Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interactive biogenic emissions and drought stress effects on atmospheric composition in NASA GISS ModelE
Elizabeth Klovenski
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
Susanne E. Bauer
NASA Goddard Institute for Space Studies, New York, NY, USA
Kostas Tsigaridis
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Climate Systems Research, Columbia University, New York, NYC, USA
Greg Faluvegi
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Climate Systems Research, Columbia University, New York, NYC, USA
Igor Aleinov
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Climate Systems Research, Columbia University, New York, NYC, USA
Nancy Y. Kiang
NASA Goddard Institute for Space Studies, New York, NY, USA
Alex Guenther
Department of Earth System Science, University of California – Irvine, Irvine, CA, USA
Xiaoyan Jiang
Department of Earth System Science, University of California – Irvine, Irvine, CA, USA
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
Nan Lin
Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
Related authors
No articles found.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Ram Singh, Kostas Tsigaridis, Diana Bull, Laura P. Swiler, Benjamin M. Wagman, and Kate Marvel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2280, https://doi.org/10.5194/egusphere-2024-2280, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Analysis of post-eruption climate conditions using the impact metrics is crucial for understanding the hydroclimatic responses. We used NASA’s Earth system model to perform the experiments and utilize the moisture-based impact metrics and hydrological variables to investigate the effect of volcanically induced conditions that govern plant productivity. This study demonstrates the Mt. Pinatubo’s impact on drivers of plant productivity and regional and seasonal dependence of different drivers.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Ming Luo, Helen M. Worden, Robert D. Field, Kostas Tsigaridis, and Gregory S. Elsaesser
Atmos. Meas. Tech., 17, 2611–2624, https://doi.org/10.5194/amt-17-2611-2024, https://doi.org/10.5194/amt-17-2611-2024, 2024
Short summary
Short summary
The TROPESS CrIS single-pixel CO profile retrievals are compared to the MOPITT CO products in steps of adjusting them to the common a priori assumptions. The two data sets are found to agree within 5 %. We also demonstrated and analyzed the proper steps in evaluating GISS ModelE CO simulations using satellite CO retrieval products for the western US wildfire events in September 2020.
Alexandra Rivera, Kostas Tsigaridis, Gregory Faluvegi, and Drew Shindell
Geosci. Model Dev., 17, 3487–3505, https://doi.org/10.5194/gmd-17-3487-2024, https://doi.org/10.5194/gmd-17-3487-2024, 2024
Short summary
Short summary
This paper describes and evaluates an improvement to the representation of acetone in the GISS ModelE2.1 Earth system model. We simulate acetone's concentration and transport across the atmosphere as well as its dependence on chemistry, the ocean, and various global emissions. Comparisons of our model’s estimates to past modeling studies and field measurements have shown encouraging results. Ultimately, this paper contributes to a broader understanding of acetone's role in the atmosphere.
Qian Li, Maor Gabay, Chen Dayan, Pawel Misztal, Alex Guenther, Erick Fredj, and Eran Tas
EGUsphere, https://doi.org/10.5194/egusphere-2024-717, https://doi.org/10.5194/egusphere-2024-717, 2024
Preprint archived
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) affect the climate and air quality, while their emission from terrestrial vegetation is affected by drought in a way that is not well characterized. Our study reveals that the instantaneous intraday changes in meteorological conditions serve as a better proxy for drought-related variations in BVOCs emission rate than the absolute values of the meteorological parameters, advancing our understanding of BVOCs emission effects under climate change.
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-778, https://doi.org/10.5194/egusphere-2024-778, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in drier, warmer air, which can lead to a reduction in cloud. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence had led us to conclude.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernadello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-488, https://doi.org/10.5194/egusphere-2024-488, 2024
Short summary
Short summary
We apply the Adaptive Emission Reduction Approach with Earth System Models to provide simulations in which all ESMs converge at 1.5 °C and 2 °C warming levels. These simulations provide compatible emission pathways for a given warming level, uncovering uncertainty ranges previously missing in the CMIP scenarios. This new type of target-based emission-driven simulations offers a more coherent assessment across ESMs for studying both the carbon cycle and impacts under climate stabilization.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Min Huang, Gregory R. Carmichael, James H. Crawford, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
EGUsphere, https://doi.org/10.5194/egusphere-2024-484, https://doi.org/10.5194/egusphere-2024-484, 2024
Short summary
Short summary
This study uses model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutants’ budgets in this area as local emissions go down.
Helen Weierbach, Allegra N. LeGrande, and Kostas Tsigaridis
Atmos. Chem. Phys., 23, 15491–15505, https://doi.org/10.5194/acp-23-15491-2023, https://doi.org/10.5194/acp-23-15491-2023, 2023
Short summary
Short summary
Volcanic aerosols impact global and regional climate conditions but can vary depending on pre-existing initial climate conditions. We ran an ensemble of volcanic aerosol simulations under varying ENSO and NAO initial conditions to understand how initial climate states impact the modeled response to volcanic forcing. Overall we found that initial NAO conditions can impact the strength of the first winter post-eruptive response but are also affected by the choice of anomaly and sampling routine.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023, https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Short summary
This study examined high offshore ozone events in Galveston Bay and the Gulf of Mexico, using boat data and WRF–CAMx modeling during the TRACER-AQ 2021 field campaign. On average, high ozone is caused by chemistry due to the regional transport of volatile organic compounds and downwind advection of NOx from the ship channel. Two case studies show advection of ozone can be another process leading to high ozone, and accurate wind prediction is crucial for air quality forecasting in coastal areas.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
Atmos. Chem. Phys., 23, 10845–10867, https://doi.org/10.5194/acp-23-10845-2023, https://doi.org/10.5194/acp-23-10845-2023, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long-range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement, while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful for identifying the influence of aged BB plumes in anthropogenically influenced areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Ram Singh, Kostas Tsigaridis, Allegra N. LeGrande, Francis Ludlow, and Joseph G. Manning
Clim. Past, 19, 249–275, https://doi.org/10.5194/cp-19-249-2023, https://doi.org/10.5194/cp-19-249-2023, 2023
Short summary
Short summary
This work is a modeling effort to investigate the hydroclimatic impacts of a volcanic
quartetduring 168–158 BCE over the Nile River basin in the context of Ancient Egypt's Ptolemaic era (305–30 BCE). The model simulated a robust surface cooling (~ 1.0–1.5 °C), suppressing the African monsoon (deficit of > 1 mm d−1 over East Africa) and agriculturally vital Nile summer flooding. Our result supports the hypothesized relation between volcanic eruptions, hydroclimatic shocks, and societal impacts.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Claudia Bernier, Yuxuan Wang, Guillaume Gronoff, Timothy Berkoff, K. Emma Knowland, John T. Sullivan, Ruben Delgado, Vanessa Caicedo, and Brian Carroll
Atmos. Chem. Phys., 22, 15313–15331, https://doi.org/10.5194/acp-22-15313-2022, https://doi.org/10.5194/acp-22-15313-2022, 2022
Short summary
Short summary
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We developed a method to characterize large datasets of multi-dimensional measurements from lidar instruments taken in coastal regions. Using the clustered ozone groups, we evaluated model performance in simulating the coastal ozone variability vertically and diurnally. The approach allowed us to pinpoint areas where the models succeed in simulating coastal ozone and areas where there are still gaps.
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 22, 7843–7859, https://doi.org/10.5194/acp-22-7843-2022, https://doi.org/10.5194/acp-22-7843-2022, 2022
Short summary
Short summary
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In contrast to the increase in dust in the southwest USA where major dust sources are located, dust in the southeast USA is affected more by long-range transport from Africa and decreases under droughts. Both the transport and emissions of African dust are weakened when the southeast USA is under droughts, which reveals how regional-scale droughts can influence aerosol abundance through long-range transport.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Robert D. Field, Jonathan E. Hickman, Igor V. Geogdzhayev, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 18333–18350, https://doi.org/10.5194/acp-21-18333-2021, https://doi.org/10.5194/acp-21-18333-2021, 2021
Short summary
Short summary
In this study, we examined changes in atmospheric composition over China from satellite measurements during the COVID lockdowns of 2020. We found that interpreting changes in 2020 depended strongly on the background period and whether trends were accounted for. In most cases, pollution levels in 2020 were lower than during the previous few years when pollution levels appear to have stabilized.
Jonathan E. Hickman, Niels Andela, Enrico Dammers, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Courtney A. Di Vittorio, Money Ossohou, Corinne Galy-Lacaux, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 16277–16291, https://doi.org/10.5194/acp-21-16277-2021, https://doi.org/10.5194/acp-21-16277-2021, 2021
Short summary
Short summary
Ammonia (NH3) gas emitted from soils and biomass burning contributes to particulate air pollution. We used satellite observations of the atmosphere over Africa to show that declines in NH3 concentrations over South Sudan's Sudd wetland in 2008–2017 are related to variation in wetland extent. We also find NH3 concentrations increased in West Africa as a result of biomass burning and increased in the Lake Victoria region, likely due to agricultural expansion and intensification.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021, https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
Short summary
Previous studies showed that black carbon (BC) could warm the surface with decreased incoming radiation. With climate models, we found that the surface energy redistribution plays a more crucial role in surface temperature compared with other forcing agents. Though BC could reduce the surface heating, the energy dissipates less efficiently, which is manifested by reduced convective and evaporative cooling, thereby warming the surface.
