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Abstract. Drought is a hydroclimatic extreme that causes perturbations to the terrestrial biosphere and acts as
a stressor on vegetation, affecting emissions patterns. During severe drought, isoprene emissions are reduced. In
this paper, we focus on capturing this reduction signal by implementing a new percentile isoprene drought stress
(yd) algorithm in NASA GISS ModelE based on the MEGAN3 (Model of Emissions of Gases and Aerosols
from Nature Version 3) approach as a function of a photosynthetic parameter (Vc,max) and water stress (β). Four
global transient simulations from 2003–2013 are used to demonstrate the effect without yd (Default_ModelE)
and with online yd (DroughtStress_ModelE). DroughtStress_ModelE is evaluated against the observed isoprene
measurements at the Missouri Ozarks AmeriFlux (MOFLUX) site during the 2012 severe drought where im-
provements in the correlation coefficient indicate it is a suitable drought stress parameterization to capture the
reduction signal during severe drought. The application of yd globally leads to a decadal average reduction of
∼ 2.7 %, which is equivalent to ∼ 14.6 Tg yr−1 of isoprene. The changes have larger impacts in regions such as
the southeastern US. DroughtStress_ModelE is validated using the satellite �HCHO column from the Ozone
Monitoring Instrument (OMI) and surface O3 observations across regions of the US to examine the effect of
drought on atmospheric composition. It was found that the inclusion of isoprene drought stress reduced the
overestimation of �HCHO in Default_ModelE during the 2007 and 2011 southeastern US droughts and led to
improvements in simulated O3 during drought periods. We conclude that isoprene drought stress should be tuned
on a model-by-model basis because the variables used in the parameterization responses are relative to the land
surface model hydrology scheme (LSM) and the effects of yd application could be larger than seen here due to
ModelE not having large biases of isoprene during severe drought.
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1 Introduction

In present-day conditions terrestrial ecosystems release
about 1000 Tg C yr−1 of biogenic volatile organic com-
pounds (BVOCs) into the atmosphere, and there is an addi-
tional smaller emission from marine ecosystems (Guenther
et al., 2012). The majority of BVOCs emitted from vegeta-
tion are isoprene and monoterpenes (Guenther et al., 2006,
2012). Representing over half of emitted BVOCs, isoprene
is the dominant species globally with reported ranges of
440–600 Tg C yr−1 (Guenther et al., 2012) and high emis-
sion factors from some, but not all, broadleaf trees including
species of oak, willow, palm oil, and eucalyptus (Benjamin
et al., 1996; Geron et al., 2000). Isoprene is produced from
carbon substrates generated during photosynthesis and con-
tributes to abiotic stress tolerance from water and tempera-
ture stress (Loreto and Sharkey, 1990; Monson et al., 2021).
Isoprene emissions peak during warm, sunnier months of
the growing season (March–October) (Opacka et al., 2021).
Isoprene has a chemical lifetime of approximately 1 h via
oxidation by the hydroxyl radical (OH), producing organic
aerosols and oxidation products that contribute to ozone (O3)
formation (Carlton et al., 2009). Biogenic isoprene emis-
sions affect atmospheric composition and climate and in turn
depend on environmental factors including light, tempera-
ture, photosynthetically active radiation (PAR), leaf area in-
dex (LAI), water stress, ambient O3, and CO2 concentra-
tions. Thus, the response of isoprene emissions to weather
extremes and changing climates is highly uncertain.

Drought is a common abiotic stress to terrestrial ecosys-
tems characterized by low soil moisture, usually associated
with high temperature and low precipitation. However, even
boreal forests undergo winter drought due to frozen soils. Re-
cent work has shown a strong correlation between drought
severity and fine-mode aerosols in the US and estimated that
regions undergoing severe drought see up to 17 % surface
enhancement of aerosols during the growing season (Wang
et al., 2017). This suggests a strong perturbation of drought
to atmospheric aerosols, likely caused by changing BVOC
emissions due to drought stress. Limited field and lab mea-
surements have shown that during drought, isoprene has a
unique emission response whereby an initial increase in tem-
perature causes an increase in emission, but prolonged or se-
vere drought causes a decrease in emissions due to the shut-
down of physiological processes (Potosnak et al., 2014). This
behavior is not reproduced by commonly used BVOC emis-
sion models such as the Model of Emissions of Gases and
Aerosols from Nature Version 2.1 (MEGAN2.1), which has
a simple drought algorithm that is often not used due to the
unavailability of the required driving variables in chemistry
climate models (CCMs), and the Biogenic Emission Inven-
tory System (BEIS), which does not include a drought algo-
rithm as an option.

Isoprene flux observations at the Missouri Ozarks
(MOFLUX) AmeriFlux site in Missouri (Fig. S1 in the Sup-

plement) recorded a moderate drought in summer 2011 (Po-
tosnak et al., 2014) and a particularly severe drought event
in summer 2012 (Seco et al., 2015). To the best of our
knowledge, these are the only in situ isoprene flux measure-
ments capturing a drought anywhere. Using the MOFLUX
observations, Jiang et al. (2018) developed an isoprene drou-
ght stress activity factor for MEGAN3 (Model of Emis-
sions of Gases and Aerosols from Nature Version 3) de-
signed to reduce emissions of isoprene during drought. The
previous MEGAN2.1 isoprene drought parameterization uti-
lized soil moisture and the soil wilting point threshold to in-
clude impacts of drought on photosynthetic processes. The
MEGAN3 isoprene drought stress activity factor is a more
process-based parameterization based on a photosynthetic
parameter (Vc,max) and water stress (β) from the Community
Land Model (CLM) as coupled with the CAM-Chem climate
model (Jiang et al., 2018). Vc,max is the maximum carboxy-
lation capacity of a leaf (usually in units of micromoles of
CO2 per leaf area per time); that is, it is the ability of a plant
to convert CO2 into sugar and hence determine productivity
of carbon substrates for biogenic volatile organic compound
(BVOC) production when no other conditions are limiting. β
is a scaling factor between zero and 1 used in CLM to reduce
Vc,max due to plant water stress. MEGAN3 isoprene drought
stress was also incorporated into the CSIRO chemical trans-
port model (C-CTM) with the Australian land surface model
Mk3.6 Global Climate Model and the Soil-Litter-Iso model
with a focus on Australia (Emmerson et al., 2019). Both prior
modeling studies (Jiang et al., 2018; Emmerson et al., 2019)
only looked at the drought effects on O3; here we study the
combined effect of drought on O3 and the formaldehyde col-
umn.

The accurate simulation of stress-affected emissions of
isoprene during extreme hydroclimate events (i.e., drought)
is crucial to understanding vegetation–climate–chemistry
feedbacks because isoprene is a precursor to tropospheric
O3 and secondary organic aerosol (SOA), both being climate
forcers as well as air pollutants. Here we focus on deriving
a model-specific tuned isoprene drought stress factor that is
coupled into the existing MEGAN2.1 framework in NASA
GISS ModelE, an Earth system model, to model the effect
of drought on isoprene emissions and their effect on atmo-
spheric composition. The model-specific tuning is required
due to different land system models parameterizing key vari-
ables of Vc,max and β in different ways with varying distri-
butions. The model’s drought effects were extensively eval-
uated across the US due to the availability of observational
evidence during drought at the MOFLUX site and due to the
EPA monitoring network for O3 and PM2.5 (particulate mat-
ter ≤ 2.5 µm) (Wang et al., 2017). While the MOFLUX data
are the only available measurements of isoprene emissions
during drought, formaldehyde (HCHO), the high-yield oxi-
dation product of isoprene, can be used as a proxy for iso-
prene emissions when no direct ground-based observations
of isoprene are available (Zhu et al., 2016). Section 2 de-
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scribes the modeling approaches used to represent drought
impacts on isoprene emissions. Section 3 describes the com-
parison of modeled isoprene emissions to observations at the
MOFLUX site during drought along with the necessity of
building a model-specific isoprene drought stress parame-
terization. Section 4 details the comparisons between sim-
ulations with model-specific tuned isoprene drought stress
(DroughtStress_ModelE) and observational O3, PM2.5, and
tropospheric formaldehyde columns (�HCHO) over North
America.

2 Methods and data

2.1 The biogenic emission model MEGAN

MEGAN is a widely used BVOC emissions model that
is implemented in many CCMs. Here we briefly describe
MEGAN2.1 as implemented in ModelE. MEGAN2.1 cal-
culates the net primary emissions for 20 compound classes,
which are speciated into over 150 species such as isoprene
and monoterpenes (Guenther et al., 2012). The emission rate
(µg per grid cell per hour) of each compound into the above-
canopy atmosphere from a model grid cell is calculated as

emission= EF× y× S , (1)

where EF (µgm−2 h−1) is emission factor per compound, y
is the dimensionless emission activity factor that accounts for
emission response to phenological and meteorological condi-
tions, and S is the grid cell area (m2).

