Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15221-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15221-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions
Zirui Zhang
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Wenfei Zhu
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology, Nanjing University of Information Science &
Technology, Nanjing 210044, China
Beijing Innovation Center for Engineering Sciences and Advanced
Technology, Peking University, Beijing 100871, China
Kefan Liu
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Hui Wang
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Rongzhi Tang
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Ruizhe Shen
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Ying Yu
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Rui Tan
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Kai Song
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Yuanju Li
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Wenbin Zhang
State Key Laboratory of Automotive Safety and Energy, Tsinghua
University, Beijing 100084, China
Zhou Zhang
State Key Laboratory of Automotive Safety and Energy, Tsinghua
University, Beijing 100084, China
Hongming Xu
State Key Laboratory of Automotive Safety and Energy, Tsinghua
University, Beijing 100084, China
Shijin Shuai
State Key Laboratory of Automotive Safety and Energy, Tsinghua
University, Beijing 100084, China
Shuangde Li
State Key Laboratory of Multiphase Complex Systems, Institute of
Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Yunfa Chen
State Key Laboratory of Multiphase Complex Systems, Institute of
Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Jiayun Li
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Yuesi Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China
Related authors
No articles found.
Yu Li, Momei Qin, Weiwei Hu, Bin Zhao, Ying Li, Havala O. T. Pye, Jingyi Li, Linghan Zeng, Song Guo, Min Hu, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2879, https://doi.org/10.5194/egusphere-2025-2879, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We evaluated how well a widely used air quality model simulates key properties of organic particles in the atmosphere, such as volatility and oxygen content, which influence how particles age, spread, and affect both air quality and climate. Using observations from eastern China, we found the model underestimated particle mass and misrepresented their chemical makeup. Our results highlight the need for improved emissions and chemical treatments to better predict air quality and climate impacts.
Jianjiong Mao, Lei Jiang, Zhicheng Feng, Jingyi Li, Yanhong Zhu, Momei Qin, Song Guo, Min Hu, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2992, https://doi.org/10.5194/egusphere-2025-2992, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tiny air particles impact air quality and climate change. Our study improved their prediction in China by modeling two key formation processes: ions + sulfuric acid (daytime) and sulfuric acid + dimethylamine (morning/evening). This improved model increases predictions by 36–84 % in Beijing and Nanjing. These advancements enable better demonstrate how these chemical processes significantly influence China's particulate pollution.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025, https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
Short summary
Inadequate consideration of mixing states and coatings on black carbon (BC) hinders aerosol radiation forcing quantification. Core–shell mixing aligns well with observations, but partial internal mixing is a more realistic representation. We used a microphysics module to determine the fraction of embedded BC and coating aerosols, constraining the mixing state. This reduced absorption enhancement by 30 %–43 % in northern China, offering insights into BC's radiative effects.
Ruiqi Man, Yishu Zhu, Zhijun Wu, Peter Aaron Alpert, Bingbing Wang, Jing Dou, Jie Chen, Yan Zheng, Yanli Ge, Qi Chen, Shiyi Chen, Xiangrui Kong, Markus Ammann, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2301, https://doi.org/10.5194/egusphere-2025-2301, 2025
Short summary
Short summary
The particle chemical morphology is important to atmospheric multiphase and heterogeneous chemistry. This work directly observed the core-shell structure and water uptake behavior of individual submicron aerosol particles at an urban site and elucidated the potential impact on particle reactive uptake and heterogeneous reactions.
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483, https://doi.org/10.5194/egusphere-2025-1483, 2025
Short summary
Short summary
In this study, a new framework of cloud condensation nuclei (CCN) prediction in polluted region has been developed and it achieves well prediction of hourly-to-yearly scale across North China Plain. The study reveals a significant long-term decreasing trend of CCN concentration at typical supersaturations due to a rapid reduction in aerosol concentrations from 2014 to 2018. This improvement of our new model would be helpful to aerosols climate effect assessment in models.
