacterial aerosols (Pseudomonas species) was determined in a cloud simulation chamber. Ice nucleation activity remained unchanged for several hours in aerosolized cells, whether they were viable or not. Cloud increased the specific removal of ice nucleation active cells by precipitation. Survival was negatively impacted by the presence of cloud and by sulfates.
A. Seidel, S. Wagner, A. Dreizler, and V. Ebert
Atmos. Meas. Tech., 8, 2061–2068, https://doi.org/10.5194/amt-8-2061-2015, https://doi.org/10.5194/amt-8-2061-2015, 2015
Short summary
Short summary
We have developed a fast, spatially direct scanning tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered as a good basis for future field measurements in environmental research.
I. Steinke, C. Hoose, O. Möhler, P. Connolly, and T. Leisner
Atmos. Chem. Phys., 15, 3703–3717, https://doi.org/10.5194/acp-15-3703-2015, https://doi.org/10.5194/acp-15-3703-2015, 2015
Short summary
Short summary
Ice nucleation in clouds has a significant influence on the global radiative budget and the hydrological cycle. Several studies have investigated the ice formation in droplets and parameterizations have been developed in order to include immersion freezing in climate models. In contrast, there are fewer studies regarding the conversion of water vapor into ice (so-called deposition nucleation) which is the topic of this paper which investigates deposition nucleation by Arizona Test dust in detail
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Short summary
Seventeen ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of illite NX. All data showed a similar temperature trend, but the measured ice nucleation activity was on average smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples at high temperatures. A continued investigation and collaboration is necessary to obtain further insights into consistency or diversity of ice nucleation measurements.
W. B. Leeds, E. J. Moyer, and M. L. Stein
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, https://doi.org/10.5194/ascmo-1-1-2015, https://doi.org/10.5194/ascmo-1-1-2015, 2015
H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, and F. Stratmann
Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, https://doi.org/10.5194/acp-15-1463-2015, 2015
Short summary
Short summary
Immersion freezing measurements from seven different measurement techniques were intercompared using a biological ice nucleating material from bacteria. Although different techniques examined differently concentrated droplets, it was possible to find a uniform description, which showed that results from all experiments were generally in good agreement and were also in agreement with parameterizations published earlier in literature.
P. J. DeMott, A. J. Prenni, G. R. McMeeking, R. C. Sullivan, M. D. Petters, Y. Tobo, M. Niemand, O. Möhler, J. R. Snider, Z. Wang, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, https://doi.org/10.5194/acp-15-393-2015, 2015
Short summary
Short summary
Laboratory and field data are used together to develop an empirical relation between the concentrations of mineral dust particles at sizes above 0.5 microns, approximated as a single compositional type, and ice nucleating particle concentrations measured versus temperature. This should be useful in global modeling of ice cloud formation. The utility of laboratory data for parameterization development is reinforced, and the need for careful interpretation of ice nucleation data is emphasized.
N. Hiranuma, M. Paukert, I. Steinke, K. Zhang, G. Kulkarni, C. Hoose, M. Schnaiter, H. Saathoff, and O. Möhler
Atmos. Chem. Phys., 14, 13145–13158, https://doi.org/10.5194/acp-14-13145-2014, https://doi.org/10.5194/acp-14-13145-2014, 2014
Short summary
Short summary
A new heterogeneous ice nucleation parameterization is developed and implemented in cloud models. The results of our simulations suggest stronger influence of dust particles lifted to the upper troposphere on heterogeneous nucleation and more ice nucleation at temperature and humidity conditions relevant to both mixed-phase and cirrus clouds when compared to the existing parametrical frameworks.
B. Buchholz, A. Afchine, and V. Ebert
Atmos. Meas. Tech., 7, 3653–3666, https://doi.org/10.5194/amt-7-3653-2014, https://doi.org/10.5194/amt-7-3653-2014, 2014
D. W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L. M. Avallone, R. Bauer, Z. Bozóki, L. E. Christensen, S. M. Davis, G. Durry, C. Dyroff, R. L. Herman, S. Hunsmann, S. M. Khaykin, P. Mackrodt, J. Meyer, J. B. Smith, N. Spelten, R. F. Troy, H. Vömel, S. Wagner, and F. G. Wienhold
Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, https://doi.org/10.5194/amt-7-3177-2014, 2014
N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Möhler
Atmos. Chem. Phys., 14, 2315–2324, https://doi.org/10.5194/acp-14-2315-2014, https://doi.org/10.5194/acp-14-2315-2014, 2014
S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, https://doi.org/10.5194/acp-13-9141-2013, 2013
M. Bolot, B. Legras, and E. J. Moyer
Atmos. Chem. Phys., 13, 7903–7935, https://doi.org/10.5194/acp-13-7903-2013, https://doi.org/10.5194/acp-13-7903-2013, 2013
H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J.-P. Wolf, and L. Wöste
Atmos. Chem. Phys., 13, 4593–4604, https://doi.org/10.5194/acp-13-4593-2013, https://doi.org/10.5194/acp-13-4593-2013, 2013
J. Skrotzki, P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, and T. Leisner
Atmos. Chem. Phys., 13, 4451–4466, https://doi.org/10.5194/acp-13-4451-2013, https://doi.org/10.5194/acp-13-4451-2013, 2013
M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel
Atmos. Meas. Tech., 5, 3077–3097, https://doi.org/10.5194/amt-5-3077-2012, https://doi.org/10.5194/amt-5-3077-2012, 2012
Related subject area
Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Stable and unstable fall motions of plate-like ice crystal analogues
Secondary ice production – no evidence of efficient rime-splintering mechanism
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Ice nucleation by smectites: the role of the edges
A single-parameter hygroscopicity model for functionalized insoluble aerosol surfaces
Mexican agricultural soil dust as a source of ice nucleating particles
The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions
Secondary ice production during the break-up of freezing water drops on impact with ice particles
High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
Laboratory and field studies of ice-nucleating particles from open-lot livestock facilities in Texas
Comment on “Review of experimental studies of secondary ice production” by Korolev and Leisner (2020)
Effect of chemically induced fracturing on the ice nucleation activity of alkali feldspar
Ice nucleation ability of ammonium sulfate aerosol particles internally mixed with secondary organics
Ice-nucleating particles in precipitation samples from the Texas Panhandle
Comparative study on immersion freezing utilizing single-droplet levitation methods
Exploratory experiments on pre-activated freezing nucleation on mercuric iodide
Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals
Review of experimental studies of secondary ice production
The role of contact angle and pore width on pore condensation and freezing
Technical note: Equilibrium droplet size distributions in a turbulent cloud chamber with uniform supersaturation
Protein aggregates nucleate ice: the example of apoferritin
No anomalous supersaturation in ultracold cirrus laboratory experiments
Lateral facet growth of ice and snow – Part 1: Observations and applications to secondary habits
The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
Ice nucleation properties of K-feldspar polymorphs and plagioclase feldspars
Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores
A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
Activation of intact bacteria and bacterial fragments mixed with agar as cloud droplets and ice crystals in cloud chamber experiments
Anomalous holiday precipitation over southern China
Coal fly ash: linking immersion freezing behavior and physicochemical particle properties
Surface roughness during depositional growth and sublimation of ice crystals
Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber
The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions
Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
Experimental evidence of the rear capture of aerosol particles by raindrops
Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory
Pre-activation of aerosol particles by ice preserved in pores
Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 1: Immersion freezing
A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay
Ice nucleation efficiency of AgI: review and new insights
The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles
Exploring an approximation for the homogeneous freezing temperature of water droplets
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments
Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model
Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism
Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles
Comparison of measured and calculated collision efficiencies at low temperatures
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024, https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Short summary
This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal.