The emission activity factor y for each compound is calcu-
lated following the MEGAN2.1 parameterization (Guenther
et al., 2006, 2012; Henrot et al., 2017):

y = yCE× yA× yd× yCO2 , (2)

where yCE is the canopy environment coefficient (assigned
a value of 1 for standard conditions) that takes into ac-
count variations associated with LAI (m2 m−2), photosyn-
thetic photon flux density (PPFD) (µmol of photons in the
400–700 nm range per meter squared per second – m−2 s−1),
and temperature (K). yA is the leaf age emission activity
factor, the parameterization of which is based on coeffi-
cients of the decomposition of the canopy into new, grow-
ing, mature, and senescing leaves for current and previous
months’ LAI (Guenther et al., 2006, 2012). yd is the iso-
prene drought stress activity factor, and yCO2 is the isoprene
emission activity factor associated with CO2 inhibition (for
all other compounds yd and yCO2 = 1) (Heald et al., 2009).
The biogenic emission module implemented in ModelE fol-
lows the ECHAM6-HAMMOZ online MEGAN2.1 imple-
mentation (Henrot et al., 2017) in a CCM. Within ModelE
the MEGAN2.1 module maps the 16 plant functional types
(PFTs) from Ent TBM (Terrestrial Biosphere Model) (Kim et
al., 2015) into 16 MEGAN PFTs and contains 13 chemical

compound classes. ModelE uses a modified MEGAN2.1 fol-
lowing Henrot et al. (2017) to provide a framework to simu-
late isoprene emissions and uses prescribed emissions factors
per PFT to simulate emissions per compound class.

In Henrot et al. (2017), to avoid using a detailed canopy
environment model calculating light and temperature at
each canopy depth, the parameterized canopy environmen-
tal emission activity (PCEEA) approach from Guenther et
al. (2006) is used to replace yCE with a parameterized canopy
environment activity factor (yLAI× yP× yT). With this ap-
proach the light-dependent and light-independent factors are
multiplied by yLAI not LAI, so they are not directly propor-
tional to LAI. This approach allows for calculation of light-
dependent emissions following isoprene emission response
to temperature; it is assumed that the light-dependent fac-
tor (LDF) equals 1 for isoprene and light-independent emis-
sions follow the monoterpene exponential temperature re-
sponse. Please see Guenther et al. (2006, 2012) and Henrot et
al. (2017) for activity factor parameterizations. At any given
time step in ModelE, the emissions formula for a compound
class (c) and PFT (i) (units kg m−2 s−1) is given by

emissioni,c =
(

1× 10−9/3600
)
×

(
EFi,c×PFTboxfi

)
× yLAI× yA× yd× yCO2

×
(

(1−LDF)× yTLI+LDF× yP× yTLD
)

×SFc×MWCc , (3)

where EFi,c is the emissions factor (µgm−2 h−1) for a given
PFT and compound class, PFTboxfi is the fraction of the grid
cell (ranging from zero to 1) covered by PFTi , and SFc is a
linear scale factor for compound class c. The activity fac-
tors, y, listed in Eq. (3) are unitless and account for the emis-
sions response to leaf area index (LAI), aging (A), drought
(d), CO2 (CO2), and PPFD (P). The LDF weights the con-
tributions from light-independent (yTLI) and light-dependent
(yTLD) emissions response to temperature. MWCc stands for
a molecular weight conversion to remove non-carbon mass,
if appropriate (1× 10−9/3600: the numerator converts units
from µgm−2 h−1 to kgm2 s−1, and the denominator is the
time step conversion for seconds in an hour). Note that al-
though the drought activity factor yd is present in ModelE, it
is set to equal 1 in all cases prior to this work, meaning no
drought effects on BVOC emissions in the model.

For example, the emission formula for the compound class
of isoprene in ModelE for PFTi is as follows (where LDF=
1):

isoprenei =
(

1× 10−9/3600
)
×

(
EFi,isoprene×PFTboxfi

)
× yLAI× yA× yd× yCO2 × (yP× yTLD)

×SFisoprene× (60.05/68.12) (4)

https://doi.org/10.5194/acp-22-13303-2022 Atmos. Chem. Phys., 22, 13303–13323, 2022



13306 E. Klovenski et al.: Atmospheric composition in NASA GISS ModelE

2.2 MEGAN2.1 isoprene drought stress emission
algorithm

Guenther et al. (2006) introduced isoprene drought stress as a
soil-moisture-dependent algorithm called ySM. This isoprene
drought stress activity factor relied upon soil moisture and
wilting point to apply drought stress to isoprene emissions.
The algorithm for soil moisture isoprene drought stress is as
follows:

ySM = 1 when θ > θ1 , (5a)

ySM =
θ − θw

1θ1

when θw < θ < θ1 , (5b)

ySM = 0 when θ < θw , (5c)

where θ is soil moisture (volumetric water content m3 m−3),
θw is the point beyond which plants cannot extract water
from soil that is known as the wilting point (units: m3 m−3),
1θ1 (0.06 in Guenther et al., 2006 and 0.04 in Guenther et
al., 2012) is an empirical parameter, and θ1 is defined as θw+

1θ1 . Soil moisture and wilting point are not widely available
parameters in models, and ySM was not widely adopted to
represent isoprene drought stress as studies showed substan-
tial uncertainty associated with the soil-moisture-predicted
response of isoprene emission to water stress and in the se-
lection of wilting point values (Müller et al., 2008; Tawfik et
al., 2012; Sindelarova et al., 2014; Huang et al., 2015; Jiang
et al., 2018). There are also challenges associated with val-
idating soil moisture datasets due to the limited spatial cov-
erage of in situ root-zone measurements in the contiguous
United States (Ochsner et al., 2013). A study found that the
accurate simulation of soil moisture in land surface models
was highly model-dependent due to the differing horizontal
and vertical spatial resolution of such models at large scales
(Koster et al., 2009). Potosnak et al. (2014) determined that
the selection of different wilting point values greatly im-
pacted the drought impacts on biogenic isoprene emission.
With these associated challenges, it was rare to find isoprene
drought stress implemented in CCMs, and thus a new iso-
prene drought activity factor needed to be developed that
could be easily incorporated into a variety of models that had
a land surface model (LSM) or terrestrial biosphere model
(TBM).

2.3 MEGAN3 isoprene drought stress emission
algorithm

Jiang et al. (2018) developed a new isoprene drought stress
activity factor in MEGAN3 that focuses on photosynthetic
carboxylation capacity and water stress to model reductions
of vegetative isoprene during drought. Vegetation responds to
high water stress by undergoing physiological, morphologi-
cal, and biochemical changes (Seleiman et al., 2021). During
high water stress plants experience leaf area reduction and
loss of leaves, decreasing photosynthetic rate due to stomatal

closure, decreasing stomatal conductance, transpiration, and
evaporative cooling. During drought there is also decreas-
ing Rubisco efficiency, which is the enzyme used for carbon
fixation of atmospheric CO2 into useable sugar molecules
during photosynthesis (Seleiman et al., 2021). These are
just a few of the ways vegetation responds to water stress,
which impacts isoprene emissions. The algorithm was de-
veloped using isoprene flux observations during the severe
drought of the summer of 2012 and less severe drought of
2011 (Potosnak et al., 2014; Seco et al., 2015) at MOFLUX.
The MOFLUX site is located in the University of Missouri
Baskett wildlife research area in central Missouri, which is
known as the isoprene volcano (Wells et al., 2020). The
MOFLUX site is primarily comprised of deciduous broadleaf
trees, primarily oaks, known to emit high quantities of iso-
prene. All meteorological data from the site come from the
AmeriFlux website (Wood and Gu, 2021).

We refer to the original MEGAN3 drought stress
developed by Jiang et al. (2018) as Drought-
Stress_MEGAN3_Jiang. The corresponding parameter-
ization for isoprene activity factor during drought, where
(yd) is a function of PFT and where the values of Vc,max and
β are specified by PFT, is

yd = 1 when β ≥ 0.6, (6a)

yd =

(
Vc,max×β

)
α

when β < 0.6,α = 37, (6b)

0≤ yd ≤ 1 (6c)

isoprenei =
(

1× 10−9/3600
)

×
(
EFi,isoprene×PFTboxfi

)
× yLAI× yA× yd× yCO2

× (yP× yTLD)×SFisoprene. (7)

The drought stress activity factor, yd, in Drought-
Stress_MEGAN3_Jiang was originally developed using the
Community Land Model Version 4.5 (CLM4.5) (Jiang et
al., 2018). The photosynthetic parameter used is Vc,max,
which is the maximum rate of leaf-level carboxylation. In
ModelE, Vc,max is scaled with an enzymatic kinetics re-
sponse to temperature, and drought stress reduces leaf stom-
atal conductance, thereby reducing photosynthetic activity
through CO2 diffusion limitation rather than by reduction of
Vc,max. In CLM4.5, Vc,max is a function of nitrogen (Jiang et
al., 2018). Water stress in CLM4.5 is based on soil texture
(Clapp and Hornberger, 1978), and it is a function of soil
water potential of each soil layer, wilting factor, and PFT
root distribution. Water stress (β) ranges from zero when a
plant is completely stressed to 1 when a plant is not under-
going stress. In CLM4.5, Vc,max is scaled online by β before
being applied to the isoprene drought activity parameteriza-
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tion, and thus this scaling step is not reflected in the equa-
tions shown by Jiang et al. (2018). Since ModelE does not
scale Vc,max by β (instead, ModelE scales leaf stomatal con-
ductance by β), to reproduce the original scheme by Jiang et
al. (2018) as much as possible in ModelE, we scaled Vc,max
with β inside the equation of isoprene drought activity fac-
tor as in Eq. (6b). yd as defined in Eqs. (6a)–(6c) is then
applied in ModelE as an activity factor to the MEGAN2.1
isoprene emissions equation per plant functional type (PFT),
and the modeling results from this simulation are referred to
as DroughtStress_MEGAN3_Jiang. The yd ranges from zero
to 1 and is designed to reduce isoprene emissions during se-
vere and prolonged drought.