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021, https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Short summary
We present observations of total reactive gases in a suburban forest observatory in the Seoul metropolitan area. The quantitative comparison with speciated trace gas observations illustrated significant underestimation in atmospheric reactivity from the speciated trace gas observational dataset. We present scientific discussion about potential causes.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605, https://doi.org/10.5194/acp-21-3593-2021, https://doi.org/10.5194/acp-21-3593-2021, 2021
Short summary
Short summary
The aims here are to assess the role of aerosols in India's monsoon precipitation and to determine the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to spatial shifts in convection over the region. A significant increase in precipitation (up to ~ 20 %) is found only when both Indian and Chinese sulfate emissions are regulated.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Chen Dayan, Erick Fredj, Pawel K. Misztal, Maor Gabay, Alex B. Guenther, and Eran Tas
Atmos. Chem. Phys., 20, 12741–12759, https://doi.org/10.5194/acp-20-12741-2020, https://doi.org/10.5194/acp-20-12741-2020, 2020
Short summary
Short summary
We studied the emission of biogenic volatile organic compounds from both marine and terrestrial ecosystems in the Eastern Mediterranean Basin, a global warming hot spot. We focused on isoprene and dimethyl sulfide (DMS), which are well recognized for their effect on climate and strong impact on photochemical pollution by the former. We found high emissions of isoprene and a strong decadal decrease in the emission of DMS which can both be attributed to the strong increase in seawater temperature.
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
Short summary
A model consisting of multiple machine learning algorithms is developed to predict wildfire burned area over the south central US and explains key environmental drivers. The developed model alleviates the issue of unevenly distributed data and predicts burned grids and burned areas with good accuracy. The model reveals climate variability such as relative humidity anomalies and antecedent drought severity contributes the most to the total burned area for winter–spring and summer fire season.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Prodromos Zanis, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, Ben Johnson, Makoto Deushi, Martine Michou, Jane Mulcahy, Pierre Nabat, Dirk Olivié, Naga Oshima, Adriana Sima, Michael Schulz, Toshihiko Takemura, and Konstantinos Tsigaridis
Atmos. Chem. Phys., 20, 8381–8404, https://doi.org/10.5194/acp-20-8381-2020, https://doi.org/10.5194/acp-20-8381-2020, 2020
Short summary
Short summary
In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014.
Keren Mezuman, Kostas Tsigaridis, Gregory Faluvegi, and Susanne E. Bauer
Geosci. Model Dev., 13, 3091–3118, https://doi.org/10.5194/gmd-13-3091-2020, https://doi.org/10.5194/gmd-13-3091-2020, 2020
Short summary
Short summary
Fires affect the composition of the atmosphere and Earth’s radiation balance by emitting a suite of reactive gases and particles. An interactive fire module in an Earth system model (ESM) allows us to study the natural and anthropogenic drivers, feedbacks, and interactions of open fires. To do so, we have developed pyrE, the NASA GISS interactive fire emissions module.
The main motivation behind this work is to have fire emissions reacting to climate change and anthropogenic activities.
Chinmoy Sarkar, Alex B. Guenther, Jeong-Hoo Park, Roger Seco, Eliane Alves, Sarah Batalha, Raoni Santana, Saewung Kim, James Smith, Julio Tóta, and Oscar Vega
Atmos. Chem. Phys., 20, 7179–7191, https://doi.org/10.5194/acp-20-7179-2020, https://doi.org/10.5194/acp-20-7179-2020, 2020
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. In this study, we report major BVOCs, e.g. isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at a primary rainforest in eastern Amazonia. We used the measured data to evaluate the MEGAN2.1 model for the emission site.
Sam J. Silva, Colette L. Heald, and Alex B. Guenther
Geosci. Model Dev., 13, 2569–2585, https://doi.org/10.5194/gmd-13-2569-2020, https://doi.org/10.5194/gmd-13-2569-2020, 2020
Short summary
Short summary
Simulating the influence of the biosphere on atmospheric chemistry has traditionally been computationally intensive. We describe a surrogate canopy physics model parameterized using a statistical learning technique and specifically designed for use in large-scale chemical transport models. Our surrogate model reproduces a more detailed model to within 10 % without a large computational demand, improving the process representation of biosphere–atmosphere exchange.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020, https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary
Short summary
China has pledged to reduce carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005 to 2009 to independently evaluate three different CO2 emission estimates.
Daniel M. Westervelt, Nora R. Mascioli, Arlene M. Fiore, Andrew J. Conley, Jean-François Lamarque, Drew T. Shindell, Greg Faluvegi, Michael Previdi, Gustavo Correa, and Larry W. Horowitz
Atmos. Chem. Phys., 20, 3009–3027, https://doi.org/10.5194/acp-20-3009-2020, https://doi.org/10.5194/acp-20-3009-2020, 2020
Short summary
Short summary
We use three Earth system models to estimate the impact of regional air pollutant emissions reductions on global and regional surface temperature. We find that removing human-caused air pollutant emissions from certain world regions (such as the USA) results in warming of up to 0.15 °C. We use our model output to calculate simple climate metrics that will allow for regional-scale climate impact estimates without the use of computationally demanding computer models.
Thomas J. Fauchez, Martin Turbet, Eric T. Wolf, Ian Boutle, Michael J. Way, Anthony D. Del Genio, Nathan J. Mayne, Konstantinos Tsigaridis, Ravi K. Kopparapu, Jun Yang, Francois Forget, Avi Mandell, and Shawn D. Domagal Goldman
Geosci. Model Dev., 13, 707–716, https://doi.org/10.5194/gmd-13-707-2020, https://doi.org/10.5194/gmd-13-707-2020, 2020
Short summary
Short summary
Atmospheric characterization of rocky exoplanets orbiting within the habitable zone of nearby M dwarf stars is around the corner with the James Webb Space Telescope (JWST), expected to be launch in 2021.
Global climate models (GCMs) are powerful tools to model exoplanet atmospheres and to predict their habitability. However, intrinsic differences between the models can lead to various predictions. This paper presents an experiment protocol to evaluate these differences.
Øivind Hodnebrog, Gunnar Myhre, Bjørn H. Samset, Kari Alterskjær, Timothy Andrews, Olivier Boucher, Gregory Faluvegi, Dagmar Fläschner, Piers M. Forster, Matthew Kasoar, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas B. Richardson, Dilshad Shawki, Drew Shindell, Keith P. Shine, Philip Stier, Toshihiko Takemura, Apostolos Voulgarakis, and Duncan Watson-Parris
Atmos. Chem. Phys., 19, 12887–12899, https://doi.org/10.5194/acp-19-12887-2019, https://doi.org/10.5194/acp-19-12887-2019, 2019
Short summary
Short summary
Different greenhouse gases (e.g. CO2) and aerosols (e.g. black carbon) impact the Earth’s water cycle differently. Here we investigate how various gases and particles impact atmospheric water vapour and its lifetime, i.e., the average number of days that water vapour stays in the atmosphere after evaporation and before precipitation. We find that this lifetime could increase substantially by the end of this century, indicating that important changes in precipitation patterns are excepted.
Daun Jeong, Roger Seco, Dasa Gu, Youngro Lee, Benjamin A. Nault, Christoph J. Knote, Tom Mcgee, John T. Sullivan, Jose L. Jimenez, Pedro Campuzano-Jost, Donald R. Blake, Dianne Sanchez, Alex B. Guenther, David Tanner, L. Gregory Huey, Russell Long, Bruce E. Anderson, Samuel R. Hall, Kirk Ullmann, Hye-jung Shin, Scott C. Herndon, Youngjae Lee, Danbi Kim, Joonyoung Ahn, and Saewung Kim
Atmos. Chem. Phys., 19, 12779–12795, https://doi.org/10.5194/acp-19-12779-2019, https://doi.org/10.5194/acp-19-12779-2019, 2019
Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton
Atmos. Chem. Phys., 19, 11253–11265, https://doi.org/10.5194/acp-19-11253-2019, https://doi.org/10.5194/acp-19-11253-2019, 2019
Short summary
Short summary
Isoprene is the most abundantly emitted reactive organic gas globally, and thus it is important to understand its fate and role in aerosol formation and growth. A major product of its oxidation is an epoxydiol, IEPOX, which can be efficiently taken up by acidic aerosol to generate substantial amounts of secondary organic aerosol (SOA). We present chamber experiments exploring the properties of IEPOX SOA and reconcile discrepancies between field, laboratory, and model studies of this process.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Karena A. McKinney, Daniel Wang, Jianhuai Ye, Jean-Baptiste de Fouchier, Patricia C. Guimarães, Carla E. Batista, Rodrigo A. F. Souza, Eliane G. Alves, Dasa Gu, Alex B. Guenther, and Scot T. Martin
Atmos. Meas. Tech., 12, 3123–3135, https://doi.org/10.5194/amt-12-3123-2019, https://doi.org/10.5194/amt-12-3123-2019, 2019
Short summary
Short summary
Volatile organic compound (VOC) emissions influence air quality and particulate distributions, particularly in major source regions such as the Amazon. A sampler for collecting VOCs from an unmanned aerial vehicle (UAV) is described. Field tests of its performance and an initial example data set collected in the Amazon are also presented. The low cost, ease of use, and maneuverability of UAVs give this method the potential to significantly advance knowledge of the spatial distribution of VOCs.
Moshe Shechner, Alex Guenther, Robert Rhew, Asher Wishkerman, Qian Li, Donald Blake, Gil Lerner, and Eran Tas
Atmos. Chem. Phys., 19, 7667–7690, https://doi.org/10.5194/acp-19-7667-2019, https://doi.org/10.5194/acp-19-7667-2019, 2019
Short summary
Short summary
Along with other recent studies, our findings point to strong emission of a suite of volatile halogenated organic compounds (VHOCs) from saline soils and salt lakes. Some emitted VHOCs were not known to be emitted from terrestrial sources, and our observations point to apparent new common controls for the emission of several VHOCs. These findings are an important milestone toward a more complete understanding of the effect of VHOCs on atmospheric ozone concentrations and oxidation capacity.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Lu Shen, Daniel J. Jacob, Loretta J. Mickley, Yuxuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 17489–17496, https://doi.org/10.5194/acp-18-17489-2018, https://doi.org/10.5194/acp-18-17489-2018, 2018
Archana Dayalu, J. William Munger, Steven C. Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael B. McElroy, Chris P. Nielsen, and Kristina Luus
Biogeosciences, 15, 6713–6729, https://doi.org/10.5194/bg-15-6713-2018, https://doi.org/10.5194/bg-15-6713-2018, 2018
Short summary
Short summary
Accounting for the vegetation signal is critical for comprehensive CO2 budget assessment in China. We model and evaluate hourly vegetation carbon dioxide (CO2) exchange (mass per unit area per unit time) in northern China from 2005 to 2009. The model is driven by satellite and meteorological data, is linked to ground-level ecosystem observations, and is applicable to other time periods. We find vegetation uptake of CO2 in summer is comparable to emissions from fossil fuels in northern China.
