Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4763-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4763-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Piyush Srivastava
CORRESPONDING AUTHOR
School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
now at: Centre of Excellence in Disaster and Mitigation and Management, Indian Institute of Technology, Roorkee, India
Ian M. Brooks
School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
John Prytherch
Department of Meteorology, Stockholm University, Stockholm, Sweden
Dominic J. Salisbury
School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
Andrew D. Elvidge
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Ian A. Renfrew
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Margaret J. Yelland
National Oceanography Centre, Southampton, SO14 3ZH, UK
Related authors
No articles found.
Thea Bisander, John Prytherch, and Volker Brüchert
Biogeosciences, 22, 4779–4796, https://doi.org/10.5194/bg-22-4779-2025, https://doi.org/10.5194/bg-22-4779-2025, 2025
Short summary
Short summary
Coastal waters exchange greenhouse gases with the atmosphere, but their exact contributions are not well understood. This study measured carbon dioxide and methane emissions in different Baltic Sea habitats using floating chambers. The results show that methane emissions, especially from bubbling, play a dominant role in the total exchange of many habitats. When scaled up over the Stockholm archipelago, the coastal emissions add significantly to the regional greenhouse gas budget.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
Atmos. Chem. Phys., 25, 8455–8474, https://doi.org/10.5194/acp-25-8455-2025, https://doi.org/10.5194/acp-25-8455-2025, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and an investigation of aerosol–cloud–sea ice interactions is crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over different surfaces. Wide lead surfaces acted as particle sources, with the strongest sensible heat fluxes, while closed ice surfaces acted as particle sinks. In this study, methods to measure these interactions are improved, enhancing our understanding of Arctic climate processes.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Helen Czerski, Ian M. Brooks, Steve Gunn, Robin Pascal, Adrian Matei, and Byron Blomquist
Ocean Sci., 18, 565–586, https://doi.org/10.5194/os-18-565-2022, https://doi.org/10.5194/os-18-565-2022, 2022
Short summary
Short summary
The bubbles formed by breaking waves speed up the movement of gases like carbon dioxide and oxygen between the atmosphere and the ocean. Understanding where these gases go is an important part of understanding Earth's climate. In this paper we describe measurements of the bubbles close to the ocean surface during big storms in the North Atlantic. We observed small bubbles collecting in distinctive patterns which help us to understand the contribution they make to the ocean breathing.
Helen Czerski, Ian M. Brooks, Steve Gunn, Robin Pascal, Adrian Matei, and Byron Blomquist
Ocean Sci., 18, 587–608, https://doi.org/10.5194/os-18-587-2022, https://doi.org/10.5194/os-18-587-2022, 2022
Short summary
Short summary
The bubbles formed by breaking waves at the ocean surface are important because they are thought to speed up the movement of gases like carbon dioxide and oxygen between the atmosphere and ocean. We collected data on the bubbles in the top few metres of the ocean which were created by storms in the North Atlantic. The focus in this paper is the bubble sizes and their position in the water. We saw that there are very predictable patterns and set out what happens to bubbles after a wave breaks.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Cited articles
Achtert, P., O'Connor, E. J., Brooks, I. M., Sotiropoulou, G., Shupe, M. D., Pospichal, B., Brooks, B. J., and Tjernström, M.: Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014, Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, 2020.
Arya, S. P. S.: Contribution of form drag on pressure ridges to the air
stress on Arctic ice, J. Geophys. Res., 78, 7092–7099,
https://doi.org/10.1029/JC078i030p07092, 1973.
Arya, S. P. S.: A drag partition theory for determining the large-scale
roughness parameter and wind stress on the Arctic pack ice, J. Geophys.
Res., 80, 3447–3454, https://doi.org/10.1029/JC080i024p03447, 1975.
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C.
W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over
summer sea ice and the marginal ice zone, Q. J. Roy. Meteor. Soc., 136,
927–943, https://doi.org/10.1002/qj.618, 2010.
Banke, E. G. and Smith, S. D.: Wind stress over ice and over water in the Beaufort Sea, J. Geophys.
Res., 76, 7368–7374, https://doi.org/10.1029/JC076i030p07368, 1971.
Birnbaum, G. and Lüpkes, C.: A new parameterization of surface drag in
the marginal sea ice zone, Tellus A, 54,, 107–123,
https://doi.org/10.1034/j.1600-0870.2002.00243.x, 2002.
