Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-1593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-1593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann
CORRESPONDING AUTHOR
Institut für Atmosphären – und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Christoph Kalicinsky
Institut für Atmosphären – und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Ralf Koppmann
Institut für Atmosphären – und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
Johannes Wintel
Institut für Atmosphären – und Umweltforschung, Bergische
Universität Wuppertal, Wuppertal, Germany
now at: Elementar Analysensysteme GmbH, Langenselbold, Germany
Related authors
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023, https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
Short summary
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be self-excited (internal) in the atmosphere, i.e. non-anthropogenic. They are found at all altitudes up to 110 km and at four very different geographical locations (75° N, 70° E; 75° N, 280° E; 50° N, 7° E; 50° S, 7° E). Therefore, they hint at a global-oscillation mode. Their amplitudes are on the order of present-day climate trends, and it is therefore difficult to disentangle them.
Christoph Kalicinsky, Robert Reisch, and Peter Knieling
EGUsphere, https://doi.org/10.5194/egusphere-2025-3102, https://doi.org/10.5194/egusphere-2025-3102, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Planetary waves are important for driving large scale circulations. We observed planetary waves in a ground-based data set spanning more than 30 years. The waves can be assigned to expected waves due to their periods. The wave activity is strongest in winter for waves with periods greater than 20 days and shows maxima around equinoxes for periods below 20 days. The long-term behaviour shows a quasi-20 year oscillation of the wave activity with respect to the magnitude of the wave amplitudes.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023, https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
Short summary
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be self-excited (internal) in the atmosphere, i.e. non-anthropogenic. They are found at all altitudes up to 110 km and at four very different geographical locations (75° N, 70° E; 75° N, 280° E; 50° N, 7° E; 50° S, 7° E). Therefore, they hint at a global-oscillation mode. Their amplitudes are on the order of present-day climate trends, and it is therefore difficult to disentangle them.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021, https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary
Short summary
For an airborne viewing geometry, radiative transfer simulations of infrared limb emission spectra in the presence of polar stratospheric clouds – nitric acid trihydrate (NAT), supercooled ternary solution, ice, and mixtures – were used to develop a size-sensitive NAT detection algorithm. Characteristic size-dependent spectral features in the 810–820 cm−1 region were exploited to subgroup the NAT into three size regimes: small NAT (≤ 1.0 μm), medium NAT (1.5–4.0 μm), and large NAT (≥ 3.5 μm).
Cited articles
Biondi, F., Gershunov, A., and Cayan, D. R.: North Pacific Decadal Climate
Variability since 1661, J. Climate 14, 5–10, 2001.
Dai, A., Fyfe, J. C., Xie, S.-P., and Dai, X.: Decadal modulation of
global surface temperature by internal climate variability, Nat. Clim.
Change, 5, 555–559, 2015.
Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S.: Sea surface temperature variability: patterns and mechanisms, Annu. Rev. Mar. Sci., 2, 115–143, 2010.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam., 38,
527–546, 2012.
Deser, C., Phillips, A. S., Alexander, M. A., and Smoliak, B. V.: Projecting
North American climate over the next 50 years: Uncertainty due to internal
variability, J. Climate, 27, 2271–2296, 2014.
Dijkstra, H. A. and von der Heydt, A. S.: Basic mechanisms of centennial
climate variability, Pages Magazine, 25, 150–151, 2017.
Dijkstra, H. A., te Raa, L., Schmeits, M., and Gerrits, J.: On the physics of
the Atlantic Multidecadal Oscillation, Ocean Dynam., 56, 36–50, 2006.
Flato, G., Marotzke, J.,
Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F.,
Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C.,
Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013:
The Physical Science Basis, Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P. M.,
Ch. 9, https://doi.org/10.1017/CBO9781107415324.020, IPCC, Cambridge Univ. Press, UK and New York, NY, USA, 2013.
Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato,
G. M., Hawkins, E., Gillett, N. P., Xie, S. P., Kosaka, Y., and Swart, N. C.:
Making sense of the early-2000s warming slowdown, Nat. Clima. Change, 6,
224–228, 2016.
