Articles | Volume 21, issue 13
https://doi.org/10.5194/acp-21-9977-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9977-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: The effect of aerosol chemical composition on light scattering due to the hygroscopic swelling effect
Rongmin Ren
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing 100875,
China
Earth System Science Interdisciplinary Center, Department of
Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
Peng Yan
Centre for Atmosphere Watch and Service, Meteorological Observation Center of China Meteorological Administration, Beijing, China
Yuying Wang
Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological
Administration, School of Atmospheric Physics, Nanjing University of
Information Science and Technology, Nanjing 210044, China
School of Electrical Engineering, Chengdu University of Information
Technology, Chengdu 610225, China
Maureen Cribb
Earth System Science Interdisciplinary Center, Department of
Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing 100875,
China
Xiao'ai Jin
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing 100875,
China
Yanan Li
Centre for Atmosphere Watch and Service, Meteorological Observation Center of China Meteorological Administration, Beijing, China
Dongmei Zhang
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing 100875,
China
Related authors
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021, https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary
Short summary
The unexpected increase in surface ozone concentration was found along with the reduced anthropogenic emissions during the 2019 Chinese Spring Festival in Beijing. The enhanced atmospheric oxidation capacity could promote the formation of secondary aerosols, especially sulfate, which offset the decrease in PM2.5 mass concentration. This phenomenon was likely to exist throughout the entire Beijing–Tianjin–Hebei (BTH) region to be a contributing factor to the haze during the COVID-19 lockdown.
Hancheng Hu, Yidan Zhang, Yuting Li, Dongyang Pu, and Hao Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3637, https://doi.org/10.5194/egusphere-2025-3637, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
New particle formation is a major source of atmospheric particulate matter. Although the planetary boundary layer can influence NPF, related studies remain limited. This study focuses on observations of new particle formation events and planetary boundary layer height in Beijing, Guangzhou, and Shanghai, aiming to investigate the relationship between them.
Jialu Xu, Yingjie Zhang, Yuying Wang, Xing Yan, Bin Zhu, Chunsong Lu, Yuanjian Yang, Yele Sun, Junhui Zhang, Xiaofan Zuo, Zhanghanshu Han, and Rui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3184, https://doi.org/10.5194/egusphere-2025-3184, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to explore how the height of the atmospheric boundary layer affects fine particle pollution. We found that low boundary layers in winter trap pollutants like nitrate and primary particles, while higher layers in summer help form secondary pollutants like sulfate and organic aerosols. These findings show that boundary layer dynamics are key to understanding and managing seasonal air pollution.
Junhui Zhang, Yuying Wang, Jialu Xu, Xiaofan Zuo, Chunsong Lu, Bin Zhu, Yuanjian Yang, Xing Yan, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3186, https://doi.org/10.5194/egusphere-2025-3186, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to understand how tiny airborne particles take up water, which affects air quality and climate. We found that particle water uptake varies by season and size, with lower values in summer due to more organic materials. Local pollution mainly influences smaller particles, while larger ones are shaped by air mass transport. These findings help improve climate models and support better air pollution control in fast-growing cities.
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025, https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Short summary
Planetary boundary layer height (PBLHT) is an important parameter in atmospheric process studies and numerical model simulations. We use machine learning methods to produce a best-estimate planetary boundary layer height (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements. We demonstrated that PBLHT-BE-ML greatly improved the comparisons against sounding-derived PBLHT.
Ruiyu Song, Bin Zhu, Lina Sha, Peng Qian, Fei Wang, Chunsong Lu, Yan Yin, and Yuying Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-43, https://doi.org/10.5194/egusphere-2025-43, 2025
Preprint withdrawn
Short summary
Short summary
This study examines how anthropogenic aerosols affect rainfall during the early summer in China’s Yangtze River Delta. Using the WRF-Chem model, we found that moderate emissions increase rainfall by boosting cloud formation. However, high emissions reduce rainfall due to smaller cloud droplets, which hinder their growth. These findings highlight the complex impact of aerosol concentrations on precipitation and provide valuable data for future research on aerosol-cloud-precipitation interactions.