2.4 NASA GISS ModelE climate chemistry model

NASA GISS ModelE2.1 is an Earth system model (ESM)
with a horizontal and vertical resolution of 2◦ in latitude
and 2.5◦ in longitude with 40 vertical layers from the sur-
face to 0.1 hPa (Kelley et al., 2020). The climate model
is configured in the CMIP6 (Coupled Model Intercompari-
son Project Phase 6) configuration (Miller et al., 2021) with
fully coupled atmospheric composition with interactive gas-
phase chemistry. The model described here is driven by his-
torical Atmospheric Model Intercomparison Project (AMIP)
simulations using prescribed ocean temperature and sea ice
datasets. There are two aerosol schemes to choose from:
MATRIX (“Multiconfiguration Aerosol TRacker of mIXing
state”) (Bauer et al., 2008) is a microphysical aerosol scheme
and OMA (One-Moment Aerosol) is a mass-based aerosol
scheme (Koch et al., 2006; Miller et al., 2006; Bauer et
al., 2007; Tsigaridis et al., 2013; Bauer et al., 2020). Here
we use the OMA scheme due to its better representation of
secondary organic aerosol chemistry (Tsigaridis et al., 2013).
SOA is calculated using the CBM4 chemical mechanism to
describe the gas-phase tropospheric chemistry together with
all main aerosol components, including SOA formation and
nitrate, and is calculated using four tracers in the model. Iso-
prene (VOCs) contributes to the formation of SOA. OMA
has 34 tracers for the representation of aerosols that are ex-
ternally mixed, except for mineral dust that can be coated
(Bauer et al., 2007), and has a prescribed constant size distri-
bution (Bauer et al., 2020). OMA aerosol schemes are cou-
pled to the stratospheric and tropospheric chemistry scheme
(Shindell et al., 2013), which includes inorganic chemistry
of Ox , NOx , HOx , and CO, as well as organic chemistry of
CH4 and higher hydrocarbons, with explicit treatment of sec-
ondary OA (organic aerosol). They are also coupled to the
stratospheric chemistry scheme, which includes chlorine and
bromine chemistry together with polar stratospheric clouds.
O3 and aerosols impact climate via coupling to the radia-
tion scheme, and aerosols serve as cloud condensation nu-
clei (CCN) for cloud activation. The model includes the first
indirect effect. Sea salt, dimethyl sulfide (DMS), and bio-
genic dust emission fluxes are calculated interactively, while

anthropogenic dust is not represented in ModelE2.1. Other
anthropogenic fluxes are from the Community Emissions
Data System Inventory (CEDS) (Hoesly et al., 2018), and
biomass burning is from the GFED4s (Global Fire Emissions
Database with small fires) inventory (van Marle et al., 2017)
for 1850–2014.

Vegetation activity in ModelE is simulated with a dy-
namic global vegetation model, the Ent Terrestrial Biosphere
Model (Ent TBM) (Kim et al., 2015). In standard ModelE
experiments, the Ent TBM prescribes satellite-derived vege-
tation canopy structure (plant functional type, canopy height,
monthly leaf area index) (Ito et al., 2020) as boundary condi-
tions for coupling the biophysics of canopy radiative transfer,
photosynthesis, vegetation and soil respiration, and transpi-
ration with the land surface model and atmospheric model.
These processes provide surface fluxes of CO2 and water va-
por, and surface albedo is specified by cover type and sea-
son. ModelE uses the MEGAN2.1 BVOC emissions model
to simulate interactive biogenic emissions from vegetation
(Guenther et al., 2006, 2012). Ent TBM water stress is cal-
culated as a scaling factor between zero and 1 as a function
of relative extractable water (REW) for the given soil tex-
ture and PFT-dependent levels of REW for onset of stress
and wilting (Kim et al., 2015); this scaling has been updated
since Kim et al. (2015) to be a function of the water stress
factor of only the wettest soil layer in the PFT’s root zone.
Ent TBM uses a leaf-level model of coupled Farquhar–von
Caemmerer photosynthesis and Ball–Berry stomatal conduc-
tance (Farquhar et al., 1980; Farquhar and von Caemmerer,
1982; Ball et al., 1987). The model calculates an unstressed
leaf photosynthesis rate and stomatal conductance, then ap-
plies its water stress scaling factor to scale down leaf stom-
atal conductance to emulate how hormonal signaling by roots
under water stress induces stomatal closure. Since there is a
coupling of transpiration and CO2 uptake through stomatal
conductance, water stress thereby also reduces the photosyn-
thesis rate through the limitation on CO2 diffusion into the
leaf; this is different from CLM4.5’s approach, which in-
stead reduces Vc,max. Canopy radiative transfer in the Ent
TBM scales leaf processes to the canopy scale by calculat-
ing the vertical layering of incident photosynthetically ac-
tive radiation on sunlit versus shaded leaves. The different
PFTs in Ent TBM have different critical soil moisture val-
ues for the onset of stress (when stomatal closure begins in
response to drying soils) and their wilting point (when the
plant is unable to withdraw moisture from the soil and com-
plete stomatal closure occurs). It should be noted that the
GISS land surface model is wetter than observed soil mois-
ture (Kim et al., 2015). Vc,max is a function of a Q10 temper-
ature function in ModelE. Since nitrogen dynamics are not
represented yet in the Ent TBM, leaf nitrogen is fixed and
therefore Vc,max is not dynamic with nitrogen as in CLM4.5.
The Q10 coefficient is often used to predict the impact of tem-
perature increases on the rate of metabolic change (Rasmus-
son et al., 2019).
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To emulate the MEGAN/CLM representation of drought
stress, in this study, in the Ent TBM leaf model, we applied
a reduction in Vc,max with water stress as shown in Eq. (6b).
It is important to note that the reduction of Vc,max with water
stress in Eq. (6b) is not used outside the isoprene drought
stress parameterization, so the Vc,max reduction is not applied
to the calculation of photosynthetic CO2 uptake; this avoids
applying another secondary indirect scaling to conductance,
since the Ent TBM already applies its water stress factor to
reduce stomatal conductance.

For this study, ModelE2.1 was configured with a tran-
sient atmosphere and ocean using a prescribed sea surface
temperature (SST) and sea ice (SSI) according to observa-
tions. The transient simulations contain continuously vary-
ing greenhouse gases in order to represent a realistic mode
in the present day. To facilitate direct comparison with at-
mospheric composition observations as in this study, me-
teorology is nudged to the National Centers for Environ-
mental Prediction (NCEP) reanalysis winds. Four transient
ModelE simulations were run for the period of 2003–2013
with a 3-year spin-up using MEGAN2.1 with varying con-
figurations for isoprene drought stress described below. The
authors found that the default MEGAN implementation in
ModelE2.1 underestimates isoprene and monoterpene emis-
sions, and thus appropriate scaling factors (SFc) were applied
for global annual emission estimates of 1.8 for isoprene and 3
for monoterpenes to match the literature estimates of around
∼ 500 Tg C for isoprene and ∼ 130 Tg C for monoterpenes
(Arneth et al., 2008; Guenther et al., 2012).

2.5 Observations of isoprene emissions at MOFLUX
during the drought of 2011–2012

The MOFLUX site, located at 38.7441◦ N, −92.2000◦W
(latitude, longitude), is comprised mostly of deciduous
broadleaf forests dominated by oak–hickory forest, and the
climate is classified as humid subtropical with no dry sea-
son and hot summers. The site experienced a mild drought
in the middle to late summer of 2011 and an extreme to ex-
ceptional drought from the middle to late summer of 2012
when concurrent biogenic isoprene flux measurements were
taken. The 2011 drought was not as severe as the drought
of summer of 2012. The ecosystem response of isoprene has
two stages including a mild phase of drought stress wherein
emissions are stimulated by increases in leaf temperature due
to reduced stomatal conductance, while in the second stage
of drought, the more severe phase of drought stress, emis-
sions are suppressed by reduction in substrate availability or
isoprene synthase production (Potosnak et al., 2014; Seco et
al., 2015).

In 2011, the spring was wet but the drought started to ap-
pear in June due to lack of rainfall, while temperatures broke
records and continued through July (Potosnak et al., 2014;
Jiang et al., 2018). The US Drought Monitor (USDM) pro-
duces color-coded maps indicating drought severity across

the US and is produced through a partnership of the National
Drought Mitigation Center at the University of Nebraska-
Lincoln, the US Department of Agriculture, and the Na-
tional Ocean and Atmospheric Administration (NOAA). The
USDM drought maps have five classifications to indicate
drought conditions: (D0) abnormally dry, (D1) moderate
drought, (D2) severe drought, (D3) extreme drought, and
(D4) exceptional drought. However, the USDM did not cap-
ture this drought signal from June to July, only showed
abnormally dry periods from 2 to 16 August, and never
went into the extreme (D2) or severe drought stage (D3).
This suggests that the 2011 summer was a useful case only
for studying the drought response of isoprene during weak
drought conditions. The highest observed isoprene fluxes
were from 11 July to 3 August, as shown in Fig. 1a. Poto-
snak et al. (2014) reported that from 14 July to 10 August
their MEGAN2.1 simulations consistently underestimated
isoprene emissions during the onset of drought and overesti-
mated as drought progressed from 18 August to 2 September.
From 3 to 23 August there was a total of 65 mm of precip-
itation, which led to an increase in observed soil moisture.
It was suggested that since observed soil moisture increases
during the period of drought progression when isoprene is
decreasing (18 August–2 September) relative to the onset of
drought (14 July–10 August), this indicates that the response
to drought stress during this year is time-dependent, and a
time-independent algorithm based on soil moisture will not
capture the relevant processes during a less severe drought
year. It was also noted that MEGAN2.1 underpredicts during
the cooler months of May–June and underpredicts during the
warmer month of July (Potosnak et al., 2014), and it only
overpredicts during small portions of August–September as
denoted by a grey box in Fig. 1a. With this pattern of un-
derprediction observed in MEGAN2.1 simulations and also
seen in Default_ModelE, as well as weak drought conditions
as stated above, 2011 is not an ideal year to tune an isoprene
drought stress algorithm to target the reduction period caused
by drought stress.