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024, https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Short summary
Clouds often contain several thousand times more ice crystals than aerosol particles catalyzing ice formation. This phenomenon, commonly known as ice multiplication, is often explained by secondary ice formation due to the collisions between falling ice particles and droplets. In this study, we mimic this riming process. Contrary to earlier experiments, we found no efficient ice multiplication, which fundamentally questions the importance of the rime-splintering mechanism.
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023, https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Short summary
Secondary ice production generates high concentrations of ice crystals in clouds. These processes have been poorly understood. We conducted experiments at the wind tunnel laboratory of the Johannes Gutenberg University, Mainz, on graupel–graupel and graupel–snowflake collisions. From these experiments fragment number, size, cross-sectional area, and aspect ratio were determined.
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023, https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Short summary
Using computer simulations of water, we find that water under tension freezes more easily than under normal conditions. A linear equation describes how freezing temperature increases with tension. Accordingly, simulations show that naturally occurring tension in water capillary bridges leads to higher freezing temperatures. This work is an early step in determining if atmospheric cloud droplets freeze due to naturally occurring tension, for example, during processes such as droplet collisions.
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Short summary
Attachment rate coefficients between ions and charged aerosol particles determine their lifetimes and may also influence cloud dynamics and aerosol processing. Here we present novel experiments that measure ion–aerosol attachment rate coefficients for multiply charged aerosol particles under atmospheric conditions in the CERN CLOUD chamber. Our results provide experimental discrimination between various theoretical models.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228, https://doi.org/10.5194/acp-22-13219-2022, https://doi.org/10.5194/acp-22-13219-2022, 2022
Short summary
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
Diana L. Pereira, Irma Gavilán, Consuelo Letechipía, Graciela B. Raga, Teresa Pi Puig, Violeta Mugica-Álvarez, Harry Alvarez-Ospina, Irma Rosas, Leticia Martinez, Eva Salinas, Erika T. Quintana, Daniel Rosas, and Luis A. Ladino
Atmos. Chem. Phys., 22, 6435–6447, https://doi.org/10.5194/acp-22-6435-2022, https://doi.org/10.5194/acp-22-6435-2022, 2022
Short summary
Short summary
Airborne particles were i) collected in an agricultural fields and ii) generated in the laboratory from agricultural soil samples to analyze their ice nucleating abilities. It was found that the size and chemical composition of the Mexican agricultural dust particles influence their ice nucleating behavior, where the organic components are likely responsible for their efficiency as INPs. The INP concentrations from the present study are comparable to those from higher latitudes.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021, https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary
Short summary
Homogeneous freezing is a relevant mechanism for the formation of cirrus clouds in the upper troposphere. Based on an extensive set of homogeneous freezing experiments at the AIDA chamber with aqueous sulfuric acid aerosol, we provide a new fit line for homogeneous freezing onset conditions of sulfuric acid aerosol focusing on cirrus temperatures. In the atmosphere, homogeneous freezing thresholds have important implications on the cirrus cloud occurrence and related cloud radiative effects.
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021, https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
Short summary
We present laboratory and field studies showing that an open-lot livestock facility is a substantial source of atmospheric ice-nucleating particles (INPs). The ambient concentration of INPs from livestock facilities in Texas is very high. It is up to several thousand INPs per liter below –20 °C and may impact regional aerosol–cloud interactions. About 50% of feedlot INPs were supermicron in diameter. No notable amount of known ice-nucleating microorganisms was found in our feedlot samples.
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
Alexei A. Kiselev, Alice Keinert, Tilia Gaedeke, Thomas Leisner, Christoph Sutter, Elena Petrishcheva, and Rainer Abart
Atmos. Chem. Phys., 21, 11801–11814, https://doi.org/10.5194/acp-21-11801-2021, https://doi.org/10.5194/acp-21-11801-2021, 2021
Short summary
Short summary
Alkali feldspar is the most abundant mineral in the Earth's crust and is often present in mineral dust aerosols that are responsible for the formation of rain and snow in clouds. However, the cloud droplets containing pure potassium-rich feldspar would not freeze unless cooled down to a very low temperature. Here we show that partly replacing potassium with sodium would induce fracturing of feldspar, exposing a crystalline surface that could initiate freezing at higher temperature.
Barbara Bertozzi, Robert Wagner, Junwei Song, Kristina Höhler, Joschka Pfeifer, Harald Saathoff, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 10779–10798, https://doi.org/10.5194/acp-21-10779-2021, https://doi.org/10.5194/acp-21-10779-2021, 2021
Short summary
Short summary
Internally mixed particles composed of sulfate and organics are among the most abundant aerosol types. Their ice nucleation (IN) ability influences the formation of cirrus and, thus, the climate. We show that the presence of a thin organic coating suppresses the heterogeneous IN ability of crystalline ammonium sulfate particles. However, the IN ability of the same particle can substantially change if subjected to atmospheric processing, mainly due to differences in the resulting morphology.
Hemanth S. K. Vepuri, Cheyanne A. Rodriguez, Dimitrios G. Georgakopoulos, Dustin Hume, James Webb, Gregory D. Mayer, and Naruki Hiranuma
Atmos. Chem. Phys., 21, 4503–4520, https://doi.org/10.5194/acp-21-4503-2021, https://doi.org/10.5194/acp-21-4503-2021, 2021
Short summary
Short summary
Due to a high frequency of storm events, West Texas is an ideal location to study ice-nucleating particles (INPs) in severe precipitation. Our results present that cumulative INP concentration in our precipitation samples below −20 °C could be high in the samples collected while observing > 10 mm h−1 precipitation with notably large hydrometeor sizes and an implication of cattle feedyard bacteria inclusion. Marine bacteria were found in a subset of our precipitation and cattle feedyard samples.
