Articles | Volume 21, issue 5
https://doi.org/10.5194/acp-21-3803-2021
https://doi.org/10.5194/acp-21-3803-2021
Research article
 | 
15 Mar 2021
Research article |  | 15 Mar 2021

Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia

Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Hao Fan

Related authors

Spatiotemporal variation characteristics of global fires and their emissions
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023,https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022,https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys., 21, 4849–4868, https://doi.org/10.5194/acp-21-4849-2021,https://doi.org/10.5194/acp-21-4849-2021, 2021
Short summary
Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021,https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary

Cited articles

Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018. 
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Baddock, M., Parsons, K., Strong, C., Leys, J., and Mctainsh, G.: Drivers of Australian dust: a case study of frontal winds and dust dynamics in the lower lake Eyre basin, Earth Surf. Proc. Land., 40, 1982–1988, 2015. 
Bouya, Z., Box, G. P., and Box, M. A.: Seasonal variability of aerosol optical properties in Darwin, Australia, J. Atmos. Sol.-Terr. Phys., 72, 726–739, https://doi.org/10.1016/j.jastp.2010.03.015, 2010.  
Bouya, Z. and Box, G. P.: Seasonal variation of aerosol size distributions in Darwin, Australia, J. Atmos. Sol.-Terr. Phys., 73, 2022–2033, https://doi.org/10.1016/j.jastp.2011.06.016, 2011. 
Download
Short summary
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of the major aerosol types over Australia based on multi-source data. The results of this study provide significant information on aerosol optical properties in Australia, which can help to understand their characteristics and potential climate impacts.
Share
Altmetrics
Final-revised paper
Preprint