Articles | Volume 21, issue 5
https://doi.org/10.5194/acp-21-3803-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-3803-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia
Xingchuan Yang
State Key Laboratory of Earth Surface Processes and Resource Ecology, and
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, and
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Yikun Yang
State Key Laboratory of Earth Surface Processes and Resource Ecology, and
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, and
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Related authors
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022, https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Short summary
Using multi-year data, this study reveals the slump of sea land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW). Aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys., 21, 4849–4868, https://doi.org/10.5194/acp-21-4849-2021, https://doi.org/10.5194/acp-21-4849-2021, 2021
Short summary
Short summary
The occurrence frequency of different aerosol types and aerosol optical depth over the Arctic, Antarctic and Tibetan Plateau (TP) show distinctive spatiotemporal differences. The aerosol extinction coefficient in the Arctic and TP has a broad vertical distribution, while that of the Antarctic has obvious seasonal differences. Compared with the Antarctic, the Arctic and TP are vulnerable to surrounding pollutants, and the source of air masses has obvious seasonal variations.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
Atmos. Chem. Phys., 25, 10443–10456, https://doi.org/10.5194/acp-25-10443-2025, https://doi.org/10.5194/acp-25-10443-2025, 2025
Short summary
Short summary
This study investigates the impact of smoke on atmospheric warming over the Himalayas and Tibetan Plateau (HTP) using MODIS fire data, ground-based and satellite aerosol observations, and model simulations. It finds that smoke aerosols, predominantly concentrated between 6 and 8 km in the mid-troposphere over southern HTP, likely alter regional atmospheric stability by modifying the vertical temperature profile, as indicated by a reduced lapse rate.
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483, https://doi.org/10.5194/egusphere-2025-1483, 2025
Short summary
Short summary
In this study, a new framework of cloud condensation nuclei (CCN) prediction in polluted region has been developed and it achieves well prediction of hourly-to-yearly scale across North China Plain. The study reveals a significant long-term decreasing trend of CCN concentration at typical supersaturations due to a rapid reduction in aerosol concentrations from 2014 to 2018. This improvement of our new model would be helpful to aerosols climate effect assessment in models.
Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-186, https://doi.org/10.5194/essd-2025-186, 2025
Preprint under review for ESSD
Short summary
Short summary
IMPMCT is a dataset containing a 24-year record (2001–2024) of polar storms in the Nordic Seas. These storms, called Polar Mesoscale Cyclones (PMCs), sometimes cause extreme winds and waves, threatening marine operations. IMPMCT combines remote sensing measurements and reanalysis data to construct a comprehensive PMCs archive. It includes 1,184 PMCs tracks, 16,630 cloud patterns, and 4,373 wind records, providing fundamental data for advancing our understanding of their development mechanisms.
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022, https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Short summary
Using multi-year data, this study reveals the slump of sea land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW). Aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Yue Sun and Chuanfeng Zhao
Atmos. Chem. Phys., 21, 16555–16574, https://doi.org/10.5194/acp-21-16555-2021, https://doi.org/10.5194/acp-21-16555-2021, 2021
Short summary
Short summary
Using high-resolution multi-year warm season data, the influence of aerosol on precipitation time over the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD) is investigated. Aerosol amount and type have significant influence on precipitation time: precipitation start time is advanced by 3 h in the NCP, delayed 2 h in the PRD, and negligibly changed in the YRD. Aerosol impact on precipitation is also influenced by precipitation type and meteorological conditions.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys., 21, 4849–4868, https://doi.org/10.5194/acp-21-4849-2021, https://doi.org/10.5194/acp-21-4849-2021, 2021
Short summary
Short summary
The occurrence frequency of different aerosol types and aerosol optical depth over the Arctic, Antarctic and Tibetan Plateau (TP) show distinctive spatiotemporal differences. The aerosol extinction coefficient in the Arctic and TP has a broad vertical distribution, while that of the Antarctic has obvious seasonal differences. Compared with the Antarctic, the Arctic and TP are vulnerable to surrounding pollutants, and the source of air masses has obvious seasonal variations.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Cited articles
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989.
Baddock, M., Parsons, K., Strong, C., Leys, J., and Mctainsh, G.: Drivers of
Australian dust: a case study of frontal winds and dust dynamics in the
lower lake Eyre basin, Earth Surf. Proc. Land., 40, 1982–1988, 2015.