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021, https://doi.org/10.5194/acp-21-3289-2021, 2021
Short summary
Short summary
The freezing of cloud drops is promoted by ice-nucleating particles immersed in the drops. This process is essential to understand ice and subsequent precipitation formation in clouds. We investigated the efficiency of several particle types to trigger immersion freezing with two single-drop levitation techniques: a wind tunnel and an acoustic levitator. The evaluation accounted for different conditions during our two series of experiments, which is also applicable to future comparison studies.
Gabor Vali
Atmos. Chem. Phys., 21, 2551–2568, https://doi.org/10.5194/acp-21-2551-2021, https://doi.org/10.5194/acp-21-2551-2021, 2021
Short summary
Short summary
The freezing of water drops in clouds is a prime example for the role of ice-nucleating particles (INPs). Mercuric iodide particles and a few other substances can be conditioned to become very effective INPs after previous ice formation and moderate heating to melt temperatures, opening a new pathway to ice formation in the atmosphere and in other systems like tissue preservation, artificial snow making, and more.
Maximilian Weitzel, Subir K. Mitra, Miklós Szakáll, Jacob P. Fugal, and Stephan Borrmann
Atmos. Chem. Phys., 20, 14889–14901, https://doi.org/10.5194/acp-20-14889-2020, https://doi.org/10.5194/acp-20-14889-2020, 2020
Short summary
Short summary
The properties of ice crystals smaller than 150 µm in diameter were investigated in a cold-room laboratory using digital holography and microscopy. Automated image processing has been used to determine the track of falling ice crystals, and collected crystals were melted and scanned under a microscope to infer particle mass. A parameterization relating particle size and mass was determined which describes ice crystals in this size range more accurately than existing relationships.
Alexei Korolev and Thomas Leisner
Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, https://doi.org/10.5194/acp-20-11767-2020, 2020
Short summary
Short summary
Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. This work presents a critical review of the laboratory studies related to secondary ice production. It aims to identify gaps in our knowledge of SIP as well as to stimulate further laboratory studies focused on obtaining a quantitative description of efficiencies for each SIP mechanism.
Robert O. David, Jonas Fahrni, Claudia Marcolli, Fabian Mahrt, Dominik Brühwiler, and Zamin A. Kanji
Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, https://doi.org/10.5194/acp-20-9419-2020, 2020
Short summary
Short summary
Ice crystal formation plays an important role in controlling the Earth's climate. However, the mechanisms responsible for ice formation in the atmosphere are still uncertain. Here we use surrogates for atmospherically relevant porous particles to determine the role of pore diameter and wettability on the ability of porous particles to nucleate ice in the atmosphere. Our results are consistent with the pore condensation and freeing mechanism.
Steven K. Krueger
Atmos. Chem. Phys., 20, 7895–7909, https://doi.org/10.5194/acp-20-7895-2020, https://doi.org/10.5194/acp-20-7895-2020, 2020
Short summary
Short summary
When CCN are injected into a turbulent cloud chamber at a constant rate, and the rate of droplet activation is balanced by the rate of droplet fallout, a steady-state droplet size distribution (DSD) can be achieved. Analytic DSDs and PDFs of droplet radius were derived for such conditions when there is uniform supersaturation. Given the chamber height, the analytic PDF is determined by the supersaturation alone. This could allow one to infer the supersaturation that produced a measured PDF.
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
Short summary
Atmospheric ice-nucleating particles are rare but relevant for cloud glaciation. A source of particles that nucleate ice above −15 °C is biological material including some proteins. Here we show that proteins of very diverse functions and structures can nucleate ice. Among these, the iron storage protein apoferritin stands out, with activity up to −4 °C. We show that its activity does not stem from correctly assembled proteins but from misfolded protein monomers or oligomers and aggregates.
Benjamin W. Clouser, Kara D. Lamb, Laszlo C. Sarkozy, Jan Habig, Volker Ebert, Harald Saathoff, Ottmar Möhler, and Elisabeth J. Moyer
Atmos. Chem. Phys., 20, 1089–1103, https://doi.org/10.5194/acp-20-1089-2020, https://doi.org/10.5194/acp-20-1089-2020, 2020
Short summary
Short summary
Previous measurements of water vapor in the upper troposphere and lower stratosphere (UT/LS) have shown unexpectedly high concentrations of water vapor in ice clouds, which may be due to an incomplete understanding of the structure of ice and the behavior of ice growth in this part of the atmosphere. Water vapor measurements during the 2013 IsoCloud campaign at the AIDA cloud chamber show no evidence of this
anomalous supersaturationin conditions similar to the real atmosphere.
Jon Nelson and Brian D. Swanson
Atmos. Chem. Phys., 19, 15285–15320, https://doi.org/10.5194/acp-19-15285-2019, https://doi.org/10.5194/acp-19-15285-2019, 2019
Short summary
Short summary
Ice crystals in clouds have a wide variety. But many crystal forms are inexplicable using the common approach of modeling the growth rates normal to the crystal faces. Instead of using only this normal-growth approach, we suggest including lateral facet growth processes. Using such lateral processes, backed up by new experiments, we give explanations for some of these puzzling forms. The forms include the center droxtal in stellar crystals, scrolls, capped columns, sheath bundles, and trigonals.
Alexander D. Harrison, Katherine Lever, Alberto Sanchez-Marroquin, Mark A. Holden, Thomas F. Whale, Mark D. Tarn, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 19, 11343–11361, https://doi.org/10.5194/acp-19-11343-2019, https://doi.org/10.5194/acp-19-11343-2019, 2019
Short summary
Short summary
Mineral dusts are a source of ice-nucleating particles (INPs) in the atmosphere. Here we present a comprehensive survey of the ice-nucleating ability of naturally occurring quartz. We show the ice-nucleating variability of quartz and its sensitivity to time spent in water and air. We propose four new parameterizations for the minerals quartz, K feldspar, albite and plagioclase to predict INP concentrations in the atmosphere and show that K-feldspar is the dominant INP type in mineral dusts.
André Welti, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 19, 10901–10918, https://doi.org/10.5194/acp-19-10901-2019, https://doi.org/10.5194/acp-19-10901-2019, 2019
Short summary
Short summary
The ice nucleation ability of singly immersed feldspar particles in suspended water droplets relevant for ice crystal formation under mixed-phase cloud conditions is presented. The effects of particle size, crystal structure, trace metal and mineralogical composition are discussed by testing up to five different diameters in the submicron range and nine different feldspar samples at conditions relevant for ice nucleation in mixed-phase clouds.