Chloe Y. Gao, Susanne E. Bauer, and Kostas Tsigaridis
Atmos. Chem. Phys., 18, 14243–14251, https://doi.org/10.5194/acp-18-14243-2018, https://doi.org/10.5194/acp-18-14243-2018, 2018
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Anna L. Hodshire, Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, Suzane S. de Sá, Alex B. Guenther, Armin Hansel, James F. Hunter, Werner Jud, Thomas Karl, Saewung Kim, Jesse H. Kroll, Jeong-Hoo Park, Zhe Peng, Roger Seco, James N. Smith, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 12433–12460, https://doi.org/10.5194/acp-18-12433-2018, https://doi.org/10.5194/acp-18-12433-2018, 2018
Short summary
Short summary
We investigate the nucleation and growth processes that shape the aerosol size distribution inside oxidation flow reactors (OFRs) that sampled ambient air from Colorado and the Amazon rainforest. Results indicate that organics are important for both nucleation and growth, vapor uptake was limited to accumulation-mode particles, fragmentation reactions were important to limit particle growth at higher OH exposures, and an H2SO4-organics nucleation mechanism captured new particle formation well.
Eliane G. Alves, Julio Tóta, Andrew Turnipseed, Alex B. Guenther, José Oscar W. Vega Bustillos, Raoni A. Santana, Glauber G. Cirino, Julia V. Tavares, Aline P. Lopes, Bruce W. Nelson, Rodrigo A. de Souza, Dasa Gu, Trissevgeni Stavrakou, David K. Adams, Jin Wu, Scott Saleska, and Antonio O. Manzi
Biogeosciences, 15, 4019–4032, https://doi.org/10.5194/bg-15-4019-2018, https://doi.org/10.5194/bg-15-4019-2018, 2018
Short summary
Short summary
This study shows that leaf quantity and leaf age have an important effect on seasonal changes in isoprene emissions and that these could play an even more important role in regulating ecosystem isoprene fluxes than light and temperature at seasonal timescales in tropical forests. These results bring novelty and new insight for future research because in the past leaf phenology was not considered as an important factor that controls biological processes in the tropics.
Chunxiang Ye, Xianliang Zhou, Dennis Pu, Jochen Stutz, James Festa, Max Spolaor, Catalina Tsai, Christopher Cantrell, Roy L. Mauldin III, Andrew Weinheimer, Rebecca S. Hornbrook, Eric C. Apel, Alex Guenther, Lisa Kaser, Bin Yuan, Thomas Karl, Julie Haggerty, Samuel Hall, Kirk Ullmann, James Smith, and John Ortega
Atmos. Chem. Phys., 18, 9107–9120, https://doi.org/10.5194/acp-18-9107-2018, https://doi.org/10.5194/acp-18-9107-2018, 2018
Short summary
Short summary
Substantial levels of HONO existed during the day throughout the troposphere over the southeastern US during NOMADSS 2013. Particulate nitrate photolysis appeared to be the major volume HONO source, while NOx was an important HONO precursor only in industrial and urban plumes. HONO was not a significant OH radical precursor in the rural troposphere away from the ground surface; however, its production from particulate nitrate photolysis was an important renoxification pathway.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Bert Van Schaeybroeck, Lesley De Cruz, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Quentin Laffineur, Crist Amelynck, Niels Schoon, Bernard Heinesch, Thomas Holst, Almut Arneth, Reinhart Ceulemans, Arturo Sanchez-Lorenzo, and Alex Guenther
Biogeosciences, 15, 3673–3690, https://doi.org/10.5194/bg-15-3673-2018, https://doi.org/10.5194/bg-15-3673-2018, 2018
Short summary
Short summary
Biogenic isoprene fluxes are simulated over Europe with the MEGAN–MOHYCAN model for the recent past and end-of-century climate at high spatiotemporal resolution (0.1°, 3 min). Due to climate change, fluxes increased by 40 % over 1979–2014. Climate scenarios for 2070–2099 suggest an increase by 83 % due to climate, and an even stronger increase when the potential impact of CO2 fertilization is considered (up to 141 %). Accounting for CO2 inhibition cancels out a large part of these increases.
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael B. McElroy
Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, https://doi.org/10.5194/acp-18-7423-2018, 2018
Short summary
Short summary
Severe haze events occur frequently over northern China, especially in winter. Acidity plays a critical role in the formation of secondary PM2.5 and its toxicity. Using field measurements of gases and particles to critically evaluate two thermodynamic models routinely employed to determine particle acidity, we found that China's winter haze particles are generally within a moderately acidic range (pH 4–5) and not highly acidic (0) or neutral (7) as has been previously reported in the literature.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Brett B. Palm, Suzane S. de Sá, Douglas A. Day, Pedro Campuzano-Jost, Weiwei Hu, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Joel Brito, Florian Wurm, Paulo Artaxo, Ryan Thalman, Jian Wang, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Allen H. Goldstein, Yingjun Liu, Stephen R. Springston, Rodrigo Souza, Matt K. Newburn, M. Lizabeth Alexander, Scot T. Martin, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 467–493, https://doi.org/10.5194/acp-18-467-2018, https://doi.org/10.5194/acp-18-467-2018, 2018
Short summary
Short summary
Ambient air was oxidized by OH or O3 in an oxidation flow reactor during both wet and dry seasons in the GoAmazon2014/5 campaign to study secondary organic aerosol (SOA) formation. We investigated how much biogenic, urban, and biomass burning sources contributed to the ambient concentrations of SOA precursor gases and how their contributions changed diurnally and seasonally. SOA yields and hygroscopicity of organic aerosol in the oxidation flow reactor were also studied.
Robert C. Rhew, Malte Julian Deventer, Andrew A. Turnipseed, Carsten Warneke, John Ortega, Steve Shen, Luis Martinez, Abigail Koss, Brian M. Lerner, Jessica B. Gilman, James N. Smith, Alex B. Guenther, and Joost A. de Gouw
Atmos. Chem. Phys., 17, 13417–13438, https://doi.org/10.5194/acp-17-13417-2017, https://doi.org/10.5194/acp-17-13417-2017, 2017
Short summary
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured
lightalkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Huisheng Bian, Mian Chin, Didier A. Hauglustaine, Michael Schulz, Gunnar Myhre, Susanne E. Bauer, Marianne T. Lund, Vlassis A. Karydis, Tom L. Kucsera, Xiaohua Pan, Andrea Pozzer, Ragnhild B. Skeie, Stephen D. Steenrod, Kengo Sudo, Kostas Tsigaridis, Alexandra P. Tsimpidi, and Svetlana G. Tsyro
Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, https://doi.org/10.5194/acp-17-12911-2017, 2017
Short summary
Short summary
Atmospheric nitrate contributes notably to total aerosol mass in the present day and is likely to be more important over the next century, with a projected decline in SO2 and NOx emissions and increase in NH3 emissions. This paper investigates atmospheric nitrate using multiple global models and measurements. The study is part of the AeroCom phase III activity. The study is the first attempt to look at global atmospheric nitrate simulation at physical and chemical process levels.
Yuxuan Wang, Yuanyu Xie, Wenhao Dong, Yi Ming, Jun Wang, and Lu Shen
Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017, https://doi.org/10.5194/acp-17-12827-2017, 2017
Short summary
Short summary
Besides the well-known large impact on agriculture and water resources, drought is associated with significant adverse effects on air quality. Drought-induced degradation of air quality is largely due to natural processes, offsetting the effort of anthropogenic emission reduction during the past decades. Such adverse impacts should be included in modeling processes under current and future climate for mitigation policy.
Maria Sand, Bjørn H. Samset, Yves Balkanski, Susanne Bauer, Nicolas Bellouin, Terje K. Berntsen, Huisheng Bian, Mian Chin, Thomas Diehl, Richard Easter, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Jean-François Lamarque, Guangxing Lin, Xiaohong Liu, Gan Luo, Gunnar Myhre, Twan van Noije, Joyce E. Penner, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Fangqun Yu, Kai Zhang, and Hua Zhang
Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, https://doi.org/10.5194/acp-17-12197-2017, 2017
Short summary
Short summary
The role of aerosols in the changing polar climate is not well understood and the aerosols are poorly constrained in the models. In this study we have compared output from 16 different aerosol models with available observations at both poles. We show that the model median is representative of the observations, but the model spread is large. The Arctic direct aerosol radiative effect over the industrial area is positive during spring due to black carbon and negative during summer due to sulfate.
Min Huang, Gregory R. Carmichael, James H. Crawford, Armin Wisthaler, Xiwu Zhan, Christopher R. Hain, Pius Lee, and Alex B. Guenther
Geosci. Model Dev., 10, 3085–3104, https://doi.org/10.5194/gmd-10-3085-2017, https://doi.org/10.5194/gmd-10-3085-2017, 2017
Short summary
Short summary
Various sensitivity simulations during two airborne campaigns were performed to assess the impact of different initialization methods and model resolutions on NUWRF-modeled weather states, heat fluxes, and the follow-on MEGAN isoprene emission calculations. Proper land initialization is shown to be important to the coupled weather modeling and the follow-on emission modeling, which is also critical to accurately representing other processes in air quality modeling and data assimilation.