Shubin Li, Yujue Wang, Yiwen Zhang, Yizhe Yi, Yuchen Wang, Yuqi Guo, Chao Yu, Yue Jiang, Jinhui Shi, Chao Zhang, Jialei Zhu, Wei Hu, Jianzhen Yu, Xiaohong Yao, Huiwang Gao, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2154, https://doi.org/10.5194/egusphere-2025-2154, 2025
Short summary
Short summary
Organosulfates (OSs) are an unrecognized and potentially important component in marine organic aerosols. In this study, we quantified and characterized the OSs over East Asian marginal seas. The chemical nature and spatiotemporal distribution of OSs were modified by the joint influence of marine emissions and transported terrestrial pollutants. The results highlight the vital roles of OSs in shaping organic aerosol formation and sulfur cycle during summer in marine boundary layer.
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025, https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary
Short summary
This study provides laboratory evidence that the photosensitizers in biomass burning extracts can enhance sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air conditions, with a lower contribution of direct photosensitization via triplets.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Yu-Kai Tong, Zhijun Wu, Min Hu, and Anpei Ye
Atmos. Chem. Phys., 24, 2937–2950, https://doi.org/10.5194/acp-24-2937-2024, https://doi.org/10.5194/acp-24-2937-2024, 2024
Short summary
Short summary
The interplay between aerosols and moisture is one of the most crucial atmospheric processes. However, to date, literature results on the influence of phase separation on water diffusion in aerosols are divergent. This work directly unveiled the water diffusion process in single suspended phase-separated microdroplets and quantitatively analyzed the diffusion rate and extent. The results show that diffusion limitations and certain molecule clusters existed in the phase-separated aerosols.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Can Ye, Keding Lu, Xuefei Ma, Wanyi Qiu, Shule Li, Xinping Yang, Chaoyang Xue, Tianyu Zhai, Yuhan Liu, Xuan Li, Yang Li, Haichao Wang, Zhaofeng Tan, Xiaorui Chen, Huabin Dong, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 15455–15472, https://doi.org/10.5194/acp-23-15455-2023, https://doi.org/10.5194/acp-23-15455-2023, 2023
Short summary
Short summary
In this study, combining comprehensive field measurements and a box model, we found NO2 conversion on the ground surface was the most important source for HONO production among the proposed heterogeneous and gas-phase HONO sources. In addition, HONO was found to evidently enhance O3 production and aggravate O3 pollution in summer in China. Our study improved our understanding of the relative importance of different HONO sources and the crucial role of HONO in O3 formation in polluted areas.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023, https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Short summary
Incense burning is common in Asia, posing threats to human health and air quality. However, less is known about its emissions and health risks. Full-volatility organic species from incense-burning smoke are detected and quantified. Intermediate-volatility volatile organic compounds (IVOCs) are crucial organics accounting for 19.2 % of the total emission factors (EFs) and 40.0 % of the secondary organic aerosol (SOA) estimation, highlighting the importance of incorporating IVOCs into SOA models.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Hejun Hu, Haichao Wang, Keding Lu, Jie Wang, Zelong Zheng, Xuezhen Xu, Tianyu Zhai, Xiaorui Chen, Xiao Lu, Wenxing Fu, Xin Li, Limin Zeng, Min Hu, Yuanhang Zhang, and Shaojia Fan
Atmos. Chem. Phys., 23, 8211–8223, https://doi.org/10.5194/acp-23-8211-2023, https://doi.org/10.5194/acp-23-8211-2023, 2023
Short summary
Short summary
Nitrate radical chemistry is critical to the degradation of volatile organic compounds (VOCs) and secondary organic aerosol formation. This work investigated the level, seasonal variation, and trend of nitrate radical reactivity towards volatile organic compounds (kNO3) in Beijing. We show the key role of isoprene and styrene in regulating seasonal variation in kNO3 and rebuild a long-term record of kNO3 based on the reported VOC measurements.