Nsikanabasi Silas Umo, Robert Wagner, Romy Ullrich, Alexei Kiselev, Harald Saathoff, Peter G. Weidler, Daniel J. Cziczo, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, https://doi.org/10.5194/acp-19-8783-2019, 2019
Short summary
Short summary
Annually, over 600 Tg of coal fly ash (CFA) is produced; a significant proportion of this amount is injected into the atmosphere, which could significantly contribute to heterogeneous ice formation in clouds. This study presents an improved understanding of CFA particles' behaviour in forming ice in clouds, especially when exposed to lower temperatures before being re-circulated in the upper troposphere or entrained into the lower troposphere.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Kaitlyn J. Suski, David M. Bell, Naruki Hiranuma, Ottmar Möhler, Dan Imre, and Alla Zelenyuk
Atmos. Chem. Phys., 18, 17497–17513, https://doi.org/10.5194/acp-18-17497-2018, https://doi.org/10.5194/acp-18-17497-2018, 2018
Short summary
Short summary
This work investigates the cloud condensation nuclei and ice nucleation activity of bacteria using cloud chamber data and a single particle mass spectrometer. The size and chemical composition of the cloud residuals show that bacterial fragments mixed with agar growth media activate preferentially over intact bacteria cells as cloud condensation nuclei. Intact bacteria cells do not make it into cloud droplets; they thus cannot serve as immersion-mode ice nucleating particles.
Jiahui Zhang, Dao-Yi Gong, Rui Mao, Jing Yang, Ziyin Zhang, and Yun Qian
Atmos. Chem. Phys., 18, 16775–16791, https://doi.org/10.5194/acp-18-16775-2018, https://doi.org/10.5194/acp-18-16775-2018, 2018
Short summary
Short summary
The Chinese Spring Festival (also known as the Chinese New Year or Lunar New Year) is the most important festival in China. This paper reports that during the Chinese Spring Festival, the precipitation over southern China has been significantly reduced. The precipitation reduction is due to anomalous northerly winds. We suppose that anomalous atmospheric circulation is likely related to the human activity during holidays. It is an interesting phenomenon.
Sarah Grawe, Stefanie Augustin-Bauditz, Hans-Christian Clemen, Martin Ebert, Stine Eriksen Hammer, Jasmin Lubitz, Naama Reicher, Yinon Rudich, Johannes Schneider, Robert Staacke, Frank Stratmann, André Welti, and Heike Wex
Atmos. Chem. Phys., 18, 13903–13923, https://doi.org/10.5194/acp-18-13903-2018, https://doi.org/10.5194/acp-18-13903-2018, 2018
Short summary
Short summary
In this study, coal fly ash particles immersed in supercooled cloud droplets were analyzed concerning their freezing behavior. Additionally, physico-chemical particle properties (morphology, chemical composition, crystallography) were investigated. In combining both aspects, components that potentially contribute to the observed freezing behavior of the ash could be identified. Interactions at the particle-water interface, that depend on suspension time and influence freezing, are discussed.
Jens Voigtländer, Cedric Chou, Henner Bieligk, Tina Clauss, Susan Hartmann, Paul Herenz, Dennis Niedermeier, Georg Ritter, Frank Stratmann, and Zbigniew Ulanowski
Atmos. Chem. Phys., 18, 13687–13702, https://doi.org/10.5194/acp-18-13687-2018, https://doi.org/10.5194/acp-18-13687-2018, 2018
Short summary
Short summary
Surface roughness of ice crystals has recently been acknowledged to strongly influence the radiative properties of cold clouds such as cirrus, but it is unclear how this roughness arises. The study investigates the origins of ice surface roughness under a variety of atmospherically relevant conditions, using a novel method to measure roughness quantitatively. It is found that faster growth leads to stronger roughness. Roughness also increases following repeated growth–sublimation cycles.
Fabian Mahrt, Claudia Marcolli, Robert O. David, Philippe Grönquist, Eszter J. Barthazy Meier, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, https://doi.org/10.5194/acp-18-13363-2018, 2018
Short summary
Short summary
The ice nucleation ability of different soot particles in the cirrus and mixed-phase cloud temperature regime is presented. The impact of aerosol particle size, particle morphology, organic matter and hydrophilicity on ice nucleation is examined. We propose ice nucleation proceeds via a pore condensation freezing mechanism for soot particles with the necessary physicochemical properties that nucleated ice well below water saturation.
Wiebke Frey, Dawei Hu, James Dorsey, M. Rami Alfarra, Aki Pajunoja, Annele Virtanen, Paul Connolly, and Gordon McFiggans
Atmos. Chem. Phys., 18, 9393–9409, https://doi.org/10.5194/acp-18-9393-2018, https://doi.org/10.5194/acp-18-9393-2018, 2018
Short summary
Short summary
The coupled system of the Manchester Aerosol Chamber and Manchester Ice Cloud Chamber was used to study the ice-forming abilities of secondary
organic aerosol particles under mixed-phase cloud conditions. Given the vast abundance of secondary organic particles in the atmosphere, they
might present an important contribution to ice-nucleating particles. However, we find that in the studied temperature range (20 to 28 °C)
the secondary organic particles do not nucleate ice particles.
Sarvesh Garimella, Daniel A. Rothenberg, Martin J. Wolf, Robert O. David, Zamin A. Kanji, Chien Wang, Michael Rösch, and Daniel J. Cziczo
Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, https://doi.org/10.5194/acp-17-10855-2017, 2017
Short summary
Short summary
This study investigates systematic and variable low bias in the measurement of ice nucleating particle concentration using continuous flow diffusion chambers. We find that non-ideal instrument behavior exposes particles to different humidities and/or temperatures than predicted from theory. We use a machine learning approach to quantify and minimize the uncertainty associated with this measurement bias.
Pascal Lemaitre, Arnaud Querel, Marie Monier, Thibault Menard, Emmanuel Porcheron, and Andrea I. Flossmann
Atmos. Chem. Phys., 17, 4159–4176, https://doi.org/10.5194/acp-17-4159-2017, https://doi.org/10.5194/acp-17-4159-2017, 2017
Short summary
Short summary
We present new measurements of the efficiency with which aerosol particles are collected by raindrops. These measurements provide the link to reconcile the scavenging coefficients obtained from theoretical approaches with those from experimental studies. We provide proof of the rear capture that is a fundamental effect on submicroscopic particles. Finally, we propose an expression to take into account this mechanism to calculate the collection efficiency for drops within the rain size range.
Lukas Kaufmann, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 17, 3525–3552, https://doi.org/10.5194/acp-17-3525-2017, https://doi.org/10.5194/acp-17-3525-2017, 2017
Short summary
Short summary
To improve the understanding of heterogeneous ice nucleation, we have subjected different ice nuclei to repeated freezing cycles and evaluated the freezing temperatures with different parameterizations of classical nucleation theory. It was found that two fit parameters were necessary to describe the temperature dependence of the nucleation rate.
Claudia Marcolli
Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, https://doi.org/10.5194/acp-17-1595-2017, 2017
Short summary
Short summary
Laboratory studies from the last century have shown that some types of particles are susceptible to pre-activation, i.e. they are able to develop macroscopic ice at warmer temperatures or lower relative humidities after they had been involved in an ice nucleation event before. This review analyses these works under the presumption that pre-activation occurs by ice preserved in pores, and it discusses atmospheric scenarios for which pre-activation might be important.