Bourassa, M. A., Gille, S. T., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C. A., Cronin, M. F.,
Drennan, W. M., Fairall, C. W., Hoffman, R. N., Magnusdottir, G., Pinker, R. T., Renfrew, I. A.,
Serreze, M., Speer, K., Talley, L. D., and Wick, G. A.: High-Latitude Ocean and Sea Ice Surface
Fluxes: Challenges for Climate Research, B. Am. Meteorol. Soc., 94, 403–423,
https://doi.org/10.1175/BAMS-D-11-00244.1, 2013.
Brooks, I. M., Prytherch, J., and Srivastava, P.: CANDIFLOS: Surface fluxes from ACSE
measurement campaign on icebreaker Oden, 2014, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/c6f1b1ff16f8407386e2d643bc5b916a, 2022a.
Brooks, I. M., Prytherch, J., and Srivastava, P.: CANDIFLOS: Surface fluxes from AO2016 measurement campaign on icebreaker Oden, 2016, NERC EDS Centre for Environmental Data
Analysis [data set], https://doi.org/10.5285/614752d35dc147a598d5421443fb50e8, 2022b.
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux Profile Relationships in the
Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971.
Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes,
R.: Variability of Arctic sea-ice topography and its impact on the
atmospheric surface drag, J. Geophys. Res.-Oceans, 119, 6743–6762,
https://doi.org/10.1002/2013JC009712, 2014.
Charnock, H.: Wind stress over a water surface, Q. J. Roy. Meteor. Soc., 81,
639–640, https://doi.org/10.1002/qj.49708135027, 1955.
.
Claussen, M.: Area-averaging of surface fluxes in a neutrally stratified,
horizontally inhomogeneous atmospheric boundary layer, Atmos. Environ., 24,
1349–1360, https://doi.org/10.1016/0960-1686(90)90041-K, 1990.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D.,
Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and
Jones, J.: Recent Arctic amplification and extreme mid-latitude weather,
Nat. Geosci., 7, 627–637, https://doi.org/10.1038/ngeo2234, 2014.
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by
sea-ice loss under increasing CO2, Nat. Commun., 10, 121,
https://doi.org/10.1038/s41467-018-07954-9, 2019.
Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C.: On the wave age
dependence of wind stress over pure wind seas, J. Geophys. Res., 108,
8062, https://doi.org/10.1029/2000JC000715, 2003.
Edson, J. B., Hinton, A. A., Prada, K. E., Hare, J. E., and Fairall, C. W.:
Direct covariance flux estimates from mobile platforms at sea, J. Atmos.
Ocean. Tech., 15, 547–562, https://doi.org/10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2, 1998.
Elvidge, A. D., Renfrew, I. A., Weiss, A. I., Brooks, I. M., Lachlan-Cope, T. A., and King, J. C.: Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation, Atmos. Chem. Phys., 16, 1545–1563, https://doi.org/10.5194/acp-16-1545-2016, 2016.
Elvidge, A. D., Renfrew, I. A., Brooks, I. M., Srivastava, P., Yelland, M.
J., Prytherch, J.: Surface heat and moisture exchange in the marginal ice
zone: Observations and a new parameterization scheme for weather and climate
models, J. Geophys. Res., 126, e2021JD034827, https://doi.org/10.1029/2021JD034827,
2021.
Foken, T. and Wichura, B.: Tools for quality assessment of surface based
flux measurements 1, Agr. Forest Meteorol., 78, 83–105,
https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Garbrecht, T., Lüpkes, C., Hartmann, J., and Wolff, M.: Atmospheric drag
coefficients over sea ice – validation of a parameterisation concept,
Tellus A, 54, 205–219, https://doi.org/10.1034/j.1600-0870.2002.01253.x,
2002.
Guest, P. S. and Davidson, K. L.: The Effect of Observed Ice Conditions on
the Drag Coefficient in the Summer East Greenland Sea Marginal Ice Zone, J.
Geophys. Res., 92, 6943–6954, https://doi.org/10.1029/JC092iC07p06943,
1987.
Hanssen-Bauer, I. and Gjessing, Y. T.: Observations and model calculations
of aerodynamic drag on sea ice in the Fram Strait, Tellus A, 40, 151–161,
https://doi.org/10.1111/j.1600-0870.1988.tb00413.x, 1988.