Liyuan Zhou, Zhancong Liang, Brix Raphael Go, Rosemarie Ann Infante Cuevas, Rongzhi Tang, Mei Li, Chunlei Cheng, and Chak K. Chan
Atmos. Chem. Phys., 23, 5251–5261, https://doi.org/10.5194/acp-23-5251-2023, https://doi.org/10.5194/acp-23-5251-2023, 2023
Short summary
Short summary
This study reveals the sulfate formation in photosensitized particles from biomass burning under UV and SO2, of which the relative atmospheric importance in sulfate production was qualitatively compared to nitrate photolysis. On the basis of single-particle aerosol mass spectrometry measurements, the number percentage of sulfate-containing particles and relative peak area of sulfate in single-particle spectra exhibited a descending order of 3,4-dimethoxybenzaldehyde > vanillin > syringaldehyde.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Zhancong Liang, Liyuan Zhou, Xinyue Li, Rosemarie Ann Infante Cuevas, Rongzhi Tang, Mei Li, Chunlei Cheng, Yangxi Chu, and Chak Keung Chan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-838, https://doi.org/10.5194/acp-2022-838, 2022
Preprint withdrawn
Short summary
Short summary
Incense burning is a common religious ritual, especially in Asian and African communities, with massive particles emitted. While previous research mainly focused on the chemical compositions and potential health impacts of fresh incense particles, our work reveals that nitrate, accompanied by SOA, can rapidly form in incense-burning particles upon photochemical oxidation in the atmosphere. This finding could deepen our understanding of air pollution caused by religious activities.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, and Min Hu
Atmos. Chem. Phys., 22, 12387–12399, https://doi.org/10.5194/acp-22-12387-2022, https://doi.org/10.5194/acp-22-12387-2022, 2022
Short summary
Short summary
Regional and total deposition doses for different age groups were quantified based on explicit hygroscopicity measurements. We found that particle hygroscopic growth led to a reduction (~24 %) in the total dose. The deposition rate of hygroscopic particles was higher in the daytime, while hydrophobic particles exhibited a higher rate at night and during rush hours. The results will deepen the understanding of the impact of hygroscopicity and the mixing state on deposition patterns in the lungs.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Yuanzheng Gong, Kai Song, Song Guo, Daqi Lv, Yuan Zhang, Zichao Wan, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, and Yunfa Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-326, https://doi.org/10.5194/acp-2022-326, 2022
Preprint withdrawn
Short summary
Short summary
Herein we applied thermal desorption comprehensive two-dimensional gas chromatography-mass spectrometer (TD-GCxGC-MS) for synchronous analysis of gaseous and particulate organics emitted from cooking fumes. With a systematic 4-step qualitative procedure and precise quantitative and semi-quantitative method, 170 and 352 compounds from C2 (acetic acids) – C30 (squalene) occupying 95 % and 90 % of the total ion current for gaseous and particulate samples were identified and quantified.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Gang Zhao, Tianyi Tan, Yishu Zhu, Min Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 18055–18063, https://doi.org/10.5194/acp-21-18055-2021, https://doi.org/10.5194/acp-21-18055-2021, 2021
Short summary
Short summary
In this study, the black carbon (BC) mixing state index (χ) is developed to quantify the dispersion of ambient black carbon aerosol mixing states based on binary systems of BC and other non-black carbon components. We demonstrate that the BC light absorption enhancement increases with χ for the same MR, which indicates that χ can be employed as a factor to constrain the light absorption enhancement of ambient BC.