Siyu Shan, Dale Allen, Zhanqing Li, Kenneth Pickering, and Jeff Lapierre
Atmos. Chem. Phys., 23, 14547–14560, https://doi.org/10.5194/acp-23-14547-2023, https://doi.org/10.5194/acp-23-14547-2023, 2023
Short summary
Short summary
Several machine learning models are applied to identify important variables affecting lightning occurrence in the vicinity of the Southern Great Plains ARM site during the summer months of 2012–2020. We find that the random forest model is the best predictor among common classifiers. We rank variables in terms of their effectiveness in nowcasting ENTLN lightning and identify geometric cloud thickness, rain rate and convective available potential energy (CAPE) as the most effective predictors.
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023, https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Short summary
This study estimated the daily seamless 10 km ambient gaseous pollutants (NO2, SO2, and CO) across China using machine learning with extensive input variables measured on monitors, satellites, and models. Our dataset yields a high data quality via cross-validation at varying spatiotemporal scales and outperforms most previous related studies, making it most helpful to future (especially short-term) air pollution and environmental health-related studies.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Xing Yan, Zhou Zang, Zhanqing Li, Nana Luo, Chen Zuo, Yize Jiang, Dan Li, Yushan Guo, Wenji Zhao, Wenzhong Shi, and Maureen Cribb
Earth Syst. Sci. Data, 14, 1193–1213, https://doi.org/10.5194/essd-14-1193-2022, https://doi.org/10.5194/essd-14-1193-2022, 2022
Short summary
Short summary
This study developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF was extensively evaluated against ground-truth AERONET data and tested on a global scale against conventional satellite-based FMF products to demonstrate its superiority in accuracy.
Lu Chen, Fang Zhang, Don Collins, Jingye Ren, Jieyao Liu, Sihui Jiang, and Zhanqing Li
Atmos. Chem. Phys., 22, 2293–2307, https://doi.org/10.5194/acp-22-2293-2022, https://doi.org/10.5194/acp-22-2293-2022, 2022
Short summary
Short summary
Understanding the volatility and mixing state of atmospheric aerosols is important for elucidating their formation. Here, the size-resolved volatility of fine particles is characterized using field measurements. On average, the particles are more volatile in the summer. The retrieved mixing state shows that black carbon (BC)-containing particles dominate and contribute 67–77 % toward the total number concentration in the winter, while the non-BC particles accounted for 52–69 % in the summer.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Sihui Jiang, Fang Zhang, Jingye Ren, Lu Chen, Xing Yan, Jieyao Liu, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 21, 14293–14308, https://doi.org/10.5194/acp-21-14293-2021, https://doi.org/10.5194/acp-21-14293-2021, 2021
Short summary
Short summary
New particle formation (NPF) can be a large source of CCN and affect weather and climate. Here we show that the NPF contributes largely to cloud droplet number concentration (Nd) but is suppressed at high particle number concentrations in Beijing due to water vapor competition. We also reveal a considerable impact of primary sources on the evaluation in the urban atmosphere. Our study has great significance for assessing NPF-associated effects on climate in polluted regions.
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021, https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
Short summary
We found that the structure of atmospheric thermodynamics in the troposphere can be regarded as a strong forewarning signal for variations of surface PM2.5 concentration in heavy air pollution.
Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb
Atmos. Chem. Phys., 21, 7863–7880, https://doi.org/10.5194/acp-21-7863-2021, https://doi.org/10.5194/acp-21-7863-2021, 2021
Short summary
Short summary
This study developed a space-time Light Gradient Boosting Machine (STLG) model to derive the high-temporal-resolution (1 h) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8 Advanced Himawari Imager aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Yuwei Zhang, Jiwen Fan, Zhanqing Li, and Daniel Rosenfeld
Atmos. Chem. Phys., 21, 2363–2381, https://doi.org/10.5194/acp-21-2363-2021, https://doi.org/10.5194/acp-21-2363-2021, 2021
Short summary
Short summary
Impacts of anthropogenic aerosols on deep convective clouds (DCCs) and precipitation are examined using both the Morrison bulk and spectral bin microphysics (SBM) schemes. With the SBM scheme, anthropogenic aerosols notably invigorate convective intensity and precipitation, causing better agreement between the simulated DCCs and observations; this effect is absent with the Morrison scheme, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation.