In 2012, there were three unique periods that displayed the
development of a severe drought that make it ideal to tune
an isoprene drought stress algorithm. Shown in Fig. 1b is the
daily averaged isoprene flux broken up into three periods. We
define the MAXVOC episode from 1 May to 16 July. The se-
vere drought period (17 July–31 August) is shaded in brown
in Fig. 1b, and the drought recovery period is 1–31 Septem-
ber. Although Seco et al. (2015) defined MAXVOC from
18 June to 31 July, they identified 16 July as the transitional
stage between the MAXVOC episode and severe drought.
Thus, our work used 16 July to separate MAXVOC and se-
vere drought periods. The periods of pre-drought (prior to
31 May) and mild drought identified by Seco et al. (2015)
from 31 May to 14 June are included in the MAXVOC pe-
riod because during this time period a typical seasonal pat-
tern of increasing emissions with increasing temperatures is
shown, and there is no indication of decreasing emissions due
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Figure 1. Daily isoprene emissions flux at MOFLUX (May–August
2011 and May–September 2012). LST time series are shown. Black
shows observed isoprene emissions (abbreviated as ISOP), red
shows Default_ModelE without isoprene drought stress, orange
shows DroughtStress_MEGAN3_Jiang, and green shows Drought-
Stress_ModelE (units: mg m−2 h−1 of isoprene). (a) Shaded in grey
from 17 July through 31 August 2011 is the period wherein water
stress falls below 0.4 for short periods. (b) Shaded in grey is the
MAXVOC period, shaded in brown is the period of severe–extreme
drought from 17 July through August 2012, and shaded in purple is
the drought recovery period.

to drought stress. The mild drought period (31 May–14 June)
corresponds to USDM periods of abnormally dry and moder-
ate drought. Isoprene emissions continue to increase during
the beginning of summer, which is supported by several stud-
ies showing that isoprene emissions during the first stages of
drought increase even though there is a decrease in CO2 fixa-
tion, which is attributed to drought-induced stomatal closure,
rising leaf temperature, decreasing transpirational cooling,
and CO2 concentration in the leaf (Rosenstiel et al., 2003; Pe-
goraro et al., 2004; Potosnak et al., 2014; Seco et al., 2015).
Separating the MAXVOC and severe drought period allows
the algorithm development to target the latter severe drought
stage wherein isoprene reduction occurs, while not reducing
emissions during the early, and less severe, stages of drou-
ght. During the severe drought period, total annual precipi-
tation was the lowest in a decade, while soil water content
reached its minimum at the end of August when the drought
peaked (Jiang et al., 2018). During the severe drought there
is a marked decrease in isoprene flux, as shown by the brown
shaded box coinciding with lower β values. It is well estab-
lished that isoprene emissions are linked to high temperatures

(Singsaas and Sharkey, 2000), and without the contributing
factor of drought there should be an increase in isoprene
emissions in July and August. The severe drought period en-
compasses periods of severe and extreme drought identified
by the USDM. 3 July marks the first week indicated by the
USDM of severe drought, and 31 July marks the first week
of extreme drought. During severe drought isoprene produc-
tion is suppressed by reductions in substrate availability and
isoprene synthase transcription (Potosnak et al., 2014). Rain
events at the end of August led to drought recovery and soil
water content started to increase, which is indicated by in-
creasing β values shown in the drought recovery period in-
dicated in purple in Fig. 1b. Overall, 2012 shows a com-
plete development of drought conditions that affect isoprene
emissions and will provide useful constraints on the drought
stress factor parameterization: a MAXVOC period that en-
compasses pre-drought and mild drought periods, a severe
drought period (17 July–31 August), and a drought recovery
period (1–30 September). Included in Fig. S8 are distribu-
tions of daily averaged isoprene flux split into MAXVOC,
severe drought period, and drought recovery period for sim-
ulations Default_ModelE and DroughtStress_ModelE com-
pared to observations.

2.6 Offline isoprene emissions model

An offline model was created based on the isoprene emis-
sions formula in Eq. (4) of the MEGAN module contained
in ModelE in order to develop the new parametrization in a
timely fashion without waiting for online transient simula-
tions to complete. ModelE was first run in a default transient
simulation with MEGAN2.1 with no isoprene drought stress
applied, which is referred to as Default_ModelE, from which
the MEGAN activity factors and variables required to drive
the offline calculation of isoprene emissions were output and
archived. Default_ModelE is compared to observed tempera-
ture at MOFLUX in Figs. S10 and S12a as temperature is the
main biogenic driver of isoprene (Mishra and Sinha, 2020;
Jiang et al., 2018). Default_ModelE is also compared to sen-
sible heat and latent heat in Fig. S11 as the exchange of la-
tent and sensible heat fluxes is one of the most important
aspects of land–atmosphere coupling. These energy fluxes
are affected by partitioning of net radiation absorbed by
the surface, which influences atmospheric dynamics, bound-
ary layer structure, cloud development, and rainfall (Gu et
al., 2016). We verified LAI at the MOFLUX site during 2012
in Fig. S12b using the NOAA Climate Data Record AVHRR
(Advanced Very High Resolution Radiometer) LAI dataset
(Vermote and NOAA CDR Program, 2019) that we averaged
on a monthly scale and regridded from 0.05◦×0.05◦ to match
ModelE’s horizontal resolution. Other monthly averaged me-
teorological variables at MOFLUX during 2012, including
temperature, LAI, relative humidity, shortwave incoming so-
lar radiation, CO2 flux, vapor pressure deficit (VPD), and
canopy conductance, are compared to those observed when
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observations are available in Fig. S12. Soil moisture by layer
is shown in Fig. S14. The offline model was then driven
by these outputs at the half-hourly time step to match the
30 min time step in the online calculation of physics and the
MEGAN module. The offline model was verified by mak-
ing sure outputs of isoprene emissions matched the online
Default_ModelE simulation. With the verified offline model,
different parameterizations of isoprene drought stress could
be tested and cross-verified with observations at MOFLUX.
The offline model is used to derive a model-specific α and
β threshold (Eqs. 6a–6c) for ModelE in order to create the
appropriate parameterization of a model-specific isoprene
drought stress in ModelE known as DroughtStress_ModelE,
as described in Sect. 3.3. Since models calculate water stress
and Vc,max in different ways, the offline model is the nec-
essary step to derive model-specific water stress thresholds
to target drought periods and ensure that α and β are being
applied correctly.

2.7 ModelE sensitivity simulations

Four transient global ModelE simulations were configured
for the period of 2003–2013 with a 3-year spin-up, as de-
scribed in Table 1. A default simulation (Default_ModelE)
that set yd = 1 was performed wherein no isoprene drou-
ght stress parameterization was applied. A second simula-
tion named DroughtStress_MEGAN3_Jiang was performed
as a sensitivity test to determine the efficacy of the Drought-
Stress_MEGAN3_Jiang algorithm in Eqs. (6a)–(6c), which
is not tuned specifically for ModelE and was originally
developed by Jiang et al. (2018) as a non-model-specific
tuned isoprene drought stress formula to be widely used
in models. A third simulation was performed based upon
the offline-derived tuned response of ModelE to the best fit
with MOFLUX observations (MOFLUX_DroughtStress) us-
ing Eqs. (8a)–(8c), as described in Sect. 3.2. A fourth simu-
lation called DroughtStress_ModelE was performed using a
subset of parameters derived from MOFLUX_DroughtStress
but a different drought activation method (Sect. 3.3) using
Eqs. (10a)–(10b).

3 Development of model-specific drought stress
parameterization

3.1 MOFLUX single-site observational comparison to
model

Shown in Fig. 1a is the 2011 time series of biogenic isoprene
flux at the MOFLUX site from the two online simulations
Default_ModelE (red) and DroughtStress_MEGAN3_Jiang
(orange) compared to observations (black). In 2011, De-
fault_ModelE tended to underestimate isoprene flux dur-
ing the onset of drought (14 July–10 August) and had
minor periods of overestimation during drought progres-
sion (18 August–2 September), which was also seen by

MEGAN2.1 simulations of Potosnak et al. (2014). The
DroughtStress_MEGAN3_Jiang simulation applied isoprene
drought stress from mid-July through September when β fell
below the 0.6 threshold identified by Jiang et al. (2018).
In the DroughtStress_MEGAN3_Jiang simulation it is
shown that during the drought progression stage, Drought-
Stress_MEGAN3_Jiang isoprene is reduced compared to
Default_ModelE, but reductions are not strong enough to
align with lower observed values for a majority of this pe-
riod. The time series shows that there is little deviation be-
tween Default_ModelE and DroughtStress_MEGAN3_Jiang
during the 2011 mild drought.