Wenfei Zhu, Song Guo, Zirui Zhang, Hui Wang, Ying Yu, Zheng Chen, Ruizhe Shen, Rui Tan, Kai Song, Kefan Liu, Rongzhi Tang, Yi Liu, Shengrong Lou, Yuanju Li, Wenbin Zhang, Zhou Zhang, Shijin Shuai, Hongming Xu, Shuangde Li, Yunfa Chen, Min Hu, Francesco Canonaco, and Andre S. H. Prévôt
Atmos. Chem. Phys., 21, 15065–15079, https://doi.org/10.5194/acp-21-15065-2021, https://doi.org/10.5194/acp-21-15065-2021, 2021
Short summary
Short summary
The experiments of primary emissions and secondary organic aerosol (SOA) formation from urban lifestyle sources (cooking and vehicles) were conducted. The mass spectral features of primary organic aerosol (POA) and SOA were characterized by using a high-resolution time-of-flight aerosol mass spectrometer. This work, for the first time, establishes the vehicle and cooking SOA source profiles and can be further used as source constraints in the OA source apportionment in the ambient atmosphere.
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021, https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Short summary
Secondary sulfate aerosols are an important component of fine particles in severe air pollution events. We calculated the sulfate formation rates via a state-of-the-art multiphase model constrained to the observed values. We showed that transition metals in urban aerosols contribute significantly to sulfate formation during haze periods and thus play an important role in mitigation strategies and public health measures in megacities worldwide.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Gang Zhao, Yishu Zhu, Zhijun Wu, Taomou Zong, Jingchuan Chen, Tianyi Tan, Haichao Wang, Xin Fang, Keding Lu, Chunsheng Zhao, and Min Hu
Atmos. Chem. Phys., 21, 9995–10004, https://doi.org/10.5194/acp-21-9995-2021, https://doi.org/10.5194/acp-21-9995-2021, 2021
Short summary
Short summary
New particle formation is thought to contribute half of the global cloud condensation nuclei. We find that the new particle formation is more likely to happen in the upper boundary layer than that at the ground, which can be partially explained by the aerosol–radiation interaction. Our study emphasizes the influence of aerosol–radiation interaction on the NPF.
Tianyi Tan, Min Hu, Zhuofei Du, Gang Zhao, Dongjie Shang, Jing Zheng, Yanhong Qin, Mengren Li, Yusheng Wu, Limin Zeng, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 21, 8499–8510, https://doi.org/10.5194/acp-21-8499-2021, https://doi.org/10.5194/acp-21-8499-2021, 2021
Short summary
Short summary
Every year in the pre-monsoon season, the black carbon (BC) aerosols originated from biomass burning in southern Asia are easily transported to the Tibetan Plateau (TP) by the convenience of westerly wind. This study reveals that the BC aerosols in the aged biomass burning plumes strongly enhance the total light absorption over the TP, and the aging process during the long-range transport will further strengthen the radiative heating of those BC aerosols.
Kai Song, Song Guo, Haichao Wang, Ying Yu, Hui Wang, Rongzhi Tang, Shiyong Xia, Yuanzheng Gong, Zichao Wan, Daqi Lv, Rui Tan, Wenfei Zhu, Ruizhe Shen, Xin Li, Xuena Yu, Shiyi Chen, Liming Zeng, and Xiaofeng Huang
Atmos. Chem. Phys., 21, 7917–7932, https://doi.org/10.5194/acp-21-7917-2021, https://doi.org/10.5194/acp-21-7917-2021, 2021
Short summary
Short summary
Nitrated phenols (NPs) are crucial components of brown carbon. To comprehend the constitutes and sources of NPs in winter of Beijing, their concentrations were measured by a CI-LToF-MS. The secondary formation process was simulated by a box model. NPs were mainly influenced by primary emissions and regional transport. Primary emitted phenol rather than benzene oxidation was crucial in the heavy pollution episode in Beijing. This provides more insight into pollution control strategies of NPs.
Dandan Zhao, Jinyuan Xin, Chongshui Gong, Jiannong Quan, Yuesi Wang, Guiqian Tang, Yongxiang Ma, Lindong Dai, Xiaoyan Wu, Guangjing Liu, and Yongjing Ma
Atmos. Chem. Phys., 21, 5739–5753, https://doi.org/10.5194/acp-21-5739-2021, https://doi.org/10.5194/acp-21-5739-2021, 2021
Short summary
Short summary
The influence of aerosol radiative forcing (ARF) on the boundary layer structure is nonlinear. The threshold of the modification effects of ARF on the boundary layer structure was determined for the first time, highlighting that once ARF exceeded a certain value, the boundary layer would quickly stabilize and aggravate air pollution. This could provide useful information for relevant atmospheric-environment improvement measures and policies.