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021, https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary
Short summary
The unexpected increase in surface ozone concentration was found along with the reduced anthropogenic emissions during the 2019 Chinese Spring Festival in Beijing. The enhanced atmospheric oxidation capacity could promote the formation of secondary aerosols, especially sulfate, which offset the decrease in PM2.5 mass concentration. This phenomenon was likely to exist throughout the entire Beijing–Tianjin–Hebei (BTH) region to be a contributing factor to the haze during the COVID-19 lockdown.
Yanfei Liang, Zengliang Zang, Dong Liu, Peng Yan, Yiwen Hu, Yan Zhou, and Wei You
Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020, https://doi.org/10.5194/gmd-13-6285-2020, 2020
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Jiwen Fan, Yuwei Zhang, Zhanqing Li, Jiaxi Hu, and Daniel Rosenfeld
Atmos. Chem. Phys., 20, 14163–14182, https://doi.org/10.5194/acp-20-14163-2020, https://doi.org/10.5194/acp-20-14163-2020, 2020
Short summary
Short summary
We investigate the urbanization-induced land and aerosol impacts on convective clouds and precipitation over Houston. We find that Houston urbanization notably enhances storm intensity and precipitation, with the anthropogenic aerosol effect more significant. Urban land effect strengthens sea-breeze circulation, leading to a faster development of warm cloud into mixed-phase cloud and earlier rain. The anthropogenic aerosol effect accelerates the development of storms into deep convection.
Pengguo Zhao, Zhanqing Li, Hui Xiao, Fang Wu, Youtong Zheng, Maureen C. Cribb, Xiaoai Jin, and Yunjun Zhou
Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, https://doi.org/10.5194/acp-20-13379-2020, 2020
Short summary
Short summary
We discussed the different aerosol effects on lightning in plateau and basin regions of Sichuan, southwestern China. In the plateau area, the aerosol concentration is low, and aerosols (via microphysical effects) inhibit the process of warm rain and stimulate convection and lightning activity. In the basin region, however, aerosols tend to show a significant radiative effect (reducing the solar radiation reaching the surface by absorbing and scattering) and inhibit the lightning.
Xinghong Cheng, Jianzhong Ma, Junli Jin, Junrang Guo, Yuelin Liu, Jida Peng, Xiaodan Ma, Minglong Qian, Qiang Xia, and Peng Yan
Atmos. Chem. Phys., 20, 10757–10774, https://doi.org/10.5194/acp-20-10757-2020, https://doi.org/10.5194/acp-20-10757-2020, 2020
Short summary
Short summary
We carried out 19 city-circle-around Car MAX-DOAS experiments on the 6th Ring Road of Beijing in Jan, Sep, and Oct 2014. The tropospheric VCDs of NO2 are retrieved and their temporal and spatial distributions are investigated. Then the NOx emission rates in urban Beijing are estimated using the measured NO2 VCDs together with the refined wind fields, NO2-to-NOx ratios, and NO2 lifetimes simulated by the LAPS-WRF-CMAQ model system, and results are compared with the MEIC inventory in 2012.
Cited articles
Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties
using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69,
https://doi.org/10.1080/02786829808965551, 1998.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous
particles: an investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost, P., Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E., Richardson, M. S., Schwarz, J. P., Washenfelder, R. A., Welti, A., Xu, L., Ziemba, L. D., and Murphy, D. M.: Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 4987–5007, https://doi.org/10.5194/acp-16-4987-2016, 2016.
Carrico, C. M., Rood, M. J., and Ogren, J. A.: Aerosol light scattering
properties at Cape Grim, Tasmania, during the First Aerosol Characterization
Experiment (ACE 1), J. Geophys. Res.-Atmos., 103, 16565–16574,
https://doi.org/10.1029/98JD00685, 1998.