Yvonne Boose, André Welti, James Atkinson, Fabiola Ramelli, Anja Danielczok, Heinz G. Bingemer, Michael Plötze, Berko Sierau, Zamin A. Kanji, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 15075–15095, https://doi.org/10.5194/acp-16-15075-2016, https://doi.org/10.5194/acp-16-15075-2016, 2016
Short summary
Short summary
We compare the immersion freezing behavior of four airborne to 11 surface-collected dust samples to investigate the role of different minerals for atmospheric ice nucleation on desert dust. We find that present K-feldspars dominate at T > 253 K, while quartz does at colder temperatures, and surface-collected dust samples are not necessarily representative for airborne dust. For improved ice cloud prediction, modeling of quartz and feldspar emission and transport are key.
Andreas Peckhaus, Alexei Kiselev, Thibault Hiron, Martin Ebert, and Thomas Leisner
Atmos. Chem. Phys., 16, 11477–11496, https://doi.org/10.5194/acp-16-11477-2016, https://doi.org/10.5194/acp-16-11477-2016, 2016
Short summary
Short summary
The precipitation in midlatitude clouds proceeds predominantly via nucleation of ice in the supercooled droplets containing foreign inclusions, like feldspar mineral dust, that have been recently identified as one of the most active ice nucleating agents in the atmosphere. We have built an apparatus to observe the freezing of feldspar immersed in up to 1500 identical droplets simultaneously. With this setup we investigated four feldspar samples and show that it can induce freezing at −5 °C.
Claudia Marcolli, Baban Nagare, André Welti, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, https://doi.org/10.5194/acp-16-8915-2016, 2016
Short summary
Short summary
Silver iodide is one of the best-investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Nevertheless, many open questions remain. This paper gives an overview of silver iodide as an ice nucleus and tries to identify the factors that influence the ice nucleation ability of silver iodide.
Daniel O'Sullivan, Benjamin J. Murray, James F. Ross, and Michael E. Webb
Atmos. Chem. Phys., 16, 7879–7887, https://doi.org/10.5194/acp-16-7879-2016, https://doi.org/10.5194/acp-16-7879-2016, 2016
Short summary
Short summary
In the absence of particles which can trigger freezing, cloud droplets can exist in a supercooled liquid state well below the melting point. However, the sources of efficient ice-nucleating particles in the atmosphere are uncertain. Here we show that ice-nucleating proteins produced by soil fungi can bind to clay particles in soils. Hence, the subsequent dispersion of soil particles into the atmosphere acts as a route through which biological ice nucleators can influence clouds.
Kuan-Ting O and Robert Wood
Atmos. Chem. Phys., 16, 7239–7249, https://doi.org/10.5194/acp-16-7239-2016, https://doi.org/10.5194/acp-16-7239-2016, 2016
Short summary
Short summary
In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature at which the mean number of critical embryos inside a droplet is unity is derived from the Boltzmann distribution function and explored as a new simplified approximation for homogeneous freezing temperature. It thus appears that the simplicity of this approximation makes it potentially useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.
Martin Schnaiter, Emma Järvinen, Paul Vochezer, Ahmed Abdelmonem, Robert Wagner, Olivier Jourdan, Guillaume Mioche, Valery N. Shcherbakov, Carl G. Schmitt, Ugo Tricoli, Zbigniew Ulanowski, and Andrew J. Heymsfield
Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016, https://doi.org/10.5194/acp-16-5091-2016, 2016
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
Peter A. Alpert and Daniel A. Knopf
Atmos. Chem. Phys., 16, 2083–2107, https://doi.org/10.5194/acp-16-2083-2016, https://doi.org/10.5194/acp-16-2083-2016, 2016
Short summary
Short summary
A stochastic immersion freezing model is introduced capable of reproducing laboratory data for a variety of experimental methods using a time and surface area dependent ice nucleation process. The assumption that droplets contain identical surface area is evaluated. A quantitative uncertainty analysis of the laboratory observed freezing process is presented. Our results imply that ice nuclei surface area assumptions are crucial for interpretation of experimental immersion freezing results.
Robert Wagner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, and Isabelle Steinke
Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, https://doi.org/10.5194/acp-16-2025-2016, 2016
Short summary
Short summary
We have investigated the enhancement of the ice nucleation ability of well-known and abundant ice nucleating particles like dust grains due to pre-activation. Temporary exposure to a low temperature (228 K) provokes that pores and surface cracks of the particles are filled with ice, which makes them better nuclei for the growth of macroscopic ice crystals at high temperatures (245–260 K).
M. L. López and E. E. Ávila
Atmos. Chem. Phys., 16, 927–932, https://doi.org/10.5194/acp-16-927-2016, https://doi.org/10.5194/acp-16-927-2016, 2016
Short summary
Short summary
This work deals with the origin and nature of atmospheric ice-nucleating particles (INPs). An accurate determination of the atmospheric INP concentration is relevant since INPs induce freezing in clouds, thus initiating an efficient mechanism for cloud particles to reach a precipitating size.
The effect of relative humidity on the INP concentration at ground level was analyzed and discussed.
B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 15, 13759–13776, https://doi.org/10.5194/acp-15-13759-2015, https://doi.org/10.5194/acp-15-13759-2015, 2015
Short summary
Short summary
We determined collision efficiencies of cloud droplets with aerosol particles experimentally and found that they were around 1 order of magnitude higher than theoretical formulations that include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This is most probably due to uncertainties and inaccuracies in the theoretical formulations of thermophoretic and diffusiophoretic processes.
Cited articles
Abdelmonem, A., Schnaiter, M., Amsler, P., Hesse, E., Meyer, J., and Leisner, T.: First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe, Atmos. Meas. Tech., 4, 2125–2142, https://doi.org/10.5194/amt-4-2125-2011, 2011. a
Abdelmonem, A., Järvinen, E., Duft, D., Hirst, E., Vogt, S., Leisner, T., and Schnaiter, M.: PHIPS–HALO: the airborne Particle Habit Imaging and Polar Scattering probe – Part 1: Design and operation, Atmos. Meas. Tech., 9, 3131–3144, https://doi.org/10.5194/amt-9-3131-2016, 2016. a
Bailey, M. and Hallett, J.: Nucleation effects on the habit of vapour grown ice
crystals from −18 to −42 C, Q. J. Roy. Meteor.