Shown in Fig. 1b is the 2012 time series of biogenic iso-
prene flux at the MOFLUX site from the two online simula-
tions Default_ModelE and DroughtStress_MEGAN3_Jiang
compared to observations with β (blue). Default_ModelE
typically underestimates isoprene flux during the MAXVOC
period, overestimates during the severe drought period, and
reproduces the drought recovery period sufficiently except
for 6 September when the model greatly overestimates,
leading to a peak not matched by observations. During
the severe drought period the Default_ModelE mean bias
(MB) ∼= 2.20 mg m−2 h−1 and the normalized mean bias
(NMB) ∼= 76.10 %. β daily average values fell below the
0.60 threshold on 20 June and continued below the thresh-
old through 3 September. With β falling below 0.60, the
DroughtStress_MEGAN3_Jiang simulation starts reducing
isoprene during the MAXVOC period and continues to re-
duce it through the drought recovery period. This leads
to compounding the underestimation during the MAXVOC
period, small corrections to overestimation during severe
drought but missing peak overestimations, and overly large
of reductions of isoprene during drought recovery period.
During the severe drought period the MB of Drought-
Stress_MEGAN3_Jiang was ∼= 1.61 mg m−2 h−1 and the
NMB was ∼= 55.81 %. DroughtStress_MEGAN3_Jiang thus
decreased the overestimation by ∼ 20.29 % during the se-
vere drought period. The time series comparison for 2012
indicates that the parameters in the Jiang et al. (2018) pa-
rameterization resulted in only minor improvements in Mod-
elE for the severe drought period because they were tuned
for CLM4.5. The DroughtStress_MEGAN3_Jiang simula-
tion shows that α and β need to be tuned on a model-by-
model basis. Based on these minor improvements and the
differences in how Vc,max and β are calculated in CLM4.5
versus Ent TBM, it was clear a model-tuned parameteriza-
tion could be used to further improve the relationship of sim-
ulated isoprene emissions during drought.

3.2 Site-tuned MOFLUX_DroughtStress
parameterization

Using the offline isoprene emissions model (Sect. 2.6) driven
by catalogued variables from each time step of the De-
fault_ModelE simulation and the MOFLUX biogenic iso-
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Table 1. ModelE online transient simulation descriptions.

Simulation name Drought stress Isoprene emission β threshold α

equation

Default_ModelE NO Eq. (4) n/a n/a
DroughtStress_MEGAN3_Jiang YES (Eqs. 6a–6c) Eq. (7) β < 0.6 37
MOFLUX_DroughtStress YES (Eqs. 8a–8c) Eq. (9) 0.25< β < 0.40 100
DroughtStress_ModelE YES (Eqs. 10a–10b) Eq. (9) β < 4th percentile 100

n/a: not applicable.

prene flux measurements for 2012, we describe here how
a water stress threshold to target severe–extreme drou-
ght periods and a model-appropriate empirical variable (α)
were derived to create the isoprene drought stress param-
eterization based upon the framework of Eqs. (6a)–(6c),
called MOFLUX_DroughtStress. MOFLUX_DroughtStress
was developed to target the 2012 severe drought period
shown in Fig. 1b as this period is when the model overes-
timates despite observations showing decreasing emissions
during drought. The water stress threshold range targeting the
severe drought period determines when the isoprene drou-
ght stress is applied, and it is bounded to exclude the pe-
riod of drought recovery and the onset of drought when iso-
prene emissions are still increasing. The range of β spe-
cific to ModelE is 0.25 to 0.40 during the severe drought
period, which differs from the CLM4.5 threshold of 0.60
as it is a model-specific parameterization. Isoprene drought
stress in MOFLUX_DroughtStress is thus applied only when
0.25< β < 0.40, and at all other β values yd = 1.

To find the empirical variable, α, an offline sensitivity
analysis was conducted using the offline isoprene emissions
model with 0.25 to 0.40 as the β threshold to activate iso-
prene drought stress. The PFT-weighted values of Vc,max
and β were used to calculate the yd in the offline isoprene
emissions model. A range of α values from 60 to 160 was
tested in Eqs. (8a)–(8c) to find yd. yd dependence on the
value of α was fed into Eq. (9) to output offline isoprene
emissions. The offline-modeled emissions from Eq. (9) were
evaluated against observed isoprene fluxes at MOFLUX,
and it was determined that α = 100 gave the best fit and
strongest relationship between the offline-modeled emissions
and measured isoprene at MOFLUX. α = 100 had the low-
est NMB closest to zero during the severe drought period
and the most improved slope, y intercept, and correlation
coefficient during the summer of 2012. The α variable,
though empirically derived, is strongly related to the model-
specific Vc,max, which is why our alpha differs from Drought-
Stress_MEGAN3_Jiang, wherein α = 37. Based on the of-
fline emission comparisons to observed it was determined

that MOFLUX_DroughtStress is defined as follows:

yd = 1(β ≥ 0.4) , (8a)

yd =

(
vc,max×β

)
α

(0.25< β < 0.40) where α = 100 , (8b)

yd = 1(β ≤ 0.25) , (8c)

isoprenei =
(

1× 10−9/3600
)

×
(
EFi,isoprene×PFTboxfi

)
× yLAI× yA

× yd× yCO2 × (yP× yTLD)×SFisoprene , (9)

where yd uses the area-weighted average over PFTs of
Vc,max and β in Eqs. (8a)–(8c), and thus yd in Eq. (9)
is not a function of PFT, which differs from Drought-
Stress_MEGAN3_Jiang in Eq. (7) where yd is a function of
PFT.

MOFLUX_DroughtStress simulation with isoprene drou-
ght stress applied in Eqs. (8a) to (8c) is found to reduce the
MB at the MOFLUX site to ∼= 0.04 mg m−2 h−1 during the
2012 severe drought period, indicating that the parameteriza-
tion is able to correct the model overestimation of isoprene
emissions. Scatterplots and time series of the simulation
MOFLUX_DroughtStress during May–September 2012 are
included in Fig. S2. The NMB decreased to ∼= 1.53 %, indi-
cating a ∼ 74.57 % reduction compared to Default_ModelE.
Large improvements were not expected for 2011 as this al-
gorithm was designed to target severe–extreme drought. De-
spite the better agreement between measured and modeled
fluxes in MOFLUX_DroughtStress at the MOFLUX site,
the regional analysis described below determined that wa-
ter stress values are region-specific and a new approach was
needed in order to make the algorithm applicable for other
regions in the global model.

3.3 New percentile threshold isoprene drought stress
parameterization

After implementing MOFLUX_DroughtStress in ModelE,
we found isoprene emissions reductions for June–August
2011 in the southeastern (SE) US (defined as 96–75◦W, 25–
38◦ N) of approximately −3.5 %, −7.2 %, and −5.7 %, re-
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spectively. These regional reductions were smaller than ex-
pected as the SE US in 2011 experienced a spatially ex-
tensive severe drought over a largely forested and vege-
tated region. The US Drought Monitor (USDM) reported
that in June–August 2011 63 %, 61 %, and 55 %, respec-
tively, of the southeast area was in moderate to exceptional
drought. Other studies for other regions of the world have
reported during severe drought that reductions in isoprene
vary by region and have large uncertainty. For example,
Huang et al. (2015) reported that using different soil mois-
ture products resulted in isoprene reductions of 12 %–70 %
for Texas. Others showed reductions up to a maximum of
17 % (Jiang et al., 2018; Wang et al., 2021). The reason why
MOFLUX_DroughtStress falls on the lowest end of reported
isoprene reductions for the regional analysis is probably be-
cause drought stress activation was calibrated to water stress
ranges at a single site. As water stress is expected to vary
regionally, a new regional method was needed in order to
simulate drought stress effects globally.

A new parameterization was designed to not only work
at MOFLUX since this is the site used for validation, but
also capture isoprene drought signals for other regions. To
do so, we first simulated daily averaged water stress during
the growing season for 10 years (2003–2012) at MOFLUX
for a total of 2450 d. It was determined that water stress was
less than the 0.4 threshold for 102 d, which is a percentage of
∼ 4.16 %. For simplicity, we rounded the percentage to 4 %.
The new approach then relied upon finding the fourth per-
centile water stress value across 10 years of daily water stress
per grid and for each individual month in order to build a pa-
rameterization that would capture regional and seasonal vari-
ability in water stress in ModelE. This new drought stress pa-
rameterization is known as DroughtStress_ModelE, uses the
same alpha (α = 100) as MOFLUX_DroughtStress, and is
applied as weighted average per PFT. What makes this differ-
ent from the previous approach, MOFLUX_DroughtStress,
is that the water stress threshold used to apply drought stress
is based on the model’s unique lowest fourth percentile of
water stress on a grid-by-grid basis, is not based on the ab-
solute values of water stress at a single site (i.e., MOFLUX),
and is a statistical tuning method. The fourth percentile of
daily water stress was used as the trigger for drought stress
activation. The parameterization for DroughtStress_ModelE
is Eqs. (10a)–(10b):

yd = 1 when (β ≥ 4th percentile) , (10a)

yd =

(
vc,max×β

)
α

when (β < 4th percentile) ,

where α = 100. (10b)

A global transient simulation was run (2003–2013) by apply-
ing Eqs. (10a)–(10b) globally, called DroughtStress_ModelE
in order to determine the effects of the isoprene drought
stress parameterization and to see if it captures the signal of
the 2011 SE drought. DroughtStress_ModelE for JJA 2011

showed isoprene emissions percent reductions for the SE
of approximately −9.6 %, −5.9 %, and −12.7 %, respec-
tively. These reported reductions are a factor of 2 greater than
MOFLUX_DroughtStress for the same period and are in the
mid-range of reported isoprene reductions during drought.
A complete time series of isoprene emissions at MOFLUX
for all four simulations as described by Table 1 is shown in
Fig. S2a–b for 2011 and 2012.