Carrico, C. M., Kus, P., Rood, M. J., Quinn, P. K., and Bates, T. S.:
Mixtures of pollution, dust, sea salt, and volcanic aerosol during
ACE: radiative properties as a function of relative humidity, J.
Geophys. Res.-Atmos., 108, 8650, https://doi.org/10.1029/2003JD003405, 2003.
Chen, J., Zhao, C. S., Ma, N., and Yan, P.: Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain, Atmos. Chem. Phys., 14, 8105–8118, https://doi.org/10.5194/acp-14-8105-2014, 2014.
Cheung, H. H. Y., Yeung, M. C., Li, Y. J., Lee, B. P., and Chan, C. K.:
Relative humidity-dependent TDMA measurements of ambient aerosols at the
HKUST supersite in Hong Kong, China, Aerosol Sci. Tech., 49, 643–654,
https://doi.org/10.1080/02786826.2015.1058482, 2015.
Doherty, S. J., Quinn, P. K., Jefferson, A., Carrico, C. M., Anderson, T.
L., and Hegg, D.: A comparison and summary of aerosol optical properties as
observed in situ from aircraft, ship, and land during ACE-Asia, J. Geophys.
Res. Atmos., 110, D04201, https://doi.org/10.1029/2004jd004964, 2005.
Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U., and Weingartner, E.: Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 10, 2319–2333, https://doi.org/10.5194/acp-10-2319-2010, 2010a.
Fierz-Schmidhauser, R., Zieger, P., Wehrle, G., Jefferson, A., Ogren, J. A., Baltensperger, U., and Weingartner, E.: Measurement of relative humidity dependent light scattering of aerosols, Atmos. Meas. Tech., 3, 39–50, https://doi.org/10.5194/amt-3-39-2010, 2010b.
Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007.
Han, T., Xu, W., Chen, C., Liu, X., Wang, Q., Li, J., Zhao, X., Du, W.,
Wang, Z., and Sun, Y.: Chemical apportionment of aerosol optical properties
during the Asia Economic Cooperation summit in Beijing, China, J.
Geophys. Res. Atmos., 120, 12281–12295,
https://doi.org/10.1002/2015JD023918, 2015.
Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L.-W., Liu, X.-G., Zhang, Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933–8945, https://doi.org/10.5194/acp-10-8933-2010, 2010.
IPCC: Climate Change 2013: The Physical Science Basis, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
James, D. J., Brianna, M. M., Dennis, E., Scott, C. C., and Scott, A. B.:
Comparison of Single-Point and Continuous Sampling Methods for Estimating
Residential Indoor Temperature and Humidity, J. Occup. Environ. Hyg., 12,
785–794, https://doi.org/10.1080/15459624.2015.1047024, 2015.
Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G., Wu, H., Ren, J., Wang, Q., and Cribb, M.: Significant contribution of organics to aerosol liquid water content in winter in Beijing, China, Atmos. Chem. Phys., 20, 901–914, https://doi.org/10.5194/acp-20-901-2020, 2020.
Kotchenruther, R. A. and Hobbs, P. V.: Humidification factors of aerosols
from biomass burning in Brazil, J. Geophys. Res.-Atmos., 103,
32081–32089, https://doi.org/10.1029/98JD00340, 1998.
Kuang, Y., Zhao, C. S., Ma, N., Liu, H. J., Bian, Y. X., Tao, J. C., and Hu,
M.: Deliquescent phenomena of ambient aerosols on the North China Plain,
Geophys. Res. Lett., 43, 8744–8750, https://doi.org/10.1002/2016gl070273,
2016.
Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., and Zhao, G.: A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system, Atmos. Chem. Phys., 17, 6651–6662, https://doi.org/10.5194/acp-17-6651-2017, 2017.
Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.: Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions, Atmos. Chem. Phys., 19, 11485–11499, https://doi.org/10.5194/acp-19-11485-2019, 2019.
Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong,
D., Huang, J., Jiang, M., Jiang, Y., Lee, S.-S., Li, H., Li, J., Liu, J.,
Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan, X.,
Yang, X., Yang, X.-Q., Zhang, F., and Zheng, Y.: East Asian Study of
Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation,
and Climate (EAST-AIRCPC), J. Geophys. Res.-Atmos., 124, 13026–13054,
https://doi.org/10.1029/2019jd030758, 2019.
Liu, H. and Zhao, C.: Design of a humidified nephelometer system with high
time resolution, Acta Scientiarum Naturalium Universitatis Pekinensis, 52,
999–1004, https://doi.org/10.13209/j.0479-8023.2016.053, 2016.
Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M.: The absorption Ångström exponent of black carbon: from numerical aspects, Atmos. Chem. Phys., 18, 6259–6273, https://doi.org/10.5194/acp-18-6259-2018, 2018.
Liu, L., Tan, H., Fan, S., Cai, M., Xu, H., Li, F., and Chan, P.: Influence
of aerosol hygroscopicity and mixing state on aerosol optical properties in
the Pearl River Delta region, China, Sci. Total Environ., 627, 1560–1571,
https://doi.org/10.1016/j.scitotenv.2018.01.199, 2018.
Liu, X. G., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., Zhang, Y., Tian, H., and Hu, M.: Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13, 4501–4514, https://doi.org/10.5194/acp-13-4501-2013, 2013.
Müller, T., Laborde, M., Kassell, G., and Wiedensohler, A.: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer, Atmos. Meas. Tech., 4, 1291–1303, https://doi.org/10.5194/amt-4-1291-2011, 2011.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto,
H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake,
R. S., Carslaw, K. S., Cooper, O. R., Dentener, F. J., Fowler, D., Fragkou,
E., Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A.,
Hansson, H. C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H.,
Isaksen, I. S. A., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z.,
Kulmala, M., Laj, P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M.,
McFiggans, G. B., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J.
J., O'Dowd, C. D., Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U.,
Poschl, U., A.S.H. Prévôt, A. S. H., Reeves, C. E., Reimann, S.,
Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., ten Brink, H.,
Theloke, J., van Der Werf, G. R., Vautard, R., Vestreng, V., Vlachokostas,
C., and von Glasow, R.: Atmospheric composition change – global and
regional air quality, Atmos. Environ., 43, 5268–5350,
https://doi.org/10.1016/j.atmosenv.2009.08.021, 2009.
Morgan, W. T., Allan, J. D., Bower, K. N., Esselborn, M., Harris, B., Henzing, J. S., Highwood, E. J., Kiendler-Scharr, A., McMeeking, G. R., Mensah, A. A., Northway, M. J., Osborne, S., Williams, P. I., Krejci, R., and Coe, H.: Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe, Atmos. Chem. Phys., 10, 8151–8171, https://doi.org/10.5194/acp-10-8151-2010, 2010.
Morino, Y., Kondo, Y., Takegawa, N., Miyazaki, Y., Kita, K., Komazaki, Y.,
Fukuda, M., Miyakawa, T., Moteki, N., and Worsnop, D. R.: Partitioning of
HNO3 and particulate nitrate over Tokyo: effect of vertical mixing, J.
Geophys. Res. Atmos., 111, D15215, https://doi.org/10.1029/2005jd006887,
2006.
Pan, X. L., Yan, P., Tang, J., Ma, J. Z., Wang, Z. F., Gbaguidi, A., and Sun, Y. L.: Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city, Atmos. Chem. Phys., 9, 7519–7530, https://doi.org/10.5194/acp-9-7519-2009, 2009.
Quinn, P. K., Bates, T. S., Baynard, T., Clarke, A. D., Onasch, T. B., Wang,
W., Rood, M. J., Andrews, E., Allan, J., Carrico, C. M., Coffman, D., and
Worsnop, D.: Impact of particulate organic matter on the relative humidity
dependence of light scattering: a simplified parameterization, Geophys. Res.
Lett., 32, L22809, https://doi.org/10.1029/2005gl024322, 2005.