Jiayun Li, Liming Cao, Wenkang Gao, Lingyan He, Yingchao Yan, Yuexin He, Yuepeng Pan, Dongsheng Ji, Zirui Liu, and Yuesi Wang
Atmos. Chem. Phys., 21, 4521–4539, https://doi.org/10.5194/acp-21-4521-2021, https://doi.org/10.5194/acp-21-4521-2021, 2021
Short summary
Short summary
For the first time, we investigated the highly time-resolved chemical characterization, sources and evolution of atmospheric submicron aerosols at a regional background site in the North China Plain (NCP) using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer and evaluated the seasonal differentials of photochemical and aqueous-phase processing on SOA composition and oxidation degree of OA. The results will help to understand air pollution in the NCP on a regional scale.
Jingchuan Chen, Zhijun Wu, Jie Chen, Naama Reicher, Xin Fang, Yinon Rudich, and Min Hu
Atmos. Chem. Phys., 21, 3491–3506, https://doi.org/10.5194/acp-21-3491-2021, https://doi.org/10.5194/acp-21-3491-2021, 2021
Short summary
Short summary
Asian mineral dust is a crucial contributor to global ice-nucleating particles (INPs), while its size-resolved information on freezing activity is extremely rare. Here we conducted the first known INP measurements of size-resolved airborne East Asian dust particles. An explicit size dependence of both INP concentration and surface
ice-active-site density was observed. The new parameterizations can be widely applied in models to better characterize and predict ice nucleation activities of dust.
Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, and Huayun Xiao
Atmos. Chem. Phys., 21, 2959–2980, https://doi.org/10.5194/acp-21-2959-2021, https://doi.org/10.5194/acp-21-2959-2021, 2021
Short summary
Short summary
Organosulfates (OSs) are important constituents and tracers of secondary organic aerosols (SOAs) in the atmosphere. Here we characterized the OS species in ambient aerosols in Shanghai, China. We find that the contributions of OSs and SOAs to organic aerosols have increased in recent years and that OS production was largely controlled by the oxidant level (Ox), particularly in summer. We infer that mitigation of Ox pollution can effectively reduce the production of OSs and SOAs in eastern China.
Rongzhi Tang, Quanyang Lu, Song Guo, Hui Wang, Kai Song, Ying Yu, Rui Tan, Kefan Liu, Ruizhe Shen, Shiyi Chen, Limin Zeng, Spiro D. Jorga, Zhou Zhang, Wenbin Zhang, Shijin Shuai, and Allen L. Robinson
Atmos. Chem. Phys., 21, 2569–2583, https://doi.org/10.5194/acp-21-2569-2021, https://doi.org/10.5194/acp-21-2569-2021, 2021
Short summary
Short summary
We performed chassis dynamometer experiments to investigate the emissions and secondary organic aerosol (SOA) formation potential of intermediate volatility organic compounds (IVOCs) from an on-road Chinese gasoline vehicle. High IVOC emission factors (EFs) and distinct volatility distribution were recognized. Our results indicate that vehicular IVOCs contribute significantly to SOA, implying the importance of reducing IVOCs when making air pollution control policies in urban areas of China.