Giorgetta, M. A., Jungclaus, J.,
Reick, C. H.,
Legutke, S.,
Bader, J.,
Böttinger, M.,
Brovkin, V.,
Crueger, T., Esch,
M.,
Fieg, K., Glushak,
K.,
Gayler, V., Haak,
H.,
Hollweg, H.-D.,
Ilyina, T., Kinne,
S.,
Kornblueh, L., Matei,
D.,
Mauritsen, T.,
Mikolajewicz, U.,
Mueller, W., Notz,
D., Pithan,
F., Raddatz, T., Rast,
S., Redler,
R.,
Roeckner, E.,
Schmidt, H., Schnur,
R.,
Segschneider, J.,
Six, K. D.,
Stockhause, M.,
Timmreck, C.,
Wegner, J., Widmann,
H.,
Wieners, K.-H.,
Claussen, M.,
Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in
MPI-ESM simulations for the coupled model intercomparison project phase 5,
J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Gray, S. T., Graumlich, L. J., Betancourt, J. L., and Pederson, G. T.: A
tree-ring based reconstruction of the Atlantic Multidecadal Oscillation
since 1567 A.D., Geophys. Res. Lett., 31, L12205, https://doi.org/10.1029/2004GL019932,
2004.
Hansen, F., Matthes, K., Petrick, C., and Wang, W.: The influence of
natural and anthropogenic factors on major stratospheric sudden warmings.
J. Geophys. Res.-Atmos., 119, 8117–8136, 2014.
Hansen, J., Ruedy, Sato, M., and Lo, K.: Global Surface Temperature Change,
Rev. Geophys., 48, 1–29, 2010.
Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.: Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, 2016.
Kalicinsky, C., Peters, D. H. W., Entzian, G., Knieling, P., and Matthias,
V.: Observational evidence for a quasi-bidecadal oscillation in the summer
mesopause region over Western Europe, J. Atmos. Sol.-Terr. Phys., 178, 7–16, https://doi.org/10.1016/j.jastp.2018.05.008, 2018.
Karnauskas, K. B., Smerdon, J. E., Seager, R., and Gonzalez-Rouco, J. F.: A
pacific centennial oscillation predicted by coupled GCMs, J. Climate, 25, 5943–5961, https://doi.org/10.1175/JCLI-D-11-00421.1, 2012.
Kinnison, D., Brasseur, G. P., Walters, S., Garcia, R. R., and Marsh, D. R.: Sensitivity of chemical
tracers to meteorological parameters in the MOZART-3 chemical transport
model, J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879, 2007.
Latif, M., Martin, T., and Park, W.: Southern ocean sector centennial
climate variability and recent decadal trends, J. Climate, 26, 7767–7782,
2013.
Lean, J., Rottman, G., Harder, J., and Knopp, G.: SOURCE contributions to
new understanding of global change and solar variability, Sol. Phys. 230,
27–53, https://doi.org/10.1007/S11207-005-1527-2, 2005.
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462, 1976.
Lu, J., Hu, A., and Zeng, Z.: On the possible interaction between internal
climate variability and forced climate change, Geophys. Res. Lett., 41,
2962–2970, 2014.
Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation,
J. Oceanography, 58, 35–44, 2002.
Matthes, K., Kodera, K., Garcia, R. R., Kuroda, Y., Marsh, D. R., and
Labitzke, K.: The importance of time-varying forcing for QBO modulation of
the atmospheric 11 year solar cycle signal, J. Geophys. Res., 118, 4435–4447, 2013.
Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J., and Trenberth, K. E.:
Externally forced and internally generated decadal climate variability
associated with the Interdecadal Pacific Oscillation, J. Climate, 26,
7298–7310, 2013.
Meehl, G. A., Hu, A., Santer, B. D., and Xie, S.-P.: Contribution of
Interdecadal Pacific Oscillation to twentieth-century global surface
temperature trends, Nat. Clim. Change, 6, 1005–1008,
https://doi.org/10.1038/nclimate3107, 2016.