Hartmann, J., Kottmeier, C., Wamser, C., and Augstein, E.: Aircraft measured atmospheric
momentum, heat and radiation fluxes over Arctic sea ice, The Polar Oceans and their Role in
Shaping the Global Environment, 85, 443–454,
https://doi.org/10.1029/GM085p0443, 1994.
Hodson, D. L. R., Keeley, S. P. E., West, A., Ridley, J., Hawkins, E., and
Hewitt, H. T.: Identifying uncertainties in Arctic climate change
projections, Clim. Dynam., 40, 2849–2865,
https://doi.org/10.1007/s00382-012-1512-z, 2013.
Howes, E. L., Joos, F., Eakin, M., and Gattuso, J.-P.: An updated synthesis
of the observed and projected impacts of climate change on the chemical,
physical and biological processes in the oceans, Front. Mar. Sci., 2, 36,
https://doi.org/10.3389/fmars.2015.00036, 2015.
Hunke, E. C., and Lipscomb, W. H.: CICE: The Los Alamos sea ice model
documentation and software user's manual version 4.1, Los Alamos National
Laboratory Tech. Rep. LA-CC-06-012, 76 pp.,
https://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf (last access: 20 January 2020), 2010.
Kwok, R.: Arctic Sea ice thickness, volume, and multiyear ice coverage:
losses and coupled variability (1958–2018). Environ. Res. Lett., 13, 105005,
https://doi.org/10.1088/1748-9326/aae3ec, 2018.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air–sea flux data
set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lehnherr, I., St. Louis, V. L., Sharp, M., Gardner, A., Smol, J. P., Schiff,
S. L., Muir, D. C. G., Mortimer, C. A., Michelutti, N., Tarnocai, C., St.
Pierre, K. A., Emmerton, C. A., Wiklund, J. A., Köck, G.,
Lamoureux, S. F., and Talbot, C. H.: The world's largest High Arctic lake
responds rapidly to climate warming, Nat. Commun., 9, 1290,
https://doi.org/10.1038/s41467-018-03685-z, 2018.
LeMone, M. A., Angevine, W. M., Bretherton, C. S., Chen, F., Dudhia, J.,
Fedorovich, F., Katsaros, K. B., Lenschow, D. H., Mahrt, L., Patton, E. G.,
Sun, J., Tjernström, M., and Weil, J.: 100 Years of Progress in Boundary
Layer Meteorology, Meteor. Mon., 59, 9.1–9.85,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1, 2018.
Lüpkes, C. and Birnbaum, G.: Surface drag in the Arctic marginal sea-ice
zone: A comparison of different parameterisation concepts, Bound.-Lay.
Meteorol., 117, 179–211, https://doi.org/10.1007/s10546-005-1445-8, 2005.
Lüpkes, C. and Gryanik, V. M.: A stability-dependent parametrization of
transfer coefficients for momentum and heat over polar sea ice to be used in
climate models, J. Geophys. Res.-Atmos., 120, 552–581,
https://doi.org/10.1002/2014JD022418, 2015.
Lüpkes, C., Gryanik, V. M., Hartmann, J., and Andreas, E. L.: A
parametrization, based on sea ice morphology, of the neutral atmospheric
drag coefficients for weather prediction and climate models, J. Geophys.
Res., 117, D13112, https://doi.org/10.1029/2012JD017630, 2012.
Lüpkes, C., Gryanik, V. M., Rösel, A., Birnbaum, G., and Kaleschke,
L.: Effect of sea ice morphology during Arctic summer on atmospheric drag
coefficients used in climate models, Geophys. Res. Lett., 40, 446–451,
https://doi.org/10.1002/grl.50081, 2013.
Mai, S., Wamser, C., and Kottmeier, C.: Geometric and aerodynamic roughness
of sea ice, Bound.-Lay. Meteorol., 77, 233–248,
https://doi.org/10.1007/BF00123526, 1996.
Miao, X., Xie, H., Ackley, S., Perovich, D., and Ke, C.: Object based
detection of Arctic sea ice and melt ponds using high spatial resolution
aerial photographs, Cold Reg. Sci. Technol., 119, 211–222,
https://doi.org/10.1016/j.coldregions.2015.06.014, 2015.
Moat, B. I., Yelland, M. J., and Brooks, I. M.: Airflow distortion at instrument sites on the ODEN
during the ACSE project (National Oceanography Centre Internal Document, 17) Southampton,
GB. National Oceanography Centre 114 pp., available at: http://eprints.soton.ac.uk/385311/ (last access: 16 January 2020), 2015.