Soc., 128, 1461–1483, https://doi.org/10.1002/qj.200212858304, 2002. a
Bailey, M. and Hallett, J.: Growth rates and habits of ice crystals between- 20
and- 70 C, J. Atmos. Sci., 61, 514–544,
https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004. a
Bailey, M. and Hallett, J.: Ice crystal linear growth rates from- 20 to- 70 C:
Confirmation from wave cloud studies, J. Atmos. Sci.,
69, 390–402, https://doi.org/10.1175/JAS-D-11-035.1, 2012. a
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric
ice crystals: Confirmation from the laboratory, AIRS II, and other field
studies, J. Atmos. Sci., 66, 2888–2899,
https://doi.org/10.1175/2009JAS2883.1, 2009. a
Benz, S., Megahed, K., Möhler, O., Saathoff, H., Wagner, R., and Schurath,
U.: T-dependent rate measurements of homogeneous ice nucleation in cloud
droplets using a large atmospheric simulation chamber, J.
Photochem. Photobiol. A, 176, 208–217,
https://doi.org/10.1016/j.jphotochem.2005.08.026, 2005. a
Brown, P. N., Byrne, G. D., and Hindmarsh, A. C.: VODE: A variable-coefficient ODE solver, SIAM journal on scientific and statistical computing, 10, 1038–1051, 1989. a
Brown, D., George, S. M., Huang, C., Wong, E., Rider, K. B., Smith, R. S., and
Kay, B. D.: H2O condensation coefficient and refractive index for
vapor-deposited ice from molecular beam and optical interference
measurements, J. Phys. Chem., 100, 4988–4995, 1996. a
Cotton, R. J., Benz, S., Field, P. R., Möhler, O., and Schnaiter, M.: Technical Note: A numerical test-bed for detailed ice nucleation studies in the AIDA cloud simulation chamber, Atmos. Chem. Phys., 7, 243–256, https://doi.org/10.5194/acp-7-243-2007, 2007. a
Dinh, T., Podglajen, A., Hertzog, A., Legras, B., and Plougonven, R.: Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer, Atmos. Chem. Phys., 16, 35–46, https://doi.org/10.5194/acp-16-35-2016, 2016. a
Fahey, D. W., Gao, R.-S., Möhler, O., Saathoff, H., Schiller, C., Ebert, V., Krämer, M., Peter, T., Amarouche, N., Avallone, L. M., Bauer, R., Bozóki, Z., Christensen, L. E., Davis, S. M., Durry, G., Dyroff, C., Herman, R. L., Hunsmann, S., Khaykin, S. M., Mackrodt, P., Meyer, J., Smith, J. B., Spelten, N., Troy, R. F., Vömel, H., Wagner, S., and Wienhold, F. G.: The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques, Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, 2014. a
Fukuta, N. and Walter, L.: Kinetics of hydrometeor growth from a
vapor-spherical model, J. Atmos. Sci., 27, 1160–1172, 1970. a
Gao, R., Popp, P., Fahey, D., Marcy, T., Herman, R., Weinstock, E.,
Baumgardner, D., Garrett, T., Rosenlof, K., Thompson, T., Bui, P. T., Ridley, B. A., Wofsy, S. C., Toon, O. B., Tolbert, M. A., Kärcher, B., Peter, T. H., Hudson, P. K., Weinheimer, A. J., and Heymsfield, A. J.: Evidence
that nitric acid increases relative humidity in low-temperature cirrus
clouds, Science, 303, 516–520, https://doi.org/10.1126/SCIENCE.1091255, 2004. a
Gao, R.-S., Gierczak, T., Thornberry, T. D., Rollins, A. W., Burkholder, J. B.,
Telg, H., Voigt, C., Peter, T., and Fahey, D. W.: Persistent Water–Nitric
Acid Condensate with Saturation Water Vapor Pressure Greater than That of
Hexagonal Ice, J. Phys. Chem. A, 120, 1431–1440,
https://doi.org/10.1021/acs.jpca.5b06357, 2015. a
Gierens, K. M., Monier, M., and Gayet, J.-F.: The deposition coefficient and
its role for cirrus clouds, J. Geophys. Res.-Atmos.,
108, 4029, https://doi.org/10.1029/2001JD001558, 2003. a, b, c
Gonda, T. and Gomi, H.: Morphological instability of polyhedral ice crystals
growing in air at low temperature, Ann. Glaciol., 6, 222–224, 1985. a
Hallett, J. and Mason, B. J.: The influence of temperature and supersaturation
on the habit of ice crystals grown from the vapour, Proc. R. Soc. Lond. A,
247, 440–453, https://doi.org/10.1098/rspa.1958.0199, 1958. a
Harrington, J. Y., Moyle, A., Hanson, L. E., and Morrison, H.: On Calculating
Deposition Coefficients and Aspect-Ratio Evolution in Approximate Models of
Ice Crystal Vapor Growth, J. Atmos. Sci., 76,
1609–1625, https://doi.org/10.1175/JAS-D-18-0319.1, https://doi.org/10.1175/JAS-D-18-0319.1,
2019. a, b, c, d, e, f, g, h, i, j, k
Hiranuma, N., Hoffmann, N., Kiselev, A., Dreyer, A., Zhang, K., Kulkarni, G., Koop, T., and Möhler, O.: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles, Atmos. Chem. Phys., 14, 2315–2324, https://doi.org/10.5194/acp-14-2315-2014, 2014a. a
Hiranuma, N., Paukert, M., Steinke, I., Zhang, K., Kulkarni, G., Hoose, C., Schnaiter, M., Saathoff, H., and Möhler, O.: A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models, Atmos. Chem. Phys., 14, 13145–13158, https://doi.org/10.5194/acp-14-13145-2014, 2014b. a
Järvinen, E., Jourdan, O., Neubauer, D., Yao, B., Liu, C., Andreae, M. O., Lohmann, U., Wendisch, M., McFarquhar, G. M., Leisner, T., and Schnaiter, M.: Additional global climate cooling by clouds due to ice crystal complexity, Atmos. Chem. Phys., 18, 15767–15781, https://doi.org/10.5194/acp-18-15767-2018, 2018. a, b, c, d
Jensen, E. J., Ueyama, R., Pfister, L., Bui, T. V., Alexander, M. J.,
Podglajen, A., Hertzog, A., Woods, S., Lawson, R. P., Kim, J.-E., and Schoeberl, M. R.:
High-frequency gravity waves and homogeneous ice nucleation in tropical
tropopause layer cirrus, Geophys. Res. Lett., 43, 6629–6635,
https://doi.org/10.1002/2016GL069426, 2016. a
Kaufmann, S., Voigt, C., Heller, R., Jurkat-Witschas, T., Krämer, M., Rolf, C., Zöger, M., Giez, A., Buchholz, B., Ebert, V., Thornberry, T., and Schumann, U.: Intercomparison of midlatitude tropospheric and lower-stratospheric water vapor measurements and comparison to ECMWF humidity data, Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, 2018. a
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A.,
Gerthsen, D., and Leisner, T.: Active sites in heterogeneous ice
nucleation – the example of K-rich feldspars, Science, 355, 367–371,
https://doi.org/10.1126/science.aai8034, 2016. a
Kong, X., Thomson, E. S., Papagiannakopoulos, P., Johansson, S. M., and
Pettersson, J. B.: Water accommodation on ice and organic surfaces: Insights
from environmental molecular beam experiments, J. Phys.