Meyer, P. G. and Kantz, H.: A simple decomposition of European temperature
variability capturing the variance from days to a decade, Clim. Dynam.,
53, 6909–6917, doi.org/10.1007/s00382-019-04965-0, 2019.
Minobe, S.: A 50–70 year climatic oscillation over the North Pacific and
North America, Geophys. Res. Lett., 24, 683–686, 1997.
Offermann, D., Goussev, O., Kalicinsky, C., Koppmann, R., Matthes, K.,
Schmidt, H., Steinbrecht, W., and Wintel, J.: A case study of
multi-annual temperature oscillations in the atmosphere: Middle Europe,
J. Atmos. Sol.-Terr. Phys., 135, 1–11, 2015.
Plaut, G., Ghil, M., and Vautard, R.: Interannual and interdecadal
variability in 335 years of Central England Temperatures, Science, 268, 710–713, 1995.
Paul, A. and Schulz, M.: Holocene climate variability on
centennial-to-millenial time scales: 2. Internal and forced oscillations as
possible causes, in: Climate development and history of the North Atlantic realm, edited by: Wefer, G., Berger, W., Behre, K.-E., and Jansen, E., Springer, Berlin, Heidelberg, 55–73, 2002.
Polyakov, I. V. Berkryaev, R. V., Alekseev, G. V., Bhatt, U. S., Colony, R. L., Johnson, M. A., Maskshtas, A. P., and Walsh, D.: Variability and trends of air temperature and pressure in the Maritime Arctic, 1875–2000, J. Climate, 16, 2067–2077, 2003.
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated
climate to horizontal and vertical resolution in the ECHAM5 atmosphere
model, J. Climate, 19, 3771–3791, 2006.
Scargle, J. D.: Studies in astronomical time series analysis. II. Statistical
aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263,
835–853, 1982.
Schlesinger, M. E. and Ramankutty, N.: An oscillation in the gobal
climate system of period 65–70 years, Nature, 367, 723–726, 1994.
Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A.,
Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., and Walters, S.: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Climate, 19, 3903–3931, https://doi.org/10.1175/JCLI3829.1, 2006.
Schmidt, H., Brasseur, G. P., and Giorgetta, M. A.: The solar cycle signal in
a general circulation and chemistry model with internally generated
quasi-biennial oscillation, J. Geophys. Res., 115, D00I14,
https://doi.org/10.1029/2009JD012542, 2010.
Schönwiese, C.-D.: Praktische Statistik für Meteorologen und
Geowissenschaftler, 2.Auflage, Gebrüder Borntraeger, Berlin, Stuttgart,
Abb. 57, p. 185, available at: https://www.borntraeger-cramer.de/9783443010294 (last access: 2 February 2021),
1992 (in German).
Soon, W. W.-H.: Variable solar irradiance as a plausible agent for
multidecadal variations in the Arctic-wide surface air temperature record of
the past 130 years, Geophys. Res. Lett., 32, L16712, https://doi.org/10.1029/2005GL023429
2005.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: The atmospheric component of the MPI-M earth system model:
ECHAM6, J. Adv. Model. Earth Sy., 5, 1–27, 2013.
White, W. B. and Liu, Z.: Non-linear alignment of El Nino to the 11-yr solar
cycle, Geophys. Res. Lett., 35, L19607, https://doi.org/10.1029/2008GL034831, 2008.
Xu, D., Lu, H., Chu, G., Wu, N., Shen, C., Wang, C., and Mao, L.: 500-year
climate cycles stacking of recent centennial warming documented in an East
Asian pollen record, Sci. Rep.-UK, 4, 3611, https://doi.org/10.1038/srep03611, 2014.
Short summary
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to 110 km. They are also seen in computer models (GCMs) of the atmospheric. They are often attributed to external influences from the sun, from the oceans, or from atmospheric constituents. This is difficult to verify as the atmosphere cannot be manipulated in an experiment. However, a GCM can be changed arbitrarily. Doing so, we find that long-period oscillations may be excited internally in the atmosphere.
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to...
Altmetrics
Final-revised paper
Preprint