3.4 DroughtStress_ModelE evaluation at MOFLUX

During 2011 at the MOFLUX site, there were only
small differences between Default_ModelE and Drought-
Stress_ModelE. The scatterplots of isoprene emissions at
the MOFLUX site for the summer of 2011 show that the
hourly correlation coefficient between modeled and ob-
served isoprene fluxes experienced minor improvement from
0.77 to 0.78, with minor changes in slope and y intercept
(Fig. S3a, c). The diurnal cycles for 2011 included in Fig. S4a
show that neither MOFLUX_DroughtStress nor Drought-
Stress_ModelE altered the diurnal cycle in comparison to
Default_ModelE. For 2011, all four simulations underesti-
mate the diurnal cycle for May–August. Large improvements
due to the applications of the Eqs. (10a)–(10b) were not
expected for 2011 as this algorithm was designed to target
severe–extreme drought and not less severe drought condi-
tions.

During the severe drought period of 2012 at MOFLUX,
the β values fell below the fourth percentile thresholds
for July–August, and isoprene drought stress was ap-
plied, leading to reductions in the overestimation shown
by Default_ModelE. DroughtStress_ModelE had MB∼=
0.42 mg m−2 h−1 and NMB∼= 14.5 % during the severe
drought period. DroughtStress_ModelE reduced overestima-
tion by ∼ 61.6 % during the severe drought period compared
to Default_ModelE, which is a similar statistical improve-
ment compared to MOFLUX_DroughtStress during the se-
vere drought period as the parameterizations were designed
in a similar manner. The scatterplots of isoprene emissions
at the MOFLUX site for the summer of 2012 show that the
hourly correlation coefficient between observations and sim-
ulations increased from 0.68 in Default_ModelE to 0.73 in
DroughtStress_ModelE (Fig. 2a, c). In Fig. 2 changes are
clearly seen in the cluster of β values lower than 0.4 (shown
by red oval), indicating a reduction in overestimation during
severe drought.

DroughtStress_ModelE, with decreases in y intercept, in-
creasing correlation coefficient, and minor change in slope
compared to Default_ModelE, suggests better performance
in simulating isoprene emissions during severe and extreme
drought at MOFLUX during the summer of 2012. The
hourly scatterplots during the 2012 severe drought period
are included in Fig. S13. The daily correlation coefficient
increased from 0.64 to 0.73 during the 2012 drought in
DroughtStress_ModelE (Fig. S5a, c), and in Fig. S13 during
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Figure 2. Scatterplots (a)–(c) show hourly simulated isoprene emissions compared to observed for May–September 2012 at the MOFLUX
site (units: mg m−2 h−1 of isoprene). Panels (a)–(c) indicate the simulations Default_ModelE, DroughtStress_MEGAN3_Jiang, and
DroughtStress_ModelE, respectively. The hourly averaged points are color-coded by water stress.

the severe drought period the daily correlation increases from
0.40 to 0.48. In addition, DroughtStress_ModelE reproduces
the diurnal cycle of isoprene emission from May–September
2012, as shown in Fig. S4b, and corrects the overestima-
tion of Default_ModelE during the peak hours of 10:00–
15:00 LST. It was found that DroughtStress_ModelE tended
to reduce the overestimation of Default_ModelE for the daily
peak of isoprene flux and move it closer to observed during
the severe drought period, as shown in Fig. S9. Overall, there
is an acceptable level of agreement between measured and
modeled fluxes in DroughtStress_ModelE, indicating that it
is a suitable model-tuned parameterization for estimating iso-
prene emissions during severe drought at the MOFLUX site.

4 Model response to drought parameterization:
global and regional evaluation of
DroughtStress_ModelE

The impact of applying isoprene drought stress in Drought-
Stress_ModelE globally to the annual emissions of isoprene
from 2003–2013 is shown in Table 2. The yearly global
reduction of isoprene emissions ranges from ∼−0.9 %
to −4.3 %. The global decadal average from 2003–2013
is ∼ 533 Tg yr−1 of isoprene in Default_ModelE and ∼
518 Tg yr−1 of isoprene in DroughtStress_ModelE, which is
a reduction of 2.7 %, which is equivalent to∼ 14.6 Tg yr−1 of
isoprene. On a global scale these changes average under 3 %,
but for high-isoprene-emission regions such as the southeast-
ern US during drought periods there are larger impacts, as
shown below in Fig. 6.

Figure 3 shows the global 9-year average of isoprene emis-
sions and tropospheric HCHO column densities (�HCHO)
of the lowest 20 layers of the model during JJA from 2005–
2013. Due to extremely limited in situ measurements of iso-
prene emissions during drought, satellite-retrieved �HCHO,

which is the high-yield oxidation product of isoprene, can be
used as a proxy for isoprene emissions on the monthly scale
(Zhu et al., 2016). Here we used�HCHO from OMI (Ozone
Monitoring Instrument) on the Aura satellite starting in 2005.
The level 3 total column-weighted mean was regridded from
its original resolution of 0.1◦× 0.1◦ to match ModelE’s hor-
izontal resolution of 2◦× 2.5◦, and the daily data were ag-
gregated to a monthly mean (Chance, 2019). OMI satellite
data were filtered with the data_quality_flag, so cloud frac-
tions less than 0.3, solar zenith angles less than 60, and values
within the range of−0.5 to 10×1016 molec. cm−2 were used
(Zhu et al., 2016). A factor of 1.59 is applied to the OMI ver-
tical column density (VCD) to correct the mean bias (Kaiser
et al., 2018). As this is the first evaluation of tropospheric
�HCHO in ModelE, a gridded level 3 dataset was used for
analysis without applying the air mass factor (AMF) using
ModelE-predicted HCHO profiles, which according to Zhu
et al. (2016) can lead to an increase of ∼ 38 % uncertainty
in the southeastern US. Figure 3c and f show the percent
difference of isoprene emissions and �HCHO, and shown
in blue are the decreases in DroughtStress_ModelE glob-
ally. Figure 3d–e show OMI �HCHO and Default_ModelE-
simulated �HCHO. It is important to note the difference
in scales as Default_ModelE overestimates �HCHO in re-
gions such as the SE US for every June–July from the 2005–
2013 period with a regional mean scale factor of ∼ 0.56 and
∼ 0.80 when the SE boundary is extended westward to in-
clude portions of Texas. These overestimates in the SE US
are also reported by Kaiser et al. (2018) wherein they saw
a 50 % overestimate by GEOS-Chem with MEGAN2.1 sim-
ulations compared to SEAC4RS observations. While apply-
ing isoprene drought stress leads to reductions in�HCHO as
shown by Fig. 3f, this reduction is limited to drought-stricken
regions and periods, and it is not designed to correct for the
systematic biases of HCHO in ModelE. The overestimation
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Table 2. Global annual Tg of isoprene (2003–2013).

Global annual isoprene emissions (Tg)

Year Default_ModelE DroughtStress_ModelE Diff (Tg Isoprene) % Diff

2003 557.5 533.4 24.1 −4.3
2004 557.6 535.4 22.2 −4.0
2005 578.6 562.1 16.5 −2.9
2006 537.5 522.9 14.6 −2.7
2007 527.2 515.8 11.4 −2.2
2008 499.2 494.9 4.3 −0.9
2009 522.3 508.4 13.9 −2.7
2010 542.5 526.0 16.5 −3.0
2011 508.3 498.8 9.5 −1.9
2012 516.1 503.4 12.7 −2.5
2013 512.5 497.5 15 −2.9

of�HCHO in Default_ModelE will require further study and
could be due to several reasons such as emission errors, in-
correct spatial gradients of OH, or possibly an overly strong
sensitivity to temperature (Wells et al., 2020; Zhu et al., 2017;
Wang et al., 2022). This version of ModelE also lacks direct
emissions of HCHO from anthropogenic sources, which may
result in the lower vertical deposition and, due to the short
lifetime, the higher than the observed HCHO column over
portions of the US and lower in other regions. It was found
that nudged simulations show a large overestimation of the
HCHO column compared to free-running simulations using
model winds. As this study only shows modest decreases in
the HCHO column we can only conclude that adding iso-
prene drought stress to a model may reduce the HCHO col-
umn depending on atmospheric chemistry, but under certain
NOx- and VOC-limited environments may have another ef-
fect.