Chem. B, 118, 13378–13386, https://doi.org/10.1021/jp5044046, 2014. a
Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant
for homogeneous ice nucleation in aqueous solutions, Nature, 406, 611,
https://doi.org/10.1038/35020537, 2000. a
Krämer, M., Rolf, C., Spelten, N., Afchine, A., Fahey, D., Jensen, E., Khaykin, S., Kuhn, T., Lawson, P., Lykov, A., Pan, L. L., Riese, M., Rollins, A., Stroh, F., Thornberry, T., Wolf, V., Woods, S., Spichtinger, P., Quaas, J., and Sourdeval, O.: A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations, Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, 2020. a, b, c
Kuroda, T. and Lacmann, R.: Growth kinetics of ice from the vapour phase and
its growth forms, J. Crystal Growth, 56, 189–205,
https://doi.org/10.1016/0022-0248(82)90028-8, 1982. a
Lamb, D. and Chen, J.-P.: An expanded parameterization of the growth of ice
crystals by vapor deposition, in: Preprints, Conference on Cloud Physics,
75th AMS Annual Meeting, 15–20 January 1995, Dallas, TX, 389–392, 1995. a
Lamb, D. and Scott, W. D.: The mechanism of ice crystal growth and habit
formation, J. Atmos. Sci., 31, 570–580,
https://doi.org/10.1175/1520-0469(1974)031<0570:TMOICG>2.0.CO;2, 1974. a
Lamb, K. D.: Depositional Ice Growth Analysis for IsoCloud Experiments, Zenodo [code], https://doi.org/10.5281/zenodo.7986953, 2023. a
Lamb, K. D., Clouser, B. W., Bolot, M., Sarkozy, L., Ebert, V., Saathoff, H.,
Möhler, O., and Moyer, E. J.: Laboratory measurements of HDO/H2O isotopic
fractionation during ice deposition in simulated cirrus clouds, P. Natl. Acad. Sci. USA, 114, 5612–5617,
https://doi.org/10.1073/pnas.1618374114, 2017. a, b, c, d
Lamb, K. D., Harrington, J. Y., Clouser, B. W., Moyer, E. J., Sarkozy, L., Ebert, V., Moehler, O., and Saathoff, H.: IsoCloud4 Data Sets for Depositional Ice Growth Analysis, Zenodo [data set], https://doi.org/10.5281/zenodo.7986868, 2023. a
Lawson, R. P., Korolev, A., Cober, S., Huang, T., Strapp, J., and Isaac, G.:
Improved measurements of the drop size distribution of a freezing drizzle
event, Atmos. Res., 47, 181–191, 1998. a
Lewis, B.: The growth of crystals at low supersaturation: II. Comparison with
experiment, J. Crystal Growth, 21, 40–50, 1974. a
Libbrecht, K. G.: A critical look at ice crystal growth data, arXiv preprint,
cond-mat/0411662, 2004. a
Libbrecht, K. G. and Rickerby, M. E.: Measurements of surface attachment
kinetics for faceted ice crystal growth, J. Crystal Growth, 377,
1–8, https://doi.org/10.1016/J.JCRYSGRO.2013.04.037, 2013. a, b
Lin, R.-F., Starr, D. O., DeMott, P. J., Cotton, R., Sassen, K., Jensen, E.,
Kärcher, B., and Liu, X.: Cirrus parcel model comparison project. Phase
1: The critical components to simulate cirrus initiation explicitly, J. Atmos. Sci., 59, 2305–2329,
https://doi.org/10.1175/1520-0469(2002)059<2305:cpmcpp>2.0.co;2, 2002. a, b
Magee, N., Moyle, A. M., and Lamb, D.: Experimental determination of the
deposition coefficient of small cirrus-like ice crystals near-50 ∘C, Geophys. Res. Lett., 33, L17813, https://doi.org/10.1029/2006GL026665, 2006. a, b, c
Magee, N., Boaggio, K., Staskiewicz, S., Lynn, A., Zhao, X., Tusay, N., Schuh, T., Bandamede, M., Bancroft, L., Connelly, D., Hurler, K., Miner, B., and Khoudary, E.: Captured cirrus ice particles in high definition, Atmos. Chem. Phys., 21, 7171–7185, https://doi.org/10.5194/acp-21-7171-2021, 2021. a
Ming, N.-B., Tsukamoto, K., Sunagawa, I., and Chernov, A.: Stacking faults as
self-perpetuating step sources, J. Crystal Growth, 91, 11–19,
https://doi.org/10.1016/0022-0248(88)90360-0, 1988. a
Möhler, O., Field, P. R., Connolly, P., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Cotton, R., Krämer, M., Mangold, A., and Heymsfield, A. J.: Efficiency of the deposition mode ice nucleation on mineral dust particles, Atmos. Chem. Phys., 6, 3007–3021, https://doi.org/10.5194/acp-6-3007-2006, 2006. a, b
Moore, E. B. and Molinero, V.: Is it cubic? Ice crystallization from deeply
supercooled water, Phys. Chem. Chem. Phys., 13, 20008–20016,
https://doi.org/10.1039/c1cp22022e, 2011a. a
Moore, E. B. and Molinero, V.: Structural transformation in supercooled water
controls the crystallization rate of ice, Nature, 479, 506,
https://doi.org/10.1038/nature10586, 2011b. a
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W.,
Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A.,
Pawlowska, H., Posselt, D., Prat, O. P., Reimel, K. J., Shima, S.-I., van Diedenhoven, B., and Xue, L.: Confronting the challenge of modeling cloud and
precipitation microphysics, J. Adv. Model. Earth Sy.,
12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020. a
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J.
Roy. Meteor. Soc., 131, 1539–1565, 2005. a
Murray, B. J., Knopf, D. A., and Bertram, A. K.: The formation of cubic ice
under conditions relevant to Earth's atmosphere, Nature, 434, 202,
https://doi.org/10.1038/nature03403, 2005. a
Murray, B. J., Salzmann, C. G., Heymsfield, A. J., Dobbie, S., Neely III,
R. R., and Cox, C. J.: Trigonal ice crystals in Earth's atmosphere, B. Am. Meteorol. Soc., 96, 1519–1531,
https://doi.org/10.1175/BAMS-D-13-00128.1, 2015. a
Nachbar, M., Duft, D., and Leisner, T.: The vapor pressure of liquid and solid
water phases at conditions relevant to the atmosphere, J.