Bouya, Z., Box, G. P., and Box, M. A.: Seasonal variability of aerosol
optical properties in Darwin, Australia, J. Atmos. Sol.-Terr. Phys., 72, 726–739,
https://doi.org/10.1016/j.jastp.2010.03.015, 2010.
Bouya, Z. and Box, G. P.: Seasonal variation of aerosol size distributions
in Darwin, Australia, J. Atmos. Sol.-Terr. Phys.,
73, 2022–2033, https://doi.org/10.1016/j.jastp.2011.06.016, 2011.
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D.,
and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation
and Case Studies, J. Climate, 30, 6851–6872,
https://doi.org/10.1175/jcli-d-16-0613.1, 2017.
Burton, S. P., Ferrare, R. A., Vaughan, M. A., Omar, A. H., Rogers, R. R., Hostetler, C. A., and Hair, J. W.: Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask, Atmos. Meas. Tech., 6, 1397–1412, https://doi.org/10.5194/amt-6-1397-2013, 2013.
Chan, Y.-C., McTainsh, G., Leys, J., McGowan, H., and Tews, K.: Influence of
the 23 October 2002 Dust Storm on the Air Quality of Four Australian Cities,
Water Air Soil Poll., 164, 329–348, https://doi.org/10.1007/s11270-005-4009-0,
2005.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate forcing by anthropogenic
aerosols, Science, 255, 423–430, 1992.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion and deposition, Aust. Met. Mag,
47, 295–308, 1998.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O”Neill,
N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols, J.
Geophys. Res.-Atmos., 104, 31333–31349, 1999.
Ekström, M., McTainsh, G. H., and Chappell, A.: Australian dust storms:
temporal trends and relationships with synoptic pressure distributions
(1960–99), Int. J. Climatol., 24, 1581–1599, https://doi.org/10.1002/joc.1072, 2004.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789,
https://doi.org/10.1038/nature04636, 2006.
Geoscience Australia: 1 second SRTM Digital Elevation Model (DEM), Bioregional Assessment Source Dataset, available at: http://data.bioregionalassessments.gov.au/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b (last access: 31 January 2021), 2011.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., and Schafer, J. S.: An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2012jd018127, 2012.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/FH9A0MLJPC7N (last access: 31 January 2021), 2015.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N: ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.f17050d7, 2019.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET–A Federated Instrument Network and
Data Archive for Aerosol Characterization, Remote Sens. Environ.,
66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Huang, L., Jiang, J. H., Tackett, J. L., Su, H., and Fu, R.: Seasonal and
diurnal variations of aerosol extinction profile and type distribution from
CALIPSO 5-year observations, J. Geophys. Res.-Atmos.,
118, 4572–4596, https://doi.org/10.1002/jgrd.50407, 2013.
Karlson, L. R., Greene, R. S. B., Scott, K. M., Stelcer, E., and
O'Loingsigh, T.: Characteristics of aeolian dust across northwest Australia,
Aeolian Res., 12, 41–46, https://doi.org/10.1016/j.aeolia.2013.11.003,
2014.
Kaskaoutis, D. G., Kambezidis, H. D., Hatzianastassiou, N., Kosmopoulos, P. G., and Badarinath, K. V. S.: Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites, Atmos. Chem. Phys. Discuss., 7, 7347–7397, https://doi.org/10.5194/acpd-7-7347-2007, 2007.
Levy, R. and Hsu, C.: MODIS Atmosphere L2 Aerosol Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MYD04_L2.061 (last access: 31 January 2021), 2015.
Luhar, A. K., Mitchell, R. M., Meyer, C. P., Qin, Y., Campbell, S., Gras, J.
L., and Parry, D.: Biomass burning emissions over northern Australia
constrained by aerosol measurements: II–Model validation, and impacts on
air quality and radiative forcing, Atmospheric Environment, 42, 1647–1664,
https://doi.org/10.1016/j.atmosenv.2007.12.040, 2008.
Lymburner, L., Tan, P., McIntyre, A., Thankappan, M., and Sixsmith, J.: Dynamic Land Cover Dataset Version 2.1. Geoscience Australia, Canberra, available at: http://pid.geoscience.gov.au/dataset/ga/83868 (last access: 31 January 2021), 2015.