Christian Mark Garcia Salvador, Rongzhi Tang, Michael Priestley, Linjie Li, Epameinondas Tsiligiannis, Michael Le Breton, Wenfei Zhu, Limin Zeng, Hui Wang, Ying Yu, Min Hu, Song Guo, and Mattias Hallquist
Atmos. Chem. Phys., 21, 1389–1406, https://doi.org/10.5194/acp-21-1389-2021, https://doi.org/10.5194/acp-21-1389-2021, 2021
Short summary
Short summary
High-frequency online measurement of gas- and particle-phase nitro-aromatic compounds (NACs) at a rural site in China, heavily influenced by biomass burning events, enabled the analysis of the production pathway of NACs, including an explanation of strong persistence in the daytime. The contribution of secondary processes was significant, even during the dominant wintertime influence of primary emissions, suggesting the important role of regional secondary chemistry, i.e. photochemical smog.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Yujue Wang, Min Hu, Nan Xu, Yanhong Qin, Zhijun Wu, Liwu Zeng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 20, 13721–13734, https://doi.org/10.5194/acp-20-13721-2020, https://doi.org/10.5194/acp-20-13721-2020, 2020
Short summary
Short summary
Field straw residue burning is a widespread type of biomass burning in Asia, while its emissions are poorly understood. In this study, we designed lab-controlled experiments to comprehensively investigate the emission factors, chemical compositions and light absorption properties of both water-soluble and water-insoluble carbonaceous aerosols emitted from straw burning. The results clearly highlight the significant influences of burning conditions and combustion efficiency on the emissions.
Cited articles
Alanen, J., Simonen, P., Saarikoski, S., Timonen, H., Kangasniemi, O., Saukko, E., Hillamo, R., Lehtoranta, K., Murtonen, T., Vesala, H., Keskinen, J., and Rönkkö, T.: Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics, Atmos. Chem. Phys., 17, 8739–8755, https://doi.org/10.5194/acp-17-8739-2017, 2017.
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 116,
8657-8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Chan, C. K., and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Chirico, R., DeCarlo, P. F., Heringa, M. F., Tritscher, T., Richter, R., Prévôt, A. S. H., Dommen, J., Weingartner, E., Wehrle, G., Gysel, M., Laborde, M., and Baltensperger, U.: Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments, Atmos. Chem. Phys., 10, 11545–11563, https://doi.org/10.5194/acp-10-11545-2010, 2010.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.
de Gouw, J. A., Brock, C. A., Atlas, E. L., Bates, T. S., Fehsenfeld, F. C.,
Goldan, P. D., Holloway, J. S., Kuster, W. C., Lerner, B. M., Matthew, B.
M., Middlebrook, A. M., Onasch, T. B., Peltier, R. E., Quinn, P. K., Senff,
C. J., Stohl, A., Sullivan, A. P., Trainer, M., Warneke, C., Weber, R. J.,
and Williams, E. J.: Sources of particulate matter in the northeastern
United States in summer: 1. Direct emissions and secondary formation of
organic matter in urban plumes, J. Geophys. Res., 113, D08301, https://doi.org/10.1029/2007jd009243, 2008.
Deming, B. L., Pagonis, D., Liu, X., Day, D. A., Talukdar, R., Krechmer, J. E., de Gouw, J. A., Jimenez, J. L., and Ziemann, P. J.: Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions, Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, 2019.
Deng, W., Fang, Z., Wang, Z., Zhu, M., Zhang, Y., Tang, M., Song, W.,
Lowther, S., Huang, Z., Jones, K., Peng, P., and Wang, X.: Primary emissions
and secondary organic aerosol formation from in-use diesel vehicle exhaust:
Comparison between idling and cruise mode, Sci. Total
Environ., 699, 134357, https://doi.org/10.1016/j.scitotenv.2019.134357, 2020.
Donahue, N. M., Robinson, A. L., and Pandis, S. N.: Atmospheric organic
particulate matter: From smoke to secondary organic aerosol, Atmos.
Environ., 43, 94–106, https://doi.org/10.1016/j.atmosenv.2008.09.055, 2009.
Drewnick, F., Hings, S. S., DeCarlo, P., Jayne, J. T., Gonin, M., Fuhrer,
K., Weimer, S., Jimenez, J. L., Demerjian, K. L., Borrmann, S., and Worsnop,
D. R.: A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS) – Instrument
Description and First Field Deployment, Aerosol Sci. Tech., 39,
637–658, https://doi.org/10.1080/02786820500182040, 2005.