Monin, A. S. and Obukhov, A. M.: Osnovnye zakonomernosti
turbulentnogo peremeshivanija v prizemnom sloe atmosfery [Basic Laws of
Turbulent Mixing in the Atmosphere Near the Ground], Trudy geofiz. inst. AN
SSSR 24(151), 163–187, 1954.
Notz, D.: Challenges in simulating sea ice in Earth System Models, Wiley
Interdiscip, Rev. Clim. Change, 3, 509–526,
https://doi.org/10.1002/wcc.189, 2012.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal and
regional manifestation of Arctic Sea ice loss, J. Climate, 31,
4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018.
Overland, J. E.: Atmospheric boundary-layer structure and drag coefficients
over sea ice, J. Geophys. Res., 90, 9029–9049,
https://doi.org/10.1029/JC090iC05p09029, 1985.
Overland, J. E., Dethloff, K., Francis, J. A., Hall, R. J., Hanna, E., Kim,
S., Screen, J. A., Shepherd, T. G., and Vihma, T.: Nonlinear response of
mid-latitude weather to the changing Arctic, Nat. Clim. Change, 6, 992–999,
https://doi.org/10.1038/nclimate3121, 2016.
Perovich, D. K., Tucker, W. B., and Ligett, K. A.: Aerial observations of
the evolution of ice surface conditions during summer, J. Geophys. Res.,
107, 8048, https://doi.org/10.1029/2000JC000449, 2002.
Prytherch, J., Yelland, M. J., Brooks, I. M., Tupman, D. J., Pascal, R. W., Moat, B. I., and Norris, S. J.: Motion-correlated flow distortion and wave-induced biases in air–sea flux measurements from ships, Atmos. Chem. Phys., 15, 10619–10629, https://doi.org/10.5194/acp-15-10619-2015, 2015.
Prytherch, J., Brooks, I. M., Crill, P. M., Thornton, B. F., Salisbury, D.
J., Tjernström, M., Anderson, L. G., Geibel, M. C., and Humborg, C.:
Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea
ice regions, Geophys. Res. Lett., 44, 3770–3778, https://doi.org/10.1002/2017GL073593, 2017.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., Edwards, J. M.,
and Harris, C. M.: A sensitivity study of the sea ice simulation in the
global coupled climate model, HadGEM3, Ocean Model., 74, 60–76,
https://doi.org/10.1016/j.ocemod.2013.12.003, 2014.
Renner, A. H. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen,
E., Nicolaus, M., and Goodwin, H.: Evidence of Arctic sea ice thinning from
direct observations, Geophys. Res. Lett., 41, 5029–5036,
https://doi.org/10.1002/2014GL060369, 2014.
Renfrew, I. A., Elvidge, A. D., and Edwards, J. M: Atmospheric sensitivity
to marginal-ice zone drag: local and global responses, Q. J. Roy. Meteor.
Soc., 145, 1165–1179, https://doi.org/10.1002/qj.3486, 2019.
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, 2017.
Rolph, R. J., Feltham, D. L., and Schröder, D.: Changes of the Arctic marginal ice zone during the satellite era, The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, 2020.
Roy, F., Chevallier, M., Smith, G., Dupont, F., Garric, G., Lemieux, J.-F.,
Lu, Y., and Davidson, F.: Arctic sea ice and freshwater sensitivity to the
treatment of the atmosphere-ice ocean surface layer, J. Geophys.
Res.-Oceans., 120, 4392–4417, https://doi.org/10.1002/2014JC010677, 2015.
Schröder, D., Vihma, T., Kerber, A., and Brümmer, B.: On the
parameterisation of Turbulent Surface Fluxes Over Heterogeneous Sea Ice
Surfaces, J. Geophys. Res., 108, 3195, https://doi.org/10.1029/2002JC001385,
2003.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Smith, S.: Wind stress and heat flux over the ocean in gale force winds, J. Phys. Oceanogr., 10,
709–726, https://doi.org/10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2, 1980.
Sotiropoulou, G., Tjernström, M., Sedlar, J., Achtert, P., Brooks, B.
J., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J.,
Shupe, M. D., and Johnston, P. E.: Atmospheric Conditions during the Arctic
Clouds in Summer Experiment (ACSE): Contrasting Open Water and Sea Ice
Surfaces during Melt and Freeze-Up Seasons, J. Climate, 29, 8721–8744,
https://doi.org/10.1175/JCLI-D-16-0211.1, 2016.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008.