Four global isoprene emission hotspots are selected to
showcase the changes in isoprene emissions. The ge-
ographic regions are defined as the eastern US (east-
ern US: 65–105◦W, 25–50◦ N), SA (Amazon: 40–80◦W,
30◦ S–7◦ N), AF (central Africa: 10–40◦ E, 15◦ S–10◦ N),
and SE Asia (Southeast Asia: 100–150◦ E, 11◦ S–38◦ N)
as shown in Fig. S6. Figure 4 shows the relationship of
dryness categorized by SPEI (Standardized Precipitation–
Evapotranspiration Index) and relative difference in iso-
prene emissions between DroughtStress_ModelE and De-
fault_ModelE from 2005–2013 for the growing season in the
Northern Hemisphere and spring–summer in the Southern
Hemisphere for the four global isoprene hotspots. SPEI is
a multiscalar climatic index that represents the duration of
drought in a region. It is based on a climatic water balance
approach which considers the impact of temperature and
evapotranspiration (Beguería et al., 2010; Vicente-Serrano
et al., 2010; Beguería et al., 2014). To identify the extent
of drought impacts and differentiate from normal variabil-
ity in the hydrological cycle, 1-month SPEI is used to iden-

tify drought periods extending beyond a single month. De-
fault_ModelE simulation variables were used to calculate
modeled SPEI at the resolution of 2◦× 2.5◦. Positive SPEI
typically indicates wet conditions, and dry conditions are in-
dicated by negative values. Drought conditions are indicated
by SPEI≤−1.3, normal conditions −0.5≤ SPEI≤ 0.5, and
wet conditions SPEI≥ 1.3 following the Wang et al. (2017)
approach. For the four regions the average percent differ-
ence in isoprene emissions for March–October for Northern
Hemisphere regions and September–February for Southern
Hemisphere regions from 2005–2013 is ∼−2.62 % for the
eastern US,∼−3.01 % for the Amazon (SA),∼−2.64 % for
central Africa (AF), and ∼−3.10 % for Southeast Asia (SE
Asia). The scatterplots for the four hotspots show decreas-
ing isoprene emissions across all dryness conditions. The de-
creases in isoprene emissions for the four regions are not seen
exclusively when SPEI indicates dry conditions, which indi-
cates the simulated water stress as shown by the model does
not exactly align with SPEI drought-indicated conditions.

Narrowing the focus from global to the US to illustrate the
long-term difference between DroughtStress_ModelE and
Default_ModelE, a time series from 2005–2013 is shown in
Fig. 5 of the continental US for the two regions West (105–
125◦W, 25–50◦ N) and East (65–105◦W, 25–50◦ N), indicat-
ing the percent difference in�HCHO and isoprene emissions
corresponding to percent area that is dry (SPEI<−0.5). The
map showing the regions West and East is located in Fig. S7.
The western US (West), despite having a much smaller mag-
nitude of isoprene emissions, does see reductions in iso-
prene, which is mimicked on a lesser scale by reductions
in �HCHO. For the eastern US (East) there are visible de-
creases in the percent reduction of isoprene emission and
�HCHO during the 2007, 2011, and 2012 drought years. Fo-
cusing on the East time series, the maximum percent differ-
ence between simulations DroughtStress_ModelE and De-
fault_ModelE for isoprene occurred from August–October
2007 of approximately −4.5 %, −7.4 %, and −4.6 %, with
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Figure 3. Global 9-year average of JJA 2005–2013 isoprene emissions (first row) for Default_ModelE (a), DroughtStress_ModelE (b), and
the percent difference between DroughtStress_ModelE and Default_ModelE (c). �HCHO (second row) for OMI (d), Default_ModelE (e),
and the percent difference between DroughtStress_ModelE and Default_ModelE (f). Note the different color scales between panels (d)
and (e).

corresponding decreases in �HCHO of ∼−4.1 %, −5.4 %,
and −3.6 %, respectively. For 2011 the maximum percent
difference in isoprene emissions occurred in September–
November and was ∼−9.0 %, −8.7 %, and −8.3 %. The
percent difference in �HCHO was ∼−5.9 %, −3.6 %, and
−2.6 %. For 2012 the maximum percent difference occurred
from August–October, and the difference in isoprene was
∼−5.1 %,−8.8 %, and−10.8 %. The difference in�HCHO
was ∼−2.8 %, −4.0 %, and −2.7 %.

Figure 6 displays spatial maps of�HCHO during the sum-
mer (JJA) of 3 drought years: 2007, 2011, and 2012. The
summers of 2007 and 2011 were drought periods in the US,
with 2007 being a less severe drought than 2011 in the SE
US. The drought of 2012 was focused more on the Great
Plains (GP) region. The spatial maps show the reduction
in �HCHO in panels (c), (f), and (i) due to the inclusion
of isoprene drought stress. Based on the spatial differences
in �HCHO, three regions of the greatest reduction in per-
cent difference in the �HCHO column are selected for the
3 drought years of 2007, 2011, and 2012, respectively. The
three geographic regions are shown in Fig. 7 and defined as
SE1 (Southeast Region1: 75–93◦W, 31–39◦ N), SE2 (South-
east Region2: 75–101◦W, 29–37◦ N), and GP (Great Plains:
89–100◦W, 33–43◦ N). During JJA for 2007 the SE1 region
has an average percent difference in �HCHO of −6.46 %.
During JJA 2011 the SE2 region has a percent difference of

−7.58 %, and the GP region during JJA 2012 has an average
percent difference of −3.29 %.

Figure 7 shows the time series for the three regions
of SE1 during 2007, SE2 for 2011, and GP for 2012.
In the SE1 region during the period of maximum iso-
prene difference from August–October 2007 (shaded in grey
on the time series), DroughtStress_ModelE reduced NMB
of �HCHO by ∼ 19.3 %. The isoprene percent difference
for this period was approximately −9.0 %, −17.5 %, and
−13.2 %. The �HCHO percent difference for the SE1 re-
gion from August–October 2007 was approximately−8.4 %,
−12.1 %, and −7.3 %. In the SE2 region the maximum
isoprene difference period was August–November 2011,
and DroughtStress_ModelE decreased �HCHO NMB by
∼ 15.3 %. The monthly isoprene percent difference for SE2
during this period was approximately −16.1 %, −18.6 %,
−14.7 %, and −13.9 %, while the �HCHO percent differ-
ence was ∼−10.0 %, −11.2 %, −6.6 %, and −4.6 %, re-
spectively. In the GP region during September–November
2012, the isoprene percent difference was approximately
−5.4 %, −14.2 %, and −11.1 %, and the �HCHO percent
difference was∼−2.8 %,−2.4 %, and−0.4 %, respectively.
The small change in the HCHO column despite estimated
larger changes in isoprene emissions is probably due to the
suppression of oxidants such as hydroxyl radicals (OH) by
isoprene under low-NOx conditions in the GP region (Wells
et al., 2020).
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Figure 4. Scatterplots of four global isoprene hotspots and their relative differences in isoprene emissions (mg m−2 h−1 isoprene) in rela-
tionship to simulated SPEI from 2005–2013 during the growing season. The four regions of focus are the eastern US (East), the Amazon
(SA), central Africa (AF), and Southeast Asia (SE Asia). The regions East and SE Asia are in the Northern Hemisphere, and the growing sea-
sons is from March–October. The hotspots of SA and AF are in the Southern Hemisphere, and the growing season is during spring–summer
(September–February).

It is well established that biogenic isoprene, the most
abundant BVOC, is a highly reactive species. In the pres-
ence of nitrogen oxides (NOx), BVOCs contribute to the for-
mation of tropospheric O3. Oxidation of BVOCs also pro-
duces secondary organic aerosols, a major component of fine
particulate matter (PM2.5). PM2.5 and O3 have been pre-
viously linked to change during drought with adverse ef-
fects on air quality (Wang et al., 2017). During drought
there is elevated O3 and PM2.5 compared to non-drought
periods (Wang et al., 2017; Zhao et al., 2019; Naimark et
al., 2021). Higher ozone compared to non-drought years is
due to the reduction of vegetative deposition due to reduced
stomatal conductance, higher temperatures stimulating pre-
cursors, and enhanced NO2 (Naimark et al., 2021). By in-
cluding isoprene drought stress in the simulations, isoprene
emissions are decreased, which will change O3; the direction
of change depends on NOx-limited or VOC-limited regimes
(Li et al., 2022). In summary, we better predicted isoprene
emission response to drought by including isoprene drought
stress. It is thus important to show the impact of drought-
induced changes in isoprene emissions on O3 and PM2.5.
The scatterplots in Fig. 7 show the relationship between ob-

served and simulated O3 during the drought period of max-
imum percent difference highlighted on the time series for
the corresponding region. PM2.5 comparison to observed
is not shown here due to Default_ModelE underestimating
PM2.5 across all three regions SE1, SE2, and GP, and thus
no improvements were seen due to the inclusion of Drought-
Stress_ModelE. The observational O3 data are a combina-
tion of hourly data from the EPA-AQS (US Environmental
Protection Agency, EPA, Air Quality System), CASTNET
(Clean Air Status and Trends Network), and NAPS (National
Air Pollution Surveillance) networks. The observational O3
datasets were gridded and interpolated for comparison to a
gridded model (Schnell et al., 2014). The hourly gridded
observations were then averaged onto a monthly scale for
comparison with model results. Shown in Fig. 7, the SE1
region saw improvement in O3 from August–October 2007
when the correlation coefficient (R) increased from 0.51 in
Default_ModelE to 0.60 in DroughtStress_ModelE, and the
slope of the linear regression also improved significantly. The
SE2 region from August–November 2011 saw a slight im-
provement in the slope of the linear regression but no change
in R. The GP region from September–November 2012 saw
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Figure 5. The percent difference of �HCHO and isoprene emis-
sions from 2005–2013 in relationship to percent area dry for two
regions of the US: West (a) and East (b). Percent dry area is indi-
cated by SPEI<−0.5. The first grey shaded rectangle indicates the
time period of the 2011 drought at MOFLUX from June to August
2011. The second grey shaded rectangle indicates the 2012 severe
drought at MOFLUX from 17 July through August. These time pe-
riods are added to the time series to highlight when they occurred.

a slight improvement in R but no change in the correlation
slope between Default_ModelE and DroughtStress_ModelE.
During non-drought periods of 2008, 2010, and 2013 com-
pared to their respective drought periods of 2007, 2011, and
2012 there were no large changes in O3 or �HCHO statis-
tics as expected since isoprene drought stress is only sup-
posed to affect drought periods. During the drought periods
of 2007, 2011, and 2012 the model predicts higher mean O3
and �HCHO than the non-drought years of 2008, 2010, and
2013. The analysis of these drought years and periods of the
greatest percent difference leads to the conclusion that iso-
prene drought stress improves �HCHO simulation and O3
simulation during drought periods.