Mallet, M. D., Desservettaz, M. J., Miljevic, B., Milic, A., Ristovski, Z. D., Alroe, J., Cravigan, L. T., Jayaratne, E. R., Paton-Walsh, C., Griffith, D. W. T., Wilson, S. R., Kettlewell, G., van der Schoot, M. V., Selleck, P., Reisen, F., Lawson, S. J., Ward, J., Harnwell, J., Cheng, M., Gillett, R. W., Molloy, S. B., Howard, D., Nelson, P. F., Morrison, A. L., Edwards, G. C., Williams, A. G., Chambers, S. D., Werczynski, S., Williams, L. R., Winton, V. H. L., Atkinson, B., Wang, X., and Keywood, M. D.: Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign, Atmos. Chem. Phys., 17, 13681–13697, https://doi.org/10.5194/acp-17-13681-2017, 2017.
McGowan, H. and Clark, A.: Identification of dust transport pathways from
Lake Eyre, Australia using Hysplit, Atmos. Environ., 42, 6915–6925,
https://doi.org/10.1016/j.atmosenv.2008.05.053, 2008.
Mehta, M., Singh, R., Singh, A., Singh, N., and Anshumali: Recent global
aerosol optical depth variations and trends – A comparative study using
MODIS and MISR level 3 datasets, Remote Sens. Environ., 181,
137–150, https://doi.org/10.1016/j.rse.2016.04.004, 2016.
Mehta, M., Singh, N., and Anshumali: Global trends of columnar and
vertically distributed properties of aerosols with emphasis on dust,
polluted dust and smoke - inferences from 10-year long CALIOP observations,
Remote Sens. Environ., 208, 120–132,
https://doi.org/10.1016/j.rse.2018.02.017, 2018.
Mishra, A. K. and Shibata, T.: Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB), Atmos. Environ.t, 57, 205–218, https://doi.org/10.1016/j.atmosenv.2012.04.025, 2012.
Mitchell, R. M., O'Brien, D. M., and Campbell, S. K.: Characteristics and
radiative impact of the aerosol generated by the Canberra firestorm of
January 2003, J. Geophys. Res.-Atmos., 111, D02204, https://doi.org/10.1029/2005jd006304, 2006.
Mitchell, R. M., Campbell, S. K., and Qin, Y.: Recent increase in aerosol loading over the Australian arid zone, Atmos. Chem. Phys., 10, 1689–1699, https://doi.org/10.5194/acp-10-1689-2010, 2010.
Mitchell, R. M., Forgan, B. W., Campbell, S. K., and Qin, Y.: The
climatology of Australian tropical aerosol: Evidence for regional
correlation, Geophys. Res. Lett., 40, 2384–2389, https://doi.org/10.1002/grl.50403,
2013.
Mitchell, R. M., Forgan, B. W., and Campbell, S. K.: The Climatology of Australian Aerosol, Atmos. Chem. Phys., 17, 5131–5154, https://doi.org/10.5194/acp-17-5131-2017, 2017.
Mukkavilli, S. K., Prasad, A. A., Taylor, R. A., Huang, J., Mitchell, R. M.,
Troccoli, A., and Kay, M. J.: Assessment of atmospheric aerosols from two
reanalysis products over Australia, Atmos. Res., 215, 149–164,
https://doi.org/10.1016/j.atmosres.2018.08.026, 2019.
NASA: Aerosol optical depth (V3), solar and aerosol inversions (V3), Goddard Space Flight Center, USA, available at: https://aeronet.gsfc.nasa.gov/ (last access: 31 January 2021), 2016.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 3 Tropospheric Aerosol Profiles, Cloud Free Data, Standard V4-20 [Data set], NASA Langley Atmospheric Science Data Center DAAC, retrieved from: https://doi.org/10.5067/CALIOP/ (last access: 31 January 2021), 2019.
NOAA: GDAS – Daily Tar Files (1∘ by 1∘), NCEI's NOAA National Operational Model Archive and Distribution System (NOMADS), ftp://ftp.arl.noaa.gov/pub/archives/gdas1 (last access: 31 January 2021), 2016.
Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z.,
Vaughan, M. A., Powell, K. A., and Trepte, C. R.: CALIOP and AERONET aerosol
optical depth comparisons: One size fits none, J. Geophys.
Res.-Atmos., 118, 4748–4766, https://doi.org/10.1002/jgrd.50330, 2013.