Chloe Y. Gao, Kostas Tsigaridis, and Susanne E. Bauer
Geosci. Model Dev., 10, 751–764, https://doi.org/10.5194/gmd-10-751-2017, https://doi.org/10.5194/gmd-10-751-2017, 2017
Kerneels Jaars, Pieter G. van Zyl, Johan P. Beukes, Heidi Hellén, Ville Vakkari, Micky Josipovic, Andrew D. Venter, Matti Räsänen, Leandra Knoetze, Dirk P. Cilliers, Stefan J. Siebert, Markku Kulmala, Janne Rinne, Alex Guenther, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 16, 15665–15688, https://doi.org/10.5194/acp-16-15665-2016, https://doi.org/10.5194/acp-16-15665-2016, 2016
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) – important in tropospheric ozone and secondary organic aerosol formation – were measured at a savannah grassland in South Africa. Results presented are the most extensive for this type of landscape. Compared to other parts of the world, monoterpene levels were similar, while very low isoprene levels led to significantly lower total BVOC levels. BVOC levels were an order of magnitude lower compared to anthropogenic VOC levels measured at Welgegund.
Yuxuan Wang, Beixi Jia, Sing-Chun Wang, Mark Estes, Lu Shen, and Yuanyu Xie
Atmos. Chem. Phys., 16, 15265–15276, https://doi.org/10.5194/acp-16-15265-2016, https://doi.org/10.5194/acp-16-15265-2016, 2016
Short summary
Short summary
This paper provides empirical evidence that the year-to-year variability of summertime ozone over Houston is linked to the Bermuda High (BH) large-scale circulation patterns. It identifies two BH indices that can explain up to 70 % of the interannual variability of summertime ozone in Houston and illustrates the mechanism underlying the BH and ozone linkage. Such a mechanism is tested for applicability to other coastal urban regions along the US Gulf Coast.
Ivan Kourtchev, Ricardo H. M. Godoi, Sarah Connors, James G. Levine, Alex T. Archibald, Ana F. L. Godoi, Sarah L. Paralovo, Cybelli G. G. Barbosa, Rodrigo A. F. Souza, Antonio O. Manzi, Roger Seco, Steve Sjostedt, Jeong-Hoo Park, Alex Guenther, Saewung Kim, James Smith, Scot T. Martin, and Markus Kalberer
Atmos. Chem. Phys., 16, 11899–11913, https://doi.org/10.5194/acp-16-11899-2016, https://doi.org/10.5194/acp-16-11899-2016, 2016
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Keren Mezuman, Susanne E. Bauer, and Kostas Tsigaridis
Atmos. Chem. Phys., 16, 10651–10669, https://doi.org/10.5194/acp-16-10651-2016, https://doi.org/10.5194/acp-16-10651-2016, 2016
Short summary
Short summary
We test new parameterizations for secondary inorganic aerosols in GISS ModelE. To evaluate the model performance, we use measurements of these aerosols and gaseous precursors from surface and aircraft measurements over the USA and Europe. We show that considering the size distribution of these particles, as well as a variety of formation pathways, is important. Overall, our model underestimates the aerosol mass compared to measurements, while gaseous precursors are overestimated.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Michel Van Roozendael, Guido R. van der Werf, Christine Wiedinmyer, Johannes W. Kaiser, Katerina Sindelarova, and Alex Guenther
Atmos. Chem. Phys., 16, 10133–10158, https://doi.org/10.5194/acp-16-10133-2016, https://doi.org/10.5194/acp-16-10133-2016, 2016
Short summary
Short summary
Relying on a 9-year record of satellite observations of formaldehyde, we use inverse techniques to derive global top–down hydrocarbon fluxes over 2005–2013, infer seasonal and interannual variability, and detect emission trends. Our results suggest changes in fire seasonal patterns, a stronger contribution of agricultural burning, overestimated isoprene flux rates in the tropics, overly decreased isoprene emissions due to soil moisture stress in arid areas, and enhanced isoprene trends.
Matthew Kasoar, Apostolos Voulgarakis, Jean-François Lamarque, Drew T. Shindell, Nicolas Bellouin, William J. Collins, Greg Faluvegi, and Kostas Tsigaridis
Atmos. Chem. Phys., 16, 9785–9804, https://doi.org/10.5194/acp-16-9785-2016, https://doi.org/10.5194/acp-16-9785-2016, 2016
Short summary
Short summary
Computer models are our primary tool to investigate how fossil-fuel emissions are affecting the climate. Here, we used three different climate models to see how they simulate the response to removing sulfur dioxide emissions from China. We found that the models disagreed substantially on how large the climate effect is from the emissions in this region. This range of outcomes is concerning if scientists or policy makers have to rely on any one model when performing their own studies.
Nikos Daskalakis, Kostas Tsigaridis, Stelios Myriokefalitakis, George S. Fanourgakis, and Maria Kanakidou
Atmos. Chem. Phys., 16, 9771–9784, https://doi.org/10.5194/acp-16-9771-2016, https://doi.org/10.5194/acp-16-9771-2016, 2016
Short summary
Short summary
Three 30-year simulations of past atmospheric composition changes were performed using different anthropogenic emissions of pollutants accounting or not for the applied air quality legislation and accounting for the year–to–year observed climate and natural emissions variability. The actual benefit of applied legislation along with technological advances is higher than what is usually calculated by a simple comparison of today's atmosphere against a constant anthropogenic emissions simulation.
Pawel K. Misztal, Jeremy C. Avise, Thomas Karl, Klaus Scott, Haflidi H. Jonsson, Alex B. Guenther, and Allen H. Goldstein
Atmos. Chem. Phys., 16, 9611–9628, https://doi.org/10.5194/acp-16-9611-2016, https://doi.org/10.5194/acp-16-9611-2016, 2016
Short summary
Short summary
In this study, for the first time regional BVOC models are compared with direct regional measurements of fluxes from aircraft, allowing assessment of model accuracy at scales relevant to air quality modeling. We directly assess modeled isoprene emission inventories which are important for regional air quality simulations of ozone and secondary particle concentrations.
Albert Rivas-Ubach, Yina Liu, Jordi Sardans, Malak M. Tfaily, Young-Mo Kim, Eric Bourrianne, Ljiljana Paša-Tolić, Josep Peñuelas, and Alex Guenther
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-209, https://doi.org/10.5194/amt-2016-209, 2016
Revised manuscript not accepted
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Chun Zhao, Maoyi Huang, Jerome D. Fast, Larry K. Berg, Yun Qian, Alex Guenther, Dasa Gu, Manish Shrivastava, Ying Liu, Stacy Walters, Gabriele Pfister, Jiming Jin, John E. Shilling, and Carsten Warneke
Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, https://doi.org/10.5194/gmd-9-1959-2016, 2016
Short summary
Short summary
In this study, the latest version of MEGAN is coupled within CLM4 in WRF-Chem. In this implementation, MEGAN shares a consistent vegetation map with CLM4. This improved modeling framework is used to investigate the impact of two land surface schemes on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models.
Zhe Peng, Douglas A. Day, Amber M. Ortega, Brett B. Palm, Weiwei Hu, Harald Stark, Rui Li, Kostas Tsigaridis, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 4283–4305, https://doi.org/10.5194/acp-16-4283-2016, https://doi.org/10.5194/acp-16-4283-2016, 2016
Short summary
Short summary
Oxidation flow reactors (OFRs) are promising tools of studying atmospheric oxidation processes. Elevated concentrations of both OH and non-OH oxidants in OFRs leave room for speculation that non-OH chemistry can play a major role. Through systematic modeling, we find conditions where non-OH VOC fate is significant and show that, in most field studies of SOA using OFRs, non-OH VOC fate in OFRs was insignificant. We also provide guidelines helping OFR users avoid significant non-OH VOC oxidation.
Eliane G. Alves, Kolby Jardine, Julio Tota, Angela Jardine, Ana Maria Yãnez-Serrano, Thomas Karl, Julia Tavares, Bruce Nelson, Dasa Gu, Trissevgeni Stavrakou, Scot Martin, Paulo Artaxo, Antonio Manzi, and Alex Guenther
Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, https://doi.org/10.5194/acp-16-3903-2016, 2016
Short summary
Short summary
For a long time, it was thought that tropical rainforests are evergreen forests and the processes involved in these ecosystems do not change all year long. However, some satellite retrievals have suggested that ecophysiological processes may present seasonal variations mainly due to variation in light and leaf phenology in Amazonia. These in situ measurements are the first showing of a seasonal trend of volatile organic compound emissions, correlating with light and leaf phenology in Amazonia.
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
Zak Kipling, Philip Stier, Colin E. Johnson, Graham W. Mann, Nicolas Bellouin, Susanne E. Bauer, Tommi Bergman, Mian Chin, Thomas Diehl, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Harri Kokkola, Xiaohong Liu, Gan Luo, Twan van Noije, Kirsty J. Pringle, Knut von Salzen, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Toshihiko Takemura, Kostas Tsigaridis, and Kai Zhang
Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, https://doi.org/10.5194/acp-16-2221-2016, 2016
Short summary
Short summary
The vertical distribution of atmospheric aerosol is an important factor in its effects on climate. In this study we use a sophisticated model of the many interacting processes affecting aerosol in the atmosphere to show that the vertical distribution is typically dominated by only a few of these processes. Constraining these physical processes may help to reduce the large differences between models. However, the important processes are not always the same for different types of aerosol.
Y. Kim, P. R. Moorcroft, I. Aleinov, M. J. Puma, and N. Y. Kiang
Geosci. Model Dev., 8, 3837–3865, https://doi.org/10.5194/gmd-8-3837-2015, https://doi.org/10.5194/gmd-8-3837-2015, 2015
Short summary
Short summary
The Ent Terrestrial Biosphere Model is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models. This study describes the leaf phenology submodel implemented in the Ent TBM. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites.