5 Discussion and conclusions

Drought is a hydroclimatic extreme that causes perturba-
tions to the terrestrial biosphere. As a stressor for veg-
etation, drought can induce changes to vegetative emis-
sions known as BVOCs (biogenic volatile organic com-
pounds). Biogenic isoprene represents about half of total

BVOC emissions and is a precursor to ozone (O3) and
secondary organic aerosol (SOA), both of which are cli-
mate forcing species. In order to simulate isoprene flux
during drought and the feedbacks associated with these
complex BVOC–chemistry–climate interactions, we imple-
mented the MEGAN (Model of Emissions of Gases and
Aerosols from Nature) isoprene drought stress parameter-
ization, yd, into NASA GISS (Goddard Institute of Space
Studies) ModelE, a leading Earth system model. Four online
transient simulations were performed from 2003–2013: De-
fault_ModelE without yd, DroughtStress_MEGAN3_Jiang
using the parameterization developed by Jiang et al. (2018),
and a model-tuned parameterization developed for Mod-
elE based on the MOFLUX AmeriFlux site observations
(MOFLUX_DroughtStress). The fourth simulation imple-
mented isoprene drought stress using a grid-by-grid ap-
proach to capture regional changes in isoprene during drou-
ght known as DroughtStress_ModelE. The model-tuned
parameterization (MOFLUX_DroughtStress and Drought-
Stress_ModelE) was developed using an offline model of
emissions to create a model-specific empirical variable and
water stress threshold, since key variables Vc,max (photosyn-
thetic parameter) and water stress (β) are parameterized dif-
ferently across models. Observational measurements of iso-
prene flux during the severe drought of 2012 at the MOFLUX
site were used for validation of the parameterization. It was
found that DroughtStress_ModelE corrects the overestima-
tion of emissions during the phase of severe drought at
MOFLUX. Previously, this reduction during drought was not
included in BVOC emission models due to the lack of a drou-
ght stress term. Globally the decadal average from 2003–
2013 in Default_ModelE was ∼ 533 Tg of isoprene and
∼ 518 Tg of isoprene in DroughtStress_ModelE. Drought-
Stress_ModelE was validated using the observational satel-
lite�HCHO column from the Ozone Monitoring Instrument
(OMI) and using O3 observations across regions of the US
to examine the effect of drought on atmospheric composi-
tion. It was found that the inclusion of isoprene drought stress
reduced the overestimation of �HCHO in Default_ModelE
during the 2007 and 2011 southeastern US droughts and led
to improvements in simulated O3 during drought periods.
The inclusion of a grid-specific percentile isoprene drought
stress is model-specific, and the reduction of isoprene seen
in models will depend on each model’s mean bias and pa-
rameterizations of Vc,max and water stress. ModelE’s modest
signal can be explained by underestimating isoprene emis-
sions during the early stages of drought and by not having a
high mean bias during severe drought.

Our analysis of isoprene drought stress leads to the rec-
ommendation that each model should arrive at a tuning of
their water stress parameters based on the magnitude of wa-
ter stress occurring during simulated drought, and a unique
alpha should be derived. Each land surface model (LSM)
has a unique hydrology scheme (with different soil layering
approaches and soil physics treatments), and any variables
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Figure 6. The�HCHO column (units: molec. cm−2) for OMI, Default_ModelE, and the percent difference between DroughtStress_ModelE
and Default_ModelE across the US during the summer of drought years 2007, 2011, and 2012. X indicates the location of the MOFLUX site
on the spatial maps.

that depend on response to soil moisture – whether chemical,
physical, or biological – must be tuned due to the fact that soil
moisture in LSMs is averaged over a grid cell, whereas in na-
ture soil moisture is heterogeneous at spatial scales down to
the plot level. The resulting parameterization, since it relies
on model-specific variables, would be well suited for future
or historical simulations. The current approach also requires
vegetation-coupled land surface models that have photosyn-
thesis models that use Vc,max and β, and many current gen-
eral circulation models (GCMs) with less process-based veg-
etation schemes do not have these variables readily available.

Besides tuning responses to drought, the light response
of isoprene emissions may not be well captured in a sim-
ple factor like the PCEEA. Vegetation models differ in their
approach to leaf-to-canopy scaling. Some ESMs’ vegetation
models have more sophisticated canopy radiative transfer
submodels that capture layering and sunlit–shaded leaf area.
Future isoprene modeling investigations could make use of
the ability of these canopy models to calculate isoprene emis-
sions with leaf-level responses to the heterogeneous light in
canopies. Unger et al. (2013) previously implemented such a

leaf-to-canopy scaling of isoprene emissions in the Ent TBM
through a leaf-level isoprene model as a function of leaf-
level gross primary production (GPP). Since the Ent TBM
scales stomatal conductance with drought stress and hence
also GPP, this intrinsically results in isoprene emission re-
sponsiveness to drought stress. The main challenge will be to
find consensus about the fundamental process-based physics
of isoprene emissions at the leaf level. The method of Unger
et al. (2013) was not used for this paper in order to preserve
the MEGAN3 features and test this particular isoprene drou-
ght stress parameterization.

A limitation of our tuning method for applying isoprene
drought stress is that there does not appear to be a strong rela-
tionship between SPEI and water stress, which makes it chal-
lenging to determine when the algorithm should be applied
during severe drought. This is why the current application
is limited and based on the single MOFLUX site where wa-
ter stress values and the corresponding decreases in isoprene
during severe drought were observed. Possible future work
of the satellite Cross-track Infrared Sound (CrIS) isoprene
measurements (Wells et al., 2020) may be used to develop a
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Figure 7. The time series from 2005–2013 of percent dry area on the y axis shown in red and the percent difference in �HCHO (blue)
and isoprene emissions (black) between DroughtStress_ModelE and Default_ModelE for the three regions SE1, SE2, and GP on the sec-
ond y axis. Shaded in grey are the time periods of the maximum percent difference of isoprene emissions during the drought years. The
scatterplots show the relationship between observed O3 (ppbv) and simulated O3 during the shaded grey time periods on the time series for
Default_ModelE in black and DroughtStress_ModelE in red for SE1 during 2007, SE2 during 2011, and GP during 2012. Maps showing
the geographic regions are inset into the scatterplots. The regions’ spatial extent is based on the region of maximum percent difference in
Fig. 6c, f, and i.

drought algorithm that is not based on a single site and pro-
vide a more dynamic drought stress algorithm for capturing
the decrease in emissions during severe drought. The reduc-
tion of isoprene in the model also depends on how dry (low
values of water stress) the model is. If the model is too dry or
if isoprene emissions are already overestimated there will be
larger reductions in isoprene than reported here in ModelE,
with larger feedbacks on O3, SOA, and the�HCHO column.
Models that do not severely overestimate during severe drou-
ght will show modest reductions like ModelE. It is important

to note that the application of isoprene drought stress in this
paper is designed to reduce emissions during severe drou-
ght. Future work could focus more on the parameterization
of isoprene emissions during mild or early stages of drou-
ght when isoprene emissions might be increasing, and as we
see in ModelE the model underestimates during this period.
Overall, the strength of the reduction signal of isoprene de-
pends on the model, and for models overestimating isoprene
the application of isoprene drought stress to the model could
improve model simulations significantly. Recent published
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work has also brought up the importance of drought duration
as an important factor to consider in further isoprene drou-
ght stress parameterization (Li et al., 2022). Future work on
developing drought parameterizations should focus on cap-
turing the increasing signal of isoprene at the start of drought
and the reduction signal during severe drought, while also
considering a time component because eventually plants can
reach a stage of emission cessation.

In summary, this paper demonstrates why isoprene re-
sponse to drought stress is model-specific and should be
tuned on a model-by-model basis, and it details a new
method for implementing isoprene drought stress to reduce
isoprene emissions during severe drought in ModelE. This
new method uses a grid-by-grid percentile threshold based
on simulated water stress and can be used by many models
to show regional changes in isoprene emissions during severe
drought as well as their associated feedbacks on �HCHO
and O3. With more severe droughts predicted in the United
States for the 21st century (Dai, 2013), this is a first look
into model performance for analyzing how BVOC emissions
change during drought conditions using GISS ModelE for
regions in the US.

Data availability. ModelE is publicly available at https://simplex.
giss.nasa.gov/snapshots/ (last access: 19 August 2019; NASA,
2019), and O3 and PM2.5 observational data are available for down-
load via https://doi.org/10.7910/DVN/4PQXQF (Klovenski, 2022).
Observational isoprene measurements at MOFLUX are from Poto-
snak et al. (2014; https://doi.org/10.1016/j.atmosenv.2013.11.055)
and Seco et al. (2015; https://doi.org/10.1111/gcb.12980) and are
available upon request from co-author Alex Guenther. MOFLUX
is part of the AmeriFlux network, and other observational data are
available for download at https://doi.org/10.17190/AMF/1246081
(Wood and Gu, 2021). Satellite �HCHO is publicly available at
https://doi.org/10.5067/Aura/OMI/DATA3010 (Chance, 2019).
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