Du, Z., Hu, M., Peng, J., Zhang, W., Zheng, J., Gu, F., Qin, Y., Yang, Y., Li, M., Wu, Y., Shao, M., and Shuai, S.: Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles, Atmos. Chem. Phys., 18, 9011–9023, https://doi.org/10.5194/acp-18-9011-2018, 2018.
Esmaeilirad, S. and Hosseini, V.: Modeling the formation of traditional and
non-traditional secondary organic aerosols from in-use, on-road gasoline and
diesel vehicles exhaust, J. Aerosol Sci., 124, 68–82, https://doi.org/10.1016/j.jaerosci.2018.07.003, 2018.
Ge, X., Setyan, A., Sun, Y., and Zhang, Q.: Primary and secondary organic
aerosols in Fresno, California during wintertime: Results from high
resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 117, D19301, https://doi.org/10.1029/2012jd018026, 2012.
Gordon, T. D., Tkacik, D. S., Presto, A. A., Zhang, M., Jathar, S. H.,
Nguyen, N. T., Massetti, J., Truong, T., Cicero-Fernandez, P., Maddox, C.,
Rieger, P., Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson,
A. L.: Primary gas- and particle-phase emissions and secondary organic
aerosol production from gasoline and diesel off-road engines, Environ.
Sci. Technol., 47, 14137–14146, https://doi.org/10.1021/es403556e, 2013.
Guo, S., Hu, M., Guo, Q., Zhang, X., Zheng, M., Zheng, J., Chang, C. C.,
Schauer, J. J., and Zhang, R.: Primary sources and secondary formation of
organic aerosols in Beijing, China, Environ. Sci. Technol.,
46, 9846–9853, https://doi.org/10.1021/es2042564, 2012.
Guo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., and Zhang, R.: Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics, Atmos. Chem. Phys., 13, 8303–8314, https://doi.org/10.5194/acp-13-8303-2013, 2013.
Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z.
F., Wu, Z., Shao, M., Zeng, L. M., Molina, M. J., and Zhang, R. Y.:
Elucidating severe urban haze formation in China, P.
Natl. Acad. Sci. USA, 111,
17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014.
Guo, S., Hu, M., Peng, J. F., Wu, Z. J., Zamora, M. L., Shang, D. J., Du, Z.
F., Zheng, J., Fang, X., Tang, R. Z., Wu, Y. S., Zeng, L. M., Shuai, S. J.,
Zhang, W. B., Wang, Y., Ji, Y. M., Li, Y. X., Zhang, A. L., Wang, W. G.,
Zhang, F., Zhao, J. Y., Gong, X. L., Wang, C. Y., Molina, M. J., and Zhang,
R. Y.: Remarkable nucleation and growth of ultrafine particles from
vehicular exhaust, P. Natl. Acad. Sci. USA, 117, 3427–3432, https://doi.org/10.1073/pnas.1916366117, 2020.
Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C. K., Gao, J., Boman,
J., Guo, S., Hallquist, A. M., Mellqvist, J., Moldanova, J., Pathak, R. K.,
Pettersson, J. B. C., Pleijel, H., Simpson, D., and Thynell, M.:
Photochemical smog in China: scientific challenges and implications for
air-quality policies, Natl. Sci. Rev., 3, 401–403, https://doi.org/10.1093/nsr/nww080, 2016.
Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010, Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, 2015.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A
simplified description of the evolution of organic aerosol composition in
the atmosphere, Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010gl042737,
2010.
Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W.-M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., Collett Jr., J. L., Kreidenweis, S. M., and Robinson, A. L.: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber, Atmos. Chem. Phys., 11, 7669–7686, https://doi.org/10.5194/acp-11-7669-2011, 2011.