J.-W. Xu, R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin
Atmos. Chem. Phys., 15, 13133–13144, https://doi.org/10.5194/acp-15-13133-2015, https://doi.org/10.5194/acp-15-13133-2015, 2015
Short summary
Short summary
1. GOCI (Geostationary Ocean Color Imager) retrieval of AOD is consistent with AERONET AOD (RMSE=0.08-0.1)
2. GOCI-derived PM2.5 is in significant agreement with in situ observations (r2=0.66, rRMSE=18.3%)
3. Population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg/m3, threatening the health of its more than 400 million residents
4. Secondary inorganics (SO42-, NO3-, NH4+) & organic matter are the most significant components of GOCI-derived PM2.5.
R. Gonzalez-Abraham, S. H. Chung, J. Avise, B. Lamb, E. P. Salathé Jr., C. G. Nolte, D. Loughlin, A. Guenther, C. Wiedinmyer, T. Duhl, Y. Zhang, and D. G. Streets
Atmos. Chem. Phys., 15, 12645–12665, https://doi.org/10.5194/acp-15-12645-2015, https://doi.org/10.5194/acp-15-12645-2015, 2015
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, M. De Mazière, C. Vigouroux, F. Hendrick, M. George, C. Clerbaux, P.-F. Coheur, and A. Guenther
Atmos. Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-11861-2015, https://doi.org/10.5194/acp-15-11861-2015, 2015
Short summary
Short summary
Formaldehyde columns from two space sensors, GOME-2 and OMI, constrain by inverse modeling the global emissions of HCHO precursors in 2010. The resulting biogenic and pyrogenic fluxes from both optimizations show a very good degree of consistency. The isoprene fluxes are reduced globally by ca. 10%, and emissions from fires decrease by ca. 35%, compared to the prior. Anthropogenic emissions are weakly constrained except over China. Sensitivity inversions show robustness of the inferred fluxes.
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
L. Zhou, R. Gierens, A. Sogachev, D. Mogensen, J. Ortega, J. N. Smith, P. C. Harley, A. J. Prenni, E. J. T. Levin, A. Turnipseed, A. Rusanen, S. Smolander, A. B. Guenther, M. Kulmala, T. Karl, and M. Boy
Atmos. Chem. Phys., 15, 8643–8656, https://doi.org/10.5194/acp-15-8643-2015, https://doi.org/10.5194/acp-15-8643-2015, 2015
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
X. Pan, M. Chin, R. Gautam, H. Bian, D. Kim, P. R. Colarco, T. L. Diehl, T. Takemura, L. Pozzoli, K. Tsigaridis, S. Bauer, and N. Bellouin
Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, https://doi.org/10.5194/acp-15-5903-2015, 2015
S. Kim, S.-Y. Kim, M. Lee, H. Shim, G. M. Wolfe, A. B. Guenther, A. He, Y. Hong, and J. Han
Atmos. Chem. Phys., 15, 4357–4371, https://doi.org/10.5194/acp-15-4357-2015, https://doi.org/10.5194/acp-15-4357-2015, 2015
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
C. S. Brauer, T. A. Blake, A. B. Guenther, S. W. Sharpe, R. L. Sams, and T. J. Johnson
Atmos. Meas. Tech., 7, 3839–3847, https://doi.org/10.5194/amt-7-3839-2014, https://doi.org/10.5194/amt-7-3839-2014, 2014
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
P. K. Misztal, T. Karl, R. Weber, H. H. Jonsson, A. B. Guenther, and A. H. Goldstein
Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, https://doi.org/10.5194/acp-14-10631-2014, 2014
S. Smolander, Q. He, D. Mogensen, L. Zhou, J. Bäck, T. Ruuskanen, S. Noe, A. Guenther, H. Aaltonen, M. Kulmala, and M. Boy
Biogeosciences, 11, 5425–5443, https://doi.org/10.5194/bg-11-5425-2014, https://doi.org/10.5194/bg-11-5425-2014, 2014
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr
Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, https://doi.org/10.5194/acp-14-9317-2014, 2014
R. J. Park, S. K. Hong, H.-A. Kwon, S. Kim, A. Guenther, J.-H. Woo, and C. P. Loughner
Atmos. Chem. Phys., 14, 7929–7940, https://doi.org/10.5194/acp-14-7929-2014, https://doi.org/10.5194/acp-14-7929-2014, 2014
E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. T. Pye
Atmos. Chem. Phys., 14, 7693–7703, https://doi.org/10.5194/acp-14-7693-2014, https://doi.org/10.5194/acp-14-7693-2014, 2014
J. P. Greenberg, J. Peñuelas, A. Guenther, R. Seco, A. Turnipseed, X. Jiang, I. Filella, M. Estiarte, J. Sardans, R. Ogaya, J. Llusia, and F. Rapparini
Atmos. Meas. Tech., 7, 2263–2271, https://doi.org/10.5194/amt-7-2263-2014, https://doi.org/10.5194/amt-7-2263-2014, 2014
K. Jaars, J. P. Beukes, P. G. van Zyl, A. D. Venter, M. Josipovic, J. J. Pienaar, V. Vakkari, H. Aaltonen, H. Laakso, M. Kulmala, P. Tiitta, A. Guenther, H. Hellén, L. Laakso, and H. Hakola
Atmos. Chem. Phys., 14, 7075–7089, https://doi.org/10.5194/acp-14-7075-2014, https://doi.org/10.5194/acp-14-7075-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
M. Liu, K. Rajagopalan, S. H. Chung, X. Jiang, J. Harrison, T. Nergui, A. Guenther, C. Miller, J. Reyes, C. Tague, J. Choate, E. P. Salathé, C. O. Stöckle, and J. C. Adam
Biogeosciences, 11, 2601–2622, https://doi.org/10.5194/bg-11-2601-2014, https://doi.org/10.5194/bg-11-2601-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
R. Zhang, T. Duhl, M. T. Salam, J. M. House, R. C. Flagan, E. L. Avol, F. D. Gilliland, A. Guenther, S. H. Chung, B. K. Lamb, and T. M. VanReken
Biogeosciences, 11, 1461–1478, https://doi.org/10.5194/bg-11-1461-2014, https://doi.org/10.5194/bg-11-1461-2014, 2014
C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014, https://doi.org/10.5194/acp-14-2399-2014, 2014
G. de Boer, M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S. Boyle, M. Kelley, S. A. Klein, and M. Tjernström
Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, https://doi.org/10.5194/acp-14-427-2014, 2014
L. Kaser, T. Karl, A. Guenther, M. Graus, R. Schnitzhofer, A. Turnipseed, L. Fischer, P. Harley, M. Madronich, D. Gochis, F. N. Keutsch, and A. Hansel
Atmos. Chem. Phys., 13, 11935–11947, https://doi.org/10.5194/acp-13-11935-2013, https://doi.org/10.5194/acp-13-11935-2013, 2013
S. Situ, A. Guenther, X. Wang, X. Jiang, A. Turnipseed, Z. Wu, J. Bai, and X. Wang
Atmos. Chem. Phys., 13, 11803–11817, https://doi.org/10.5194/acp-13-11803-2013, https://doi.org/10.5194/acp-13-11803-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
J. E. Mak, L. Su, A. Guenther, and T. Karl
Atmos. Meas. Tech., 6, 2703–2712, https://doi.org/10.5194/amt-6-2703-2013, https://doi.org/10.5194/amt-6-2703-2013, 2013
M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell
Geosci. Model Dev., 6, 1429–1445, https://doi.org/10.5194/gmd-6-1429-2013, https://doi.org/10.5194/gmd-6-1429-2013, 2013
X. Tie, F. Geng, A. Guenther, J. Cao, J. Greenberg, R. Zhang, E. Apel, G. Li, A. Weinheimer, J. Chen, and C. Cai
Atmos. Chem. Phys., 13, 5655–5669, https://doi.org/10.5194/acp-13-5655-2013, https://doi.org/10.5194/acp-13-5655-2013, 2013
T. R. Duhl, R. Zhang, A. Guenther, S. H. Chung, M. T. Salam, J. M. House, R. C. Flagan, E. L. Avol, F. D. Gilliland, B. K. Lamb, T. M. VanReken, Y. Zhang, and E. Salathé
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-2325-2013, https://doi.org/10.5194/gmdd-6-2325-2013, 2013
Revised manuscript not accepted
L. Kaser, T. Karl, R. Schnitzhofer, M. Graus, I. S. Herdlinger-Blatt, J. P. DiGangi, B. Sive, A. Turnipseed, R. S. Hornbrook, W. Zheng, F. M. Flocke, A. Guenther, F. N. Keutsch, E. Apel, and A. Hansel
Atmos. Chem. Phys., 13, 2893–2906, https://doi.org/10.5194/acp-13-2893-2013, https://doi.org/10.5194/acp-13-2893-2013, 2013
Y. Wang, Q. Q. Zhang, K. He, Q. Zhang, and L. Chai
Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, https://doi.org/10.5194/acp-13-2635-2013, 2013
B. H. Samset, G. Myhre, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 13, 2423–2434, https://doi.org/10.5194/acp-13-2423-2013, https://doi.org/10.5194/acp-13-2423-2013, 2013
T. R. Duhl, D. Gochis, A. Guenther, S. Ferrenberg, and E. Pendall
Biogeosciences, 10, 483–499, https://doi.org/10.5194/bg-10-483-2013, https://doi.org/10.5194/bg-10-483-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019
Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe
Satellite-derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern US
Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling
Evaluation of interactive and prescribed agricultural ammonia emissions for simulating atmospheric composition in CAM-chem
Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes
Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season
Examining the competing effects of contemporary land management vs. land cover changes on global air quality
Improved gridded ammonia emission inventory in China
The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Indirect contributions of global fires to surface ozone through ozone–vegetation feedback
Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model
A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability
The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015
Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques
Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model
Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
Data assimilation using an ensemble of models: a hierarchical approach
Fundamentals of data assimilation applied to biogeochemistry
On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?
Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP)
Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange
The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network
Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America
Global climate forcing driven by altered BVOC fluxes from 1990 to 2010 land cover change in maritime Southeast Asia
Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health
Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Niños
Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015
Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling
Wildfire air pollution hazard during the 21st century
Ozone and haze pollution weakens net primary productivity in China
How can mountaintop CO2 observations be used to constrain regional carbon fluxes?
Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks
Impact of Siberian observations on the optimization of surface CO2 flux
Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model
The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone
Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia
Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia
Air quality impacts of European wildfire emissions in a changing climate
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States
High-resolution ammonia emissions inventories in China from 1980 to 2012
Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean
Impact of future land-cover changes on HNO3 and O3 surface dry deposition
Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010
Relationships between photosynthesis and formaldehyde as a probe of isoprene emission
A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy
Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study
Influence of CO2 observations on the optimized CO2 flux in an ensemble Kalman filter
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Julius Vira, Peter Hess, Money Ossohou, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 22, 1883–1904, https://doi.org/10.5194/acp-22-1883-2022, https://doi.org/10.5194/acp-22-1883-2022, 2022
Short summary
Short summary
Ammonia is one of the main components of nitrogen deposition. Here we use a new model to assess the ammonia emissions from agriculture, the largest anthropogenic source of ammonia. The model results are consistent with earlier estimates over industrialized regions in agreement with observations. However, the model predicts much higher emissions over sub-Saharan Africa compared to earlier estimates. Available observations from surface stations and satellites support these higher emissions.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Ditte Taipale, Veli-Matti Kerminen, Mikael Ehn, Markku Kulmala, and Ülo Niinemets
Atmos. Chem. Phys., 21, 17389–17431, https://doi.org/10.5194/acp-21-17389-2021, https://doi.org/10.5194/acp-21-17389-2021, 2021
Short summary
Short summary
Larval feeding and fungal infections of leaves can greatly change the emission of volatile compounds from plants and thereby influence aerosol processes in the air. We developed a model that considers the dynamics of larvae and fungi and the dependency of the emission on the severity of stress. We show that the infections can be highly atmospherically relevant during long periods of time and at times more important to consider than the parameters that are currently used in emission models.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys., 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, https://doi.org/10.5194/acp-21-15883-2021, 2021
Short summary
Short summary
This study focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a NH3 emission inventory for mainland China in 2016. The inventory showed a higher level of accuracy than other inventories based on evaluation using the WRF-Chem and observation data.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
Short summary
A model consisting of multiple machine learning algorithms is developed to predict wildfire burned area over the south central US and explains key environmental drivers. The developed model alleviates the issue of unevenly distributed data and predicts burned grids and burned areas with good accuracy. The model reveals climate variability such as relative humidity anomalies and antecedent drought severity contributes the most to the total burned area for winter–spring and summer fire season.
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Short summary
The CNMM-DNDC model was modified by improving the scientific processes of soil pH reduction due to tea growth and performed well in simulating emissions of nitrous oxide and nitric oxide. Effects of manure fertilization and stand ages on emissions of both gases were well simulated. Simulated annual emission factors correlate positively with urea or manure doses. The overall inhibitory effects on the gases' emissions in the middle to late stages during a full tea plant lifetime were simulated.
Kathryn M. Emmerson, Malcolm Possell, Michael J. Aspinwall, Sebastian Pfautsch, and Mark G. Tjoelker
Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020, https://doi.org/10.5194/acp-20-6193-2020, 2020
Short summary
Short summary
Australian cities with a high biogenic influence will see higher pollution levels in a warmer climate. We show that four Eucalyptus species grown in future-climate conditions can emit isoprene at temperatures 9 K above the peak temperatures capping isoprene in biogenic-emission models. With these measurements, we predict up to 2 ppb increases in isoprene in 2050, causing up to 21 ppb of ozone and 0.4 µg m−3 of aerosol in Sydney. The ozone increase is one-fifth of the hourly air quality limit.
Peter Rayner
Atmos. Chem. Phys., 20, 3725–3737, https://doi.org/10.5194/acp-20-3725-2020, https://doi.org/10.5194/acp-20-3725-2020, 2020
Short summary
Short summary
This work extends previous calculations of carbon dioxide sources and sinks to take account of the varying quality of atmospheric models. It uses an extended version of Bayesian statistics which includes the model as one of the unknowns. I performed the work as an example of including the model in the description of the uncertainty.
Peter J. Rayner, Anna M. Michalak, and Frédéric Chevallier
Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, https://doi.org/10.5194/acp-19-13911-2019, 2019
Short summary
Short summary
This paper describes the methods for combining models and data to understand how nutrients and pollutants move through natural systems. The methods are analogous to the process of weather forecasting in which previous information is combined with new observations and a model to improve our knowledge of the internal state of the physical system. The methods appear highly diverse but the paper shows that they are all examples of a single underlying formalism.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Fabien Paulot, Sergey Malyshev, Tran Nguyen, John D. Crounse, Elena Shevliakova, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018, https://doi.org/10.5194/acp-18-17963-2018, 2018
Kandice L. Harper and Nadine Unger
Atmos. Chem. Phys., 18, 16931–16952, https://doi.org/10.5194/acp-18-16931-2018, https://doi.org/10.5194/acp-18-16931-2018, 2018
Short summary
Short summary
Chemistry–climate modeling finds that the induced global-mean ozone forcing for 1990–2010 maritime Southeast Asian land cover change, including expansion of high-isoprene-emitting oil palm plantations, is +9.2 mW m−2. Regional land cover change drove stronger global-mean ozone enhancements in the upper troposphere than in the lower troposphere. The results indicate that this mechanism of ozone forcing may increase in importance in future years if regional oil palm expansion continues unabated.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Pierre Friedlingstein, Atul K. Jain, Ziqiang Jiang, Weimin Ju, Sebastian Lienert, Julia Nabel, Stephen Sitch, Nicolas Viovy, Hengmao Wang, and Andrew J. Wiltshire
Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, https://doi.org/10.5194/acp-18-10333-2018, 2018
Short summary
Short summary
Based on the Mauna Loa CO2 records and TRENDY multi-model historical simulations, we investigate the different impacts of EP and CP El Niños on interannual carbon cycle variability. Composite analysis indicates that the evolutions of CO2 growth rate anomalies have three clear differences in terms of precursors (negative and neutral), amplitudes (strong and weak), and durations of peak (Dec–Apr and Oct–Jan) during EP and CP El Niños, respectively. We further discuss their terrestrial mechanisms.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Sarah J. Lawson, Martin Cope, Sunhee Lee, Ian E. Galbally, Zoran Ristovski, and Melita D. Keywood
Atmos. Chem. Phys., 17, 11707–11726, https://doi.org/10.5194/acp-17-11707-2017, https://doi.org/10.5194/acp-17-11707-2017, 2017
Short summary
Short summary
A high-resolution chemical transport model was used to reproduce observed smoke plumes. The model output was highly sensitive to fire emission factors and meteorology, particularly for secondary pollutant ozone. Aged urban air (age = 2 days) was the major source of ozone observed, with minor contributions from the fire. This work highlights the importance of assessing model sensitivity and the use of modelling to determine the contribution from different sources to atmospheric composition.
Wolfgang Knorr, Frank Dentener, Jean-François Lamarque, Leiwen Jiang, and Almut Arneth
Atmos. Chem. Phys., 17, 9223–9236, https://doi.org/10.5194/acp-17-9223-2017, https://doi.org/10.5194/acp-17-9223-2017, 2017
Short summary
Short summary
Wildfires cause considerable air pollution, and climate change is usually expected to increase both wildfire activity and air pollution from those fires. This study takes a closer look at the problem by examining the role of demographic changes in addition to climate change. It finds that demographics will be the main driver of changes in wildfire activity in many parts of the developing world. Air pollution from wildfires will remain significant, with major implications for air quality policy.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
John C. Lin, Derek V. Mallia, Dien Wu, and Britton B. Stephens
Atmos. Chem. Phys., 17, 5561–5581, https://doi.org/10.5194/acp-17-5561-2017, https://doi.org/10.5194/acp-17-5561-2017, 2017
Short summary
Short summary
Mountainous areas can potentially serve as regions where the key greenhouse gas, carbon dioxide (CO2), can be absorbed from the atmosphere by vegetation, through photosynthesis. Variations in atmospheric CO2 can be used to understand the amount of biospheric fluxes in general. However, CO2 measured in mountains can be difficult to interpret due to the impact from complex atmospheric flows. We show how mountaintop CO2 data can be interpreted by carrying out a series of atmospheric simulations.
Mehliyar Sadiq, Amos P. K. Tai, Danica Lombardozzi, and Maria Val Martin
Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, https://doi.org/10.5194/acp-17-3055-2017, 2017
Short summary
Short summary
Surface ozone harms vegetation, which can influence not only climate but also ozone air quality itself. We implement a scheme for ozone damage on vegetation into an Earth system model, so that for the first time simulated vegetation and ozone can coevolve in a fully coupled simulation. With ozone–vegetation coupling, simulated ozone is found to be significantly higher by up to 6 ppbv. Reduced dry deposition and enhanced isoprene emission contribute to most of these increases.
Jinwoong Kim, Hyun Mee Kim, Chun-Ho Cho, Kyung-On Boo, Andrew R. Jacobson, Motoki Sasakawa, Toshinobu Machida, Mikhail Arshinov, and Nikolay Fedoseev
Atmos. Chem. Phys., 17, 2881–2899, https://doi.org/10.5194/acp-17-2881-2017, https://doi.org/10.5194/acp-17-2881-2017, 2017
Short summary
Short summary
To investigate the effect of CO2 observations in Siberia on the surface CO2 flux analyses, two experiments using observation data sets with and without Siberian measurements were performed. While the magnitude of the optimized surface CO2 flux uptake in Siberia decreased, that in the other regions of the Northern Hemisphere increased for the experiment with Siberian observations. It is expected that the Siberian observations play an important role in estimating surface CO2 flux in the future.