Ren, R.: A dataset of the comprehensive field experiment for BNU, Beijing, China, V1 [data set], available at: http://www.doi.org/10.11922/sciencedb.00785, last access: 6 May 2021.
Shi, Y., Chen, J., Hu, D., Wang, L., Yang, X., and Wang, X.: Airborne
submicron particulate (PM1) pollution in Shanghai, China: chemical
variability, formation/dissociation of associated semi-volatile components
and the impacts on visibility, Sci. Total Environ., 473, 199–206,
https://doi.org/10.1016/j.scitotenv.2013.12.024, 2014.
Sun, Y., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., and Jayne,
J. T.: Characterization of summer organic and inorganic aerosols in Beijing,
China with an aerosol chemical speciation monitor, Atmos. Environ., 51,
250–259, https://doi.org/10.1016/j.atmosenv.2012.01.013, 2012.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granadosmunoz,
M. J., Olmo, F. J., and Aladosarboledas, L.: Effect of hygroscopic growth on
the aerosol light-scattering coefficient: a review of measurements,
techniques and error sources, Atmos. Environ., 141, 494–507,
https://doi.org/10.1016/j.atmosenv.2016.07.021, 2016.
Wang, X., Zhang, Y., Chen, H., Yang, X., Chen, J., and Geng, F.: Particulate
nitrate formation in a highly polluted urban area: a case study by
single-particle mass spectrometry in Shanghai, Environ. Sci. Technol., 43,
3061–3066, https://doi.org/10.1021/es8020155, 2009.
Wang, Y., Zhang, F., Li, Z., Tan, H., Xu, H., Ren, J., Zhao, J., Du, W., and Sun, Y.: Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing, Atmos. Chem. Phys., 17, 5239–5251, https://doi.org/10.5194/acp-17-5239-2017, 2017.
Wang, Y., Li, Z., Zhang, Y., Du, W., Zhang, F., Tan, H., Xu, H., Fan, T., Jin, X., Fan, X., Dong, Z., Wang, Q., and Sun, Y.: Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain, Atmos. Chem. Phys., 18, 11739–11752, https://doi.org/10.5194/acp-18-11739-2018, 2018.
Wang, Y., Li, Z., Zhang, R., Jin, X., Xu, W., Fan, X., Wu, H., Zhang, F.,
Sun, Y., Wang, Q., Cribb, M., and Hu, D.: Distinct ultrafine-and
accumulation-mode particle properties in clean and polluted urban
environments, Geophys. Res. Lett., 46, 10918–10925,
https://doi.org/10.1029/2019GL084047, 2019.
Wanielista, M., Kersten, R., and Eaglin, R.: Hydrology: Water Quantity and
Quality Control, 2nd edition, John Wiley & Sons, New York, the United
States, 567 pp., 1997.
Wu, T., Li, Z., Chen, J., Wang, Y., Wu, H., Jin, X., Liang, C., Li, S.,
Wang, W., and Cribb, M.: Hygroscopicity of different types of aerosol
particles: case studies using multi-instrument data in megacity Beijing,
China, Remote Sens., 12, 785, https://doi.org/10.3390/rs12050785, 2020.
Wu, Y., Wang, X., Yan, P., Zhang, L., Tao, J., Liu, X., Tian, P., Han, Z.,
and Zhang, R.: Investigation of hygroscopic growth effect on aerosol
scattering coefficient at a rural site in the southern North China Plain,
Sci. Total Environ., 599, 76–84,
https://doi.org/10.1016/j.scitotenv.2017.04.194, 2017.
Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W.,
Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in
aerosol chemistry from 2014 to 2016 in winter in Beijing: insights from
high-resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 124,
1132–1147, https://doi.org/10.1029/2018JD029245, 2019.
Yan, P., Pan, X., Tang, J., Zhou, X., Zhang, R., and Zeng, L.: Hygroscopic
growth of aerosol scattering coefficient: a comparative analysis between
urban and suburban sites at winter in Beijing, Particuology, 7, 52–60,
https://doi.org/10.1016/j.partic.2008.11.009, 2009.