Paton-Walsh, C., Jones, N., Wilson, S., Meier, A., Deutscher, N., Griffith,
D., Mitchell, R., and Campbell, S.: Trace gas emissions from biomass burning
inferred from aerosol optical depth, Geophys. Res. Lett., 31, L05116,
https://doi.org/10.1029/2003gl018973, 2004.
Paton-Walsh, C., Guérette, É.-A., Kubistin, D., Humphries, R., Wilson, S. R., Dominick, D., Galbally, I., Buchholz, R., Bhujel, M., Chambers, S., Cheng, M., Cope, M., Davy, P., Emmerson, K., Griffith, D. W. T., Griffiths, A., Keywood, M., Lawson, S., Molloy, S., Rea, G., Selleck, P., Shi, X., Simmons, J., and Velazco, V.: The MUMBA campaign: measurements of urban, marine and biogenic air, Earth Syst. Sci. Data, 9, 349–362, https://doi.org/10.5194/essd-9-349-2017, 2017.
Pope, C. A., Burnett, R. T., Krewski, D., Jerrett, M., Shi, Y., Calle, E.
E., and Thun, M. J.: Cardiovascular mortality and exposure to airborne fine
particulate matter and cigarette smoke: shape of the exposure-response
relationship, Circulation, 120, 941–948, https://doi.org/10.1161/circulationaha.109.857888, 2009.
Prijith, S. S., Aloysius, M., and Mohan, M.: Relationship between wind speed
and sea salt aerosol production: A new approach, J. Atmos. Sol.-Terr. Phys., 108, 34–40, https://doi.org/10.1016/j.jastp.2013.12.009, 2014.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental Characterization of Global Sources of Atmospheric Soil Dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)Absorbing Aerosol Product, Rev. Geophys., 40, 2-1–2-31, https://doi.org/10.1029/2000rg000095, 2002.
Provençal, S., Kishcha, P., da Silva, A. M., Elhacham, E., and Alpert,
P.: AOD distributions and trends of major aerosol species over a selection
of the world's most populated cities based on the 1st version of NASA's
MERRA Aerosol Reanalysis, Urban Climate, 20, 168–191,
https://doi.org/10.1016/j.uclim.2017.04.001, 2017.
Qin, Y. and Mitchell, R. M.: Characterisation of episodic aerosol types over the Australian continent, Atmos. Chem. Phys., 9, 1943–1956, https://doi.org/10.5194/acp-9-1943-2009, 2009.
Radhi, M., Box, M. A., Box, G. P., and Mitchell, R. M.: Biomass-burning
aerosol over northern Australia, Aust. Meteorol. Ocean., 62, 25–33, 2012.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,
climate, and the hydrological cycle, Science, 294,
2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I:
System Description and Data Assimilation Evaluation, J. Climate, 30,
6823–6850, https://doi.org/10.1175/jcli-d-16-0609.1, 2017.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products,
and Validation, J. Atmos. Sci., 62, 947–973,
https://doi.org/10.1175/jas3385.1, 2005.
Ridley, D. A., Heald, C. L., Kok, J. F., and Zhao, C.: An observationally constrained estimate of global dust aerosol optical depth, Atmos. Chem. Phys., 16, 15097–15117, https://doi.org/10.5194/acp-16-15097-2016, 2016.
Rosen, J., Young, S., Laby, J., Kjome, N., and Gras, J.: Springtime aerosol
layers in the free troposphere over Australia: Mildura Aerosol Tropospheric
Experiment (MATE 98), J. Geophys. Res.-Atmos., 105, 17833–17842, https://doi.org/10.1029/2000jd900208, 2000.
Rotstayn, L. D., Keywood, M. D., Forgan, B. W., Gabric, A. J., Galbally, I.
E., Gras, J. L., Luhar, A. K., Mctainsh, G. H., Mitchell, R. M., and Young,
S. A.: Possible impacts of anthropogenic and natural aerosols on Australian
climate: a review, Int. J. Climatol., 29, 461–479, 2010.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J.: Validation and
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data,
J. Geophys. Res.-Atmos., 118, 7864-7872, https://doi.org/10.1002/jgrd.50600, 2013.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and
Jeong, M.-J.: MODIS Collection 6 aerosol products: Comparison between Aqua's
e-Deep Blue, Dark Target, and “merged” data sets, and usage
recommendations, J. Geophys. Res.-Atmos, 119,
13965–13989, https://doi.org/10.1002/2014JD022453, 2014.
Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K.,
Goldammer, J. G., Held, A. C., Pereira, J. M. C., and van het Bolscher, M.:
Global wildland fire emissions from 1960 to 2000, Glob. Biogeochem.
Cy., 22, GB2002, https://doi.org/10.1029/2007gb003031, 2008.
Shao, Y., Leys, J. F., McTainsh, G. H., and Tews, K.: Numerical simulation
of the October 2002 dust event in Australia, J. Geophys.
Res.-Atmos., 112, D08207, https://doi.org/10.1029/2006jd007767, 2007.
Small, J. D., Jiang, J. H., Su, H., and Zhai, C.: Relationship between
aerosol and cloud fraction over Australia, Geophys. Res. Lett., 38, L23802,
https://doi.org/10.1029/2011gl049404, 2011.
Strong, C. L., Parsons, K., McTainsh, G. H., and Sheehan, A.: Dust
transporting wind systems in the lower Lake Eyre Basin, Australia: A
preliminary study, Aeolian Res., 2, 205–214,
https://doi.org/10.1016/j.aeolia.2010.11.001, 2011.
Takegawa, N., Kondo, Y., Koike, M., Ko, M., Kita, K., Blake, D. R., Nishi,
N., Hu, W., Liley, J. B., Kawakami, S., Shirai, T., Miyazaki, Y., Ikeda, H.,
Russel-Smith, J., and Ogawa, T.: Removal of NOx and NOy in biomass burning
plumes in the boundary layer over northern Australia, J. Geophys.
Res.-Atmos., 108, D104308, https://doi.org/10.1029/2002jd002505, 2003.
Tanaka, T. Y. and Chiba, M.: A numerical study of the contributions of dust
source regions to the global dust budget, Global Planet. Change, 52,
88–104, https://doi.org/10.1016/j.gloplacha.2006.02.002, 2006.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149-1152, https://doi.org/10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2, 1977.
Winker, D. M., Pelon, J., and Mccormick, M. P.: The CALIPSO mission:
spaceborne lidar for observation of aerosols and clouds, Proc. Spie, 4893,
1211–1229, 2003.
Yang, X., Jiang, L., Zhao, W., Xiong, Q., Zhao, W., and Yan, X.: Comparison
of Ground-Based PM(2.5) and PM(10) Concentrations in China, India, and the
U.S, Int. J. Env. Res. Pub. He., 15, 1382, https://doi.org/10.3390/ijerph15071382, 2018.
Yang, X., Zhao, C., Luo, N., Zhao, W., Shi, W., and Yan, X.: Evaluation and
Comparison of Himawari-8 L2 V1.0, V2.1 and MODIS C6.1 aerosol products over
Asia and the oceania regions, Atmos. Environ., 220, 117068,
https://doi.org/10.1016/j.atmosenv.2019.117068, 2020.
Yoon, J., Pozzer, A., Chang, D. Y., Lelieveld, J., Kim, J., Kim, M., Lee, Y.
G., Koo, J. H., Lee, J., and Moon, K. J.: Trend estimates of
AERONET-observed and model-simulated AOTs between 1993 and 2013, Atmos.
Environ., 125, 33–47, https://doi.org/10.1016/j.atmosenv.2015.10.058,
2016.
Zhao, C. and Garrett, T. J.: Effects of Arctic haze on surface cloud
radiative forcing, Geophys. Res. Lett., 42, 557–564,
https://doi.org/10.1002/2014gl062015, 2015.
Zhao, C., Lin, Y., Wu, F., Wang, Y., Li, Z., Rosenfeld, D., and Wang, Y.:
Enlarging Rainfall Area of Tropical Cyclones by Atmospheric Aerosols,
Geophys. Res. Lett., 45, 8604–8611, https://doi.org/10.1029/2018gl079427, 2018.
Zhao, C., Wang, Y., Shi, X., Zhang, D., Wang, C., Jiang, J.H., Zhang, Q.,
and Fan, H.: Estimating the contribution of local primary emissions to
particulate pollution using highdensity station observations, J. Geophys.
Res.-Atmos., 124, 1648–1661, https://doi.org/10.1029/2018jd028888, 2019.
Short summary
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of the major aerosol types over Australia based on multi-source data. The results of this study provide significant information on aerosol optical properties in Australia, which can help to understand their characteristics and potential climate impacts.
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol...
Altmetrics
Final-revised paper
Preprint