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016, https://doi.org/10.5194/acp-16-15461-2016, 2016
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Palmira Messina, Juliette Lathière, Katerina Sindelarova, Nicolas Vuichard, Claire Granier, Josefine Ghattas, Anne Cozic, and Didier A. Hauglustaine
Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, https://doi.org/10.5194/acp-16-14169-2016, 2016
Short summary
Short summary
We provide BVOC emissions for the present scenario, employing the updated ORCHIDEE emission module and the MEGAN model. The modelling community still faces the problem of emission model evaluation because of the absence of adequate observations. The accurate analysis performed, employing the two models, allowed the various processes modelled to be investigated, in order to fully understand the origin of the mismatch between the model estimates and to quantify the emission uncertainties.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Wolfgang Knorr, Frank Dentener, Stijn Hantson, Leiwen Jiang, Zbigniew Klimont, and Almut Arneth
Atmos. Chem. Phys., 16, 5685–5703, https://doi.org/10.5194/acp-16-5685-2016, https://doi.org/10.5194/acp-16-5685-2016, 2016
Short summary
Short summary
Wildfires are generally expected to increase in frequency and severity due to climate change. For Europe this could mean increased air pollution levels during the summer. Until 2050, predicted changes are moderate, but under a scenario of strong climate change, these may increase considerably during the later part of the current century. In Portugal and several parts of the Mediterranean, emissions may become relevant for meeting WHO concentration targets.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
Jeffrey A. Geddes, Colette L. Heald, Sam J. Silva, and Randall V. Martin
Atmos. Chem. Phys., 16, 2323–2340, https://doi.org/10.5194/acp-16-2323-2016, https://doi.org/10.5194/acp-16-2323-2016, 2016
Short summary
Short summary
Land use and land cover changes driven by anthropogenic activities or natural causes (e.g., forestry management, agriculture, wildfires) can impact climate and air quality in many complex ways. Using a state-of-the-art chemistry model, we investigate how tree mortality in the US due to insect infestation and disease outbreak may impact atmospheric composition. We find that the surface concentrations of ozone and aerosol can be altered due to changing background emissions and loss processes.
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
A. Ito and Z. Shi
Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, https://doi.org/10.5194/acp-16-85-2016, 2016
Short summary
Short summary
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport model to estimate anthropogenic soluble Fe deposition. Our improved model successfully captured an inverse relationship of Fe solubility and total Fe loading. Our model estimated the low end of Fe solubility compared to the previous studies. Our model results suggest that human activities contribute to about half of bioavailable Fe supply to significant portions of the oceans in the Northern Hemisphere.
T. Verbeke, J. Lathière, S. Szopa, and N. de Noblet-Ducoudré
Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, https://doi.org/10.5194/acp-15-13555-2015, 2015
Short summary
Short summary
Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species and strongly driven by meteorological factors, chemical properties of the trace gas considered and land surface properties. The objective of our study is to investigate the impact of vegetation distribution change, which is still not very well quantified, on the dry deposition of key atmospheric species: ozone and nitric acid vapor.
Y. Fu and A. P. K. Tai
Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, https://doi.org/10.5194/acp-15-10093-2015, 2015
Short summary
Short summary
Historical land cover and land use change alone between 1980 and 2010 could lead to reduced summertime surface ozone by up to 4ppbv in East Asia. Climate change alone could lead to an increase in summertime ozone by 2-10ppbv in most of East Asia. Land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. The sensitivity of surface ozone to land cover change is more dependent on dry deposition than isoprene emission in most of East Asia.
Y. Zheng, N. Unger, M. P. Barkley, and X. Yue
Atmos. Chem. Phys., 15, 8559–8576, https://doi.org/10.5194/acp-15-8559-2015, https://doi.org/10.5194/acp-15-8559-2015, 2015
Short summary
Short summary
We apply two global observational data sets, gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv), to probe isoprene emission variability on large spatiotemporal scales. GPP and HCHOv are decoupled or weakly anticorrelated in regions and seasons when isoprene emission is high. Isoprene emission models that include soil moisture dependence demonstrate greater skill in reproducing observed seasonal GPP-HCHOv correlations in the southeast US and the Amazon.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
J. Kim, H. M. Kim, and C.-H. Cho
Atmos. Chem. Phys., 14, 13515–13530, https://doi.org/10.5194/acp-14-13515-2014, https://doi.org/10.5194/acp-14-13515-2014, 2014
Cited articles
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in Photosynthesis Research, Vol. 4, edited by: Biggins, J., Martinus Nijhoff, the Netherlands, 221–224, 1987.
Bauer, S. E., Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlwitz, J., and
Metzger, S. M.: Do sulfate and nitrate coatings on mineral dust have
important effects on radiative properties and climate modeling?, J. Geophys. Res., 112, D06307, https://doi.org/10.1029/2005jd006977, 2007.
Bauer, S. E., Wright, D. L., Koch, D., Lewis, E. R., McGraw, R., Chang, L.-S., Schwartz, S. E., and Ruedy, R.: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys., 8, 6003–6035, https://doi.org/10.5194/acp-8-6003-2008, 2008.
Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller,
R. L., Nazarenko, L., Schmidt, G. A., and Wu, J.: Historical (1850–2014)
Aerosol Evolution and Role on Climate Forcing Using the GISS ModelE2.1
Contribution to CMIP6, J. Adv. Model. Earth Sy., 12, e2019MS001978,
https://doi.org/10.1029/2019ms001978, 2020.
Beguería, S., Vicente-Serrano, S. M., and Angulo-Martínez, M.: A
Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded Product for
the Analysis of Drought Variability and Impacts, B. Am. Meteorol. Soc., 91, 1351–1356, https://doi.org/10.1175/2010bams2988.1, 2010.
Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.:
Standardized precipitation evapotranspiration index (SPEI) revisited:
parameter fitting, evapotranspiration models, tools, datasets and drought
monitoring, Int. J. Climatol., 34, 3001–3023, https://doi.org/10.1002/joc.3887, 2014.
Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M.: Low-emitting urban
forests: A taxonomic methodology for assigning isoprene and monoterpene
emission rates, Atmos. Environ., 30, 1437–1452,
https://doi.org/10.1016/1352-2310(95)00439-4, 1996.
Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, https://doi.org/10.5194/acp-9-4987-2009, 2009.
Chance, K.: OMI/Aura Formaldehyde (HCHO) Total Column Daily L3 Weighted Mean Global 0.1deg Lat/Lon Grid V003, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA,
https://doi.org/10.5067/Aura/OMI/DATA3010, 2019.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/wr014i004p00601, 1978.
Dai, A.: Increasing drought under global warming in observations and models, Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Emmerson, K. M., Palmer, P. I., Thatcher, M., Haverd, V., and Guenther, A.
B.: Sensitivity of isoprene emissions to drought over south-eastern Australia: Integrating models and satellite observations of soil moisture,
Atmos. Environ., 209, 112–124, https://doi.org/10.1016/j.atmosenv.2019.04.038, 2019.
Farquhar, G. D. and von Caemmerer, S.: Modelling of Photosynthetic Response
to Environmental Conditions, in: Physiological Plant Ecology II: Water Relations and Carbon Assimilation, edited by: Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., Berlin, Heidelberg, Springer Berlin Heidelberg, 549–587, https://doi.org/10.1007/978-3-642-68150-9_17, 1982.
Farquhar, G. D., Von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/bf00386231, 1980.
Geron, C., Guenther, A., Sharkey, T., and Arnts, R. R.: Temporal variability in basal isoprene emission factor, Tree Physiol., 20, 799–805,
https://doi.org/10.1093/treephys/20.12.799, 2000.
NASA: GISS Model E Source Code Snapshots, NASA [code], https://simplex.giss.nasa.gov/snapshots/, last access: 19 August 2019.
Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer, M.,
Hosman, K. P., Riggs, J. S., Sluss, D., and Wullschleger, S. D.: Direct and
indirect effects of atmospheric conditions and soil moisture on surface
energy partitioning revealed by a prolonged drought at a temperate forest
site, J. Geophys. Res., 111, D16102, https://doi.org/10.1029/2006jd007161, 2006.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Heald, C. L., Wilkinson, M. J., Monson, R. K., Alo, C. A., Wang, G., and
Guenther, A.: Response of isoprene emission to ambient CO2 changes and
implications for global budgets, Glob. Change Biol., 15, 1127–1140,
https://doi.org/10.1111/j.1365-2486.2008.01802.x, 2009.
Henrot, A.-J., Stanelle, T., Schröder, S., Siegenthaler, C., Taraborrelli, D., and Schultz, M. G.: Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model, Geosci. Model Dev., 10, 903–926, https://doi.org/10.5194/gmd-10-903-2017, 2017.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Huang, L., Mcgaughey, G., Mcdonald-Buller, E., Kimura, Y., and Allen, D. T.: Quantifying regional, seasonal and interannual contributions of
environmental factors on isoprene and monoterpene emissions estimates over
eastern Texas, Atmos. Environ., 106, 120–128, https://doi.org/10.1016/j.atmosenv.2015.01.072, 2015.
Ito, G., Romanou, A., Kiang, N. Y., Faluvegi, G., Aleinov, I., Ruedy, R.,
Russell, G., Lerner, P., Kelley, M., and Lo, K.: Global Carbon Cycle and
Climate Feedbacks in the NASA GISS ModelE2.1, J. Adv. Model. Earth Sy., 12, e2019MS002030, https://doi.org/10.1029/2019ms002030, 2020.
Jiang, X., Guenther, A., Potosnak, M., Geron, C., Seco, R., Karl, T., Kim,
S., Gu, L., and Pallardy, S.: Isoprene emission response to drought and the
impact on global atmospheric chemistry, Atmos. Environ., 183, 69–83, https://doi.org/10.1016/j.atmosenv.2018.01.026, 2018.
Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G., Zhang, L., Zhang, X., Fried, A., Crounse, J. D., St. Clair, J. M., and Wisthaler, A.: High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US, Atmos. Chem. Phys., 18, 5483–5497, https://doi.org/10.5194/acp-18-5483-2018, 2018.
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R.,
Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto,
V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del
Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis,
A. A., Leboissetier, A., Legrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., Mcdermid, S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C., García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M.: GISS-E2.1: Configurations and Climatology, J. Adv. Model. Earth Sy., 12, e2019MS002025, https://doi.org/10.1029/2019ms002025, 2020.
Kim, Y., Moorcroft, P. R., Aleinov, I., Puma, M. J., and Kiang, N. Y.: Variability of phenology and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial Biosphere Model (Ent TBM version 1.0.1.0.0), Geosci. Model Dev., 8, 3837–3865, https://doi.org/10.5194/gmd-8-3837-2015, 2015.
Klovenski, E.: Observed Atmospheric Composition Data, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/4PQXQF, 2022.
Koch, D., Schmidt, G. A., and Field, C. V.: Sulfur, sea salt, and
radionuclide aerosols in GISS ModelE, J. Geophys. Res., 111, D06206, https://doi.org/10.1029/2004jd005550, 2006.
Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the Nature of Soil Moisture in Land Surface Models, J. Climate, 22, 4322–4335, https://doi.org/10.1175/2009jcli2832.1, 2009.
Li, W., Wang, Y., Flynn, J., Griffin, R. J., Guo, F., and Schnell, J. L.:
Spatial Variation of Surface O3 Responses to Drought Over the Contiguous
United States During Summertime: Role of Precursor Emissions and Ozone
Chemistry, J. Geophys. Res.-Atmos., 127, e2021JD035607, https://doi.org/10.1029/2021JD035607, 2022.
Loreto, F. and Sharkey, T. D.: A gas-exchange study of photosynthesis and
isoprene emission in Quercus rubra L., Planta, 182, 523–531,
https://doi.org/10.1007/bf02341027, 1990.
Miller, R. L., Cakmur, R. V., Perlwitz, J., Geogdzhayev, I. V., Ginoux, P.,
Koch, D., Kohfeld, K. E., Prigent, C., Ruedy, R., Schmidt, G. A., and Tegen, I.: Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model, J. Geophys.
Res., 111, D06208, https://doi.org/10.1029/2005jd005796, 2006.
Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Kelley, M.,
Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck,
R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C.
A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, A. A., Leboissetier, A., Legrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., Mcdermid, S., Mezuman, K., Murray, L. T., Oinas, V., Orbe, C., Pérez García-Pando, C., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M.: CMIP6 Historical Simulations (1850–2014) with GISS-E2.1, J. Adv. in Model. Earth Sy., 13, e2019MS002034, https://doi.org/10.1029/2019ms002034, 2021.
Mishra, A. K. and Sinha, V.: Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-west India during monsoon season, Environ. Pollut., 267, 115538, https://doi.org/10.1016/j.envpol.2020.115538, 2020.
Monson, R. K., Weraduwage, S. M., Rosenkranz, M., Schnitzler, J.-P., and
Sharkey, T. D.: Leaf isoprene emission as a trait that mediates the
growth-defense tradeoff in the face of climate stress, Oecologia, 197,
885–902, https://doi.org/10.1007/s00442-020-04813-7, 2021.
Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J., Rinne, J., Munger, B., Goldstein, A., and Guenther, A. B.: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model, Atmos. Chem. Phys., 8, 1329–1341, https://doi.org/10.5194/acp-8-1329-2008, 2008.
Naimark, J. G., Fiore, A. M., Jin, X., Wang, Y., Klovenski, E., and Braneon, C.: Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature, Geophys. Res. Lett., 48, e2020GL091520, https://doi.org/10.1029/2020gl091520, 2021.
Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S.,
Hagimoto, Y., Kerr, Y. H., Larson, K. M., Njoku, E. G., Small, E. E., and
Zreda, M.: State of the Art in Large-Scale Soil Moisture Monitoring, Soil
Science Society of America Journal, 77, 1888–1919,
https://doi.org/10.2136/sssaj2013.03.0093, 2013.
Opacka, B., Müller, J.-F., Stavrakou, T., Bauwens, M., Sindelarova, K., Markova, J., and Guenther, A. B.: Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model, Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, 2021.
Pegoraro, E., Rey, A., Greenberg, J., Harley, P., Grace, J., Malhi, Y., and
Guenther, A.: Effect of drought on isoprene emission rates from leaves of
Quercus virginiana Mill., Atmos. Environ., 38, 6149–6156,
https://doi.org/10.1016/j.atmosenv.2004.07.028, 2004.
Potosnak, M. J., LeStourgeon, L., Pallardy, S. G., Hosman, K. P., Gu, L.,
Karl, T., Geron, C., and Guenther, A. B.: Observed and modeled ecosystem
isoprene fluxes from an oak-dominated temperate forest and the influence of
drought stress, Atmos. Environ., 84, 314–322, https://doi.org/10.1016/j.atmosenv.2013.11.055, 2014.
Rasmusson, L. M., Gullström, M., Gunnarsson, P. C. B., George, R., and
Björk, M.: Estimation of a whole plant Q10 to assess seagrass
productivity during temperature shifts, Scientific Reports, 9, 12667,
https://doi.org/10.1038/s41598-019-49184-z, 2019.
Rosenstiel, T. N., Potosnak, M. J., Griffin, K. L., Fall, R., and Monson, R. K.: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem, Nature, 421, 256–259, https://doi.org/10.1038/nature01312, 2003.
Schnell, J. L., Holmes, C. D., Jangam, A., and Prather, M. J.: Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721–7739, https://doi.org/10.5194/acp-14-7721-2014, 2014.
Seco, R., Karl, T., Guenther, A., Hosman, K. P., Pallardy, S. G., Gu, L.,
Geron, C., Harley, P., and Kim, S.: Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA), Glob. Change Biol., 21, 3657–3674,
https://doi.org/10.1111/gcb.12980, 2015.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay,
Y., Dindaroglu, T., Abdul-Wajid, H. H., and Battaglia, M. L.: Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects, Plants, 10, 259, https://doi.org/10.3390/plants10020259, 2021.
Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G. A.: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653–2689, https://doi.org/10.5194/acp-13-2653-2013, 2013.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Singsaas, E. L. and Sharkey, T. D.: The effects of high temperature on
isoprene synthesis in oak leaves, Plant Cell Environ., 23,
751–757, https://doi.org/10.1046/j.1365-3040.2000.00582.x, 2000.
Tawfik, A. B., Stöckli, R., Goldstein, A., Pressley, S., and Steiner, A. L.: Quantifying the contribution of environmental factors to isoprene flux interannual variability, Atmos. Environ., 54, 216–224,
https://doi.org/10.1016/j.atmosenv.2012.02.018, 2012.
Tsigaridis, K., Koch, D., and Menon, S.: Uncertainties and importance of sea spray composition on aerosol direct and indirect effects, J. Geophys. Res.-Atmos., 118, 220–235, https://doi.org/10.1029/2012jd018165, 2013.
Unger, N., Harper, K., Zheng, Y., Kiang, N. Y., Aleinov, I., Arneth, A., Schurgers, G., Amelynck, C., Goldstein, A., Guenther, A., Heinesch, B., Hewitt, C. N., Karl, T., Laffineur, Q., Langford, B., A. McKinney, K., Misztal, P., Potosnak, M., Rinne, J., Pressley, S., Schoon, N., and Serça, D.: Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model, Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, 2013.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
Vermote, E. and NOAA CDR Program: NOAA Climate Data Record (CDR) of AVHRR Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 5 [LAI], NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5TT4P69, 2019.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23,
1696–1718, https://doi.org/10.1175/2009jcli2909.1, 2010.
Wang, P., Liu, Y., Dai, J., Fu, X., Wang, X., Guenther, A., and Wang, T.:
Isoprene Emissions Response to Drought and the Impacts on Ozone and SOA in
China, J. Geophys. Res.-Atmos., 126, e2020JD033263, https://doi.org/10.1029/2020jd033263, 2021.
Wang, P., Holloway, T., Bindl, M., Harkey, M., and De Smedt, I.: Ambient
Formaldehyde over the United States from Ground-Based (AQS) and Satellite
(OMI) Observations, Remote Sens., 14, 2191, https://doi.org/10.3390/rs14092191,
2022.
Wang, Y., Xie, Y., Dong, W., Ming, Y., Wang, J., and Shen, L.: Adverse effects of increasing drought on air quality via natural processes, Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017, 2017.
Wells, K. C., Millet, D. B., Payne, V. H., Deventer, M. J., Bates, K. H., De Gouw, J. A., Graus, M., Warneke, C., Wisthaler, A., and Fuentes, J. D.:
Satellite isoprene retrievals constrain emissions and atmospheric oxidation, Nature, 585, 225–233, https://doi.org/10.1038/s41586-020-2664-3, 2020.
Wood, J. and Gu, L.: AmeriFlux BASE US-MOz Missouri Ozark Site, Ver. 9-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246081, 2021.
Zhao, Z., Wang, Y., Qin, M., Hu, Y., Xie, Y., and Russell, A. G.: Drought
Impacts on Secondary Organic Aerosol: A Case Study in the Southeast United
States, Environ. Sci. Technol., 53, 242–250, https://doi.org/10.1021/acs.est.8b04842, 2019.
Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P., and Wolfe, G. M.: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US, Atmos. Chem. Phys., 16, 13477–13490, https://doi.org/10.5194/acp-16-13477-2016, 2016.
Zhu, L., Mickley, L. J., Jacob, D. J., Marais, E. A., Sheng, J., Hu, L.,
Abad, G. G., and Chance, K.: Long-term (2005–2014) trends in formaldehyde
(HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds, Geophys. Res. Lett., 44, 7079–7086, https://doi.org/10.1002/2017gl073859, 2017.
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact...
Altmetrics
Final-revised paper
Preprint