Yang, Y. R., Liu, X. G., Qu, Y., An, J. L., Jiang, R., Zhang, Y. H., Sun, Y. L., Wu, Z. J., Zhang, F., Xu, W. Q., and Ma, Q. X.: Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain, Atmos. Chem. Phys., 15, 8165–8178, https://doi.org/10.5194/acp-15-8165-2015, 2015.
Yu, Y., Zhao, C., Kuang, Y., Tao, J., Zhao, G., Shen, C., and Xu, W.: A
parameterization for the light scattering enhancement factor with aerosol
chemical compositions, Atmos. Environ., 191, 370–377,
https://doi.org/10.1016/j.atmosenv.2018.08.016, 2018.
Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W., Zhang, X. Y., and Ogren, J. A.: Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China, Atmos. Chem. Phys., 15, 8439–8454, https://doi.org/10.5194/acp-15-8439-2015, 2015.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air
quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116,
24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhao, C., Yu, Y., Kuang, Y., Tao, J., and Zhao, G.: Recent progress of
aerosol light-scattering enhancement factor studies in China, Adv. Atmos.
Sci., 36, 1015–1026, https://doi.org/10.1007/s00376-019-8248-1, 2019.
Zhao, G., Zhao, C., Kuang, Y., Bian, Y., Tao, J., Shen, C., and Yu, Y.: Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system, Atmos. Chem. Phys., 18, 9049–9060, https://doi.org/10.5194/acp-18-9049-2018, 2018.
Zhao, P., Ding, J., Du, X., and Su, J.: High time-resolution measurement of
light scattering hygroscopic growth factor in Beijing: a novel method for
high relative humidity conditions, Atmos. Environ., 215, 116912,
https://doi.org/10.1016/j.atmosenv.2019.116912, 2019.
Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Ström, J., Henne, S., Yttri, K. E., Baltensperger, U., and Weingartner, E.: Effects of relative humidity on aerosol light scattering in the Arctic, Atmos. Chem. Phys., 10, 3875–3890, https://doi.org/10.5194/acp-10-3875-2010, 2010.
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-2013, 2013.
Zieger, P., Fierz-Schmidhauser, R., Poulain, L., Müller, T. J., Birmili,
W., Spindler, G., Wiedensohler, A., Baltensperger, U., and Weingartner, E.:
Influence of water uptake on the aerosol particle light-scattering
coefficients of the Central European aerosol, Tellus B, 66, 22716,
https://doi.org/10.3402/tellusb.v66.22716, 2014.
Zieger, P., Aalto, P. P., Aaltonen, V., Äijälä, M., Backman, J., Hong, J., Komppula, M., Krejci, R., Laborde, M., Lampilahti, J., de Leeuw, G., Pfüller, A., Rosati, B., Tesche, M., Tunved, P., Väänänen, R., and Petäjä, T.: Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study, Atmos. Chem. Phys., 15, 7247–7267, https://doi.org/10.5194/acp-15-7247-2015, 2015.
Zou, J., Yang, S., Hu, B., Liu, Z., Gao, W., Xu, H., Du, C., Wei, J., Ma,
Y., Ji, D., and Wang, Y.: A closure study of aerosol optical properties as a
function of RH using a κ-AMS-BC-Mie model in Beijing, China, Atmos.
Environ., 197, 1–13, https://doi.org/10.1016/j.atmosenv.2018.10.015, 2019.
Short summary
We analyzed the effect of the proportion of components making up the chemical composition of aerosols on f(RH) in southern Beijing in 2019. Nitrate played a more significant role in affecting f(RH) than sulfate. The ratio of the sulfate mass fraction to the nitrate mass fraction (mostly higher than ~ 4) was a sign of the deliquescence of aerosol. A piecewise parameterized scheme was proposed, which could better describe deliquescence and reduce uncertainties in simulating aerosol hygroscopicity.
We analyzed the effect of the proportion of components making up the chemical composition of...
Altmetrics
Final-revised paper
Preprint