Chem. Phys., 151, 064504, https://doi.org/10.1063/1.5100364, 2019. a
Nelson, J. and Knight, C.: Snow crystal habit changes explained by layer
nucleation, J. Atmos. Sci., 55, 1452–1465,
https://doi.org/10.1175/1520-0469(1998)055<1452:SCHCEB>2.0.CO;2, 1998. a, b, c
Pratte, P., van den Bergh, H., and Rossi, M. J.: The kinetics of H2O vapor
condensation and evaporation on different types of ice in the range 130–210 K, J. Phys. Chem. A, 110, 3042–3058,
https://doi.org/10.1021/JP053974S, 2006. a
Randel, W. J. and Jensen, E. J.: Physical processes in the tropical tropopause
layer and their roles in a changing climate, Nat. Geosci., 6, 169–176,
https://doi.org/10.1038/NGEO1733, 2013. a, b
Sarkozy, L. C., Clouser, B. W., Lamb, K. D., Stutz, E. J., Saathoff, H.,
Moehler, O., Ebert, V., and Moyer, E. J.: The Chicago Water Isotope
Spectrometer (ChiWIS-lab): A tunable diode laser spectrometer for
chamber-based measurements of water vapor isotopic evolution during cirrus
formation, Rev. Sci. Instr., 91, 045120,
https://doi.org/10.1063/1.5139244, 2020. a, b, c, d
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E., and Furukawa, Y.:
Elementary steps at the surface of ice crystals visualized by advanced
optical microscopy, P. Natl. Acad. Sci. USA, 107, 19702–19707,
https://doi.org/10.1073/pnas.1008866107, 2010. a
Sazaki, G., Asakawa, H., Nagashima, K., Nakatsubo, S., and Furukawa, Y.: Double
spiral steps on Ih ice crystal surfaces grown from water vapor just below the
melting point, Cryst. Growth Des., 14, 2133–2137,
https://doi.org/10.1021/CG4014448, 2014. a
Schmitt, C. G., Heymsfield, A. J., Connolly, P., Järvinen, E., and
Schnaiter, M.: A global view of atmospheric ice particle complexity,
Geophys. Res. Lett., 43, 11913–11920, https://doi.org/10.1002/2016GL071267, 2016. a
Schnaiter, M., Järvinen, E., Vochezer, P., Abdelmonem, A., Wagner, R., Jourdan, O., Mioche, G., Shcherbakov, V. N., Schmitt, C. G., Tricoli, U., Ulanowski, Z., and Heymsfield, A. J.: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds, Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016, 2016. a, b, c, d, e, f
Schnaiter, M., Järvinen, E., Abdelmonem, A., and Leisner, T.: PHIPS-HALO: the airborne particle habit imaging and polar scattering probe – Part 2: Characterization and first results, Atmos. Meas. Tech., 11, 341–357, https://doi.org/10.5194/amt-11-341-2018, 2018. a
Schön, R., Schnaiter, M., Ulanowski, Z., Schmitt, C., Benz, S., Möhler,
O., Vogt, S., Wagner, R., and Schurath, U.: Particle habit imaging using
incoherent light: a first step toward a novel instrument for cloud
microphysics, J. Atmos. Ocean. Tech., 28, 493–512,
2011. a
Schrom, R. S., van Lier-Walqui, M., Kumjian, M. R., Harrington, J. Y., Jensen,
A. A., and Chen, Y.-S.: Radar-Based Bayesian Estimation of Ice Crystal Growth
Parameters within a Microphysical Model, J. Atmos. Sci.,
78, 549–569, https://doi.org/10.1175/JAS-D-20-0134.1, 2021. a
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air
pollution to climate change, John Wiley & Sons, 2nd edn., ISBN-10 0471720186, 2016. a
Skrotzki, J., Connolly, P., Schnaiter, M., Saathoff, H., Möhler, O., Wagner, R., Niemand, M., Ebert, V., and Leisner, T.: The accommodation coefficient of water molecules on ice – cirrus cloud studies at the AIDA simulation chamber, Atmos. Chem. Phys., 13, 4451–4466, https://doi.org/10.5194/acp-13-4451-2013, 2013. a, b, c, d, e, f, g
Spichtinger, P. and Krämer, M.: Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers, Atmos. Chem. Phys., 13, 9801–9818, https://doi.org/10.5194/acp-13-9801-2013, 2013. a
Vautard, R. and Ghil, M.: Singular spectrum analysis in nonlinear dynamics,
with applications to paleoclimatic time series, Physica D, 35, 395–424, https://doi.org/10.1016/0167-2789(89)90077-8, 1989. a
Voigtländer, J., Chou, C., Bieligk, H., Clauss, T., Hartmann, S., Herenz, P., Niedermeier, D., Ritter, G., Stratmann, F., and Ulanowski, Z.: Surface roughness during depositional growth and sublimation of ice crystals, Atmos. Chem. Phys., 18, 13687–13702, https://doi.org/10.5194/acp-18-13687-2018, 2018. a
Wagner, R., Benz, S., Bunz, H., Möhler, O., Saathoff, H., Schnaiter, M.,
Leisner, T., and Ebert, V.: Infrared optical constants of highly diluted
sulfuric acid solution droplets at cirrus temperatures, J.
Phys. Chem. A, 112, 11661–11676, https://doi.org/10.1021/jp8066102, 2008. a
Wagner, R., Linke, C., Naumann, K.-H., Schnaiter, M., Vragel, M., Gangl, M.,
and Horvath, H.: A review of optical measurements at the aerosol and cloud
chamber AIDA, J. Quant. Spectrosc. Ra.,
110, 930–949, https://doi.org/10.1016/J.JQSRT.2009.01.026, 2009. a
Wood, S. E., Baker, M. B., and Calhoun, D.: New model for the vapor growth of
hexagonal ice crystals in the atmosphere, J. Geophys. Res.-Atmos., 106, 4845–4870, https://doi.org/10.1029/2000JD900338, 2001. a, b, c, d
Yokoyama, E. and Kuroda, T.: Pattern formation in growth of snow crystals
occurring in the surface kinetic process and the diffusion process, Phys.
Rev. A, 41, 2038–2049, https://doi.org/10.1103/physreva.41.2038, 1990. a
Zhang, C. and Harrington, J. Y.: The effects of surface kinetics on crystal
growth and homogeneous freezing in parcel simulations of cirrus, J. Atmos. Sci., 72, 2929–2946, https://doi.org/10.1175/JAS-D-14-0285.1,
2015. a, b, c, d
Short summary
This study investigates how ice grows directly from vapor in cirrus clouds by comparing observations of populations of ice crystals growing in a cloud chamber against models developed in the context of single-crystal laboratory studies. We demonstrate that previous discrepancies between different experimental measurements do not necessarily point to different physical interpretations but are rather due to assumptions that were made in terms of how experiments were modeled in previous studies.
This study investigates how ice grows directly from vapor in cirrus clouds by comparing...
Altmetrics
Final-revised paper
Preprint