Stössel, A., Cheon, W.-G., and Vihma, T.: Interactive momentum flux
forcing over sea ice in a global ocean GCM, J. Geophys. Res., 113, C05010,
https://doi.org/10.1029/2007JC004173, 2008.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys, Res. Letts., 39, L16502,
https://doi.org/10.1029/2012GL052676, 2012.
Stroeve, J. C., Hamilton, L., Bitz, C., and Blanchard-Wigglesworth, E.:
Predicting September sea ice: Ensemble skill of the SEARCH sea ice outlook
2008–2013, Geophys. Res. Lett., 41, 2411–2418,
https://doi.org/10.1002/2014GL059388, 2014.
Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider in
summer and narrower in winter, Geophys. Res. Lett., 40, 4864–4868,
https://doi.org/10.1002/grl.50928, 2013.
Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M.,
Xie, S. P., Kim, D., McGregor, S., Zhang, W., Zhao, S., Cai, W., Dong, Y.,
and Jin, F. F.: Polar amplification dominated by local forcing and
feedbacks, Nat. Clim. Change, 8, 1076–1081, https://doi.org/10.1038/s41558-018-0339-y, 2018.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers,
Dordrecht, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Tjernström, M., Shupe, M. D., Brooks, I. M., Persson, P. O. G.,
Prytherch, J., Salisbury, D. J., Sedlar, J., Achtert, P., Brooks, B. J.,
Johnston, P. E., and Sotiropoulou, G.: Warm-air advection, air mass
transformation and fog causes rapid ice melt, Geophys. Res. Lett., 42, 5594–5602, https://doi.org/10.1002/2015GL064373, 2015.
Tjernström, M., Shupe, M. D., Prytherch, J., Achtert, P., Brooks, I. M.,
and Sedlar, J.: Arctic summer air-mass transformation, surface inversions
and the surface energy budget, J. Climate, 32, 769–789,
https://doi.org/10.1175/JCLI-D-18-0216.1, 2019.
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L.,
Kurtz, N., Laxon, S. L., and Bacon, S.: Impact of Variable Atmospheric and
Oceanic Form Drag on Simulations of Arctic Sea Ice, J. Phys. Oceanogr., 44,
1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014.
Vihma, T.: Subgrid Parameterization of Surface Heat and Momentum Fluxes over
Polar Oceans, J. Geophys. Res., 100, 22625–22646,
https://doi.org/10.1029/95JC02498, 1995.
Vihma, T., Pirazzini, R., Fer, I., Renfrew, I. A., Sedlar, J., Tjernström, M., Lüpkes, C., Nygård, T., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, 2014.
Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-menge, J. A.,
Polashenski, C. M., and Light, B.: Seasonal evolution of melt ponds on
Arctic sea ice, J. Geophys. Res., 120, 5968–5982,
https://doi.org/10.1002/2015JC011030, 2015.
Weissling, B., Ackley, S., Wagner, P., and Xie, H.: EISCAM – Digital image
acquisition and processing for sea ice parameters from ships, Cold Reg. Sci.
Technol., 57, 49–60, https://doi.org/10.1016/j.coldregions.2009.01.001, 2009.
Wright, N. C. and Polashenski, C. M.: Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery, The Cryosphere, 12, 1307–1329, https://doi.org/10.5194/tc-12-1307-2018, 2018.
Yelland, M. J., Moat, B. I., Taylor, P. K., Pascal, R. W., Hutchings, J., and
Cornell, V. C.: Wind stress measurements from the open ocean corrected for
airflow distortion by the ship, J. Phys. Ocean., 28,
1511–1526, https://doi.org/10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2, 1998.
Yelland, M. J., Moat, B. I., Pascal, R. W., and Berry, D. I.: CFD model
estimates of the airflow distortion over research ships and the impact on
momentum flux measurements. J. Atmos. Ocean Tech., 19, 1477–1499,
https://doi.org/10.1175/1520-0426(2002)019<1477:CMEOTA>2.0.CO;2, 2002.
Zampieri, L., Goessling, H. F., and Jung, T.: Bright prospects for Arctic
sea ice prediction on subseasonal time scales, Geophys. Res. Letts., 45,
9731–9738, https://doi.org/10.1029/2018GL079394, 2018.
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather...
Altmetrics
Final-revised paper
Preprint