Hu, M., Guo, S., Peng, J. F., and Wu, Z. J.: Insight into characteristics
and sources of PM2.5 in the Beijing-Tianjin-Hebei region, China, Natl. Sci.
Rev., 2, 257–258, https://doi.org/10.1093/nsr/nwv003, 2015.
Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb,
C. E., and Worsnop, D. R.: Development of an Aerosol Mass Spectrometer for
Size and Composition Analysis of Submicron Particles, Aerosol Sci.
Technol., 33, 49–70, https://doi.org/10.1080/027868200410840, 2000.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Kaltsonoudis, C., Kostenidou, E., Louvaris, E., Psichoudaki, M., Tsiligiannis, E., Florou, K., Liangou, A., and Pandis, S. N.: Characterization of fresh and aged organic aerosol emissions from meat charbroiling, Atmos. Chem. Phys., 17, 7143–7155, https://doi.org/10.5194/acp-17-7143-2017, 2017.
Katragadda, H. R., Fullana, A., Sidhu, S., and Carbonell-Barrachina, Á.
A.: Emissions of volatile aldehydes from heated cooking oils, Food
Chem., 120, 59–65, https://doi.org/10.1016/j.foodchem.2009.09.070, 2010.
Kim, C., Gao, Y. T., Xiang, Y. B., Barone-Adesi, F., Zhang, Y., Hosgood, H.
D., Ma, S., Shu, X. O., Ji, B. T., Chow, W. H., Seow, W. J., Bassig, B.,
Cai, Q., Zheng, W., Rothman, N., and Lan, Q.: Home kitchen ventilation,
cooking fuels, and lung cancer risk in a prospective cohort of never smoking
women in Shanghai, China, Int. J. Cancer, 136, 632–638, https://doi.org/10.1002/ijc.29020, 2015.
Klein, F., Platt, S. M., Farren, N. J., Detournay, A., Bruns, E. A.,
Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M.,
Slowik, J. G., Temime-Roussel, B., Marchand, N., Hamilton, J. F.,
Baltensperger, U., Prevot, A. S., and El Haddad, I.: Characterization of
Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass
Spectrometry: Cooking Emissions, Environ. Sci. Technol., 50,
1243–1250, https://doi.org/10.1021/acs.est.5b04618, 2016.
Kleinman, L. I., Springston, S. R., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Senum, G. I., Wang, J., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Canagaratna, M. R., and Jayne, J.: The time evolution of aerosol composition over the Mexico City plateau, Atmos. Chem. Phys., 8, 1559–1575, https://doi.org/10.5194/acp-8-1559-2008, 2008.
Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N. L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P., and Onasch, T. B.: Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements, Atmos. Meas. Tech., 4, 445–461, https://doi.org/10.5194/amt-4-445-2011, 2011.
Lee, B. P., Li, Y. J., Yu, J. Z., Louie, P. K. K., and Chan, C. K.:
Characteristics of submicron particulate matter at the urban roadside in
downtown Hong Kong-Overview of 4 months of continuous high-resolution
aerosol mass spectrometer measurements, J. Geophys. Res.-Atmos., 120, 7040–7058, https://doi.org/10.1002/2015jd023311, 2015.
Li, J., Li, X.-B., Li, B., and Peng, Z.-R.: The Effect of Nonlocal Vehicle
Restriction Policy on Air Quality in Shanghai, Atmosphere, 9, 299, https://doi.org/10.3390/atmos9080299, 2018.
Li, J., Liu, Q., Li, Y., Liu, T., Huang, D., Zheng, J., Zhu, W., Hu, M., Wu,
Y., Lou, S., Hallquist, Å. M., Hallquist, M., Chan, C. K., Canonaco, F.,
Prévôt, A. S. H., Fung, J. C. H., Lau, A. K. H., and Yu, J. Z.:
Characterization of Aerosol Aging Potentials at Suburban Sites in Northern
and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and
an Aerosol Mass Spectrometer, J. Geophys. Res.-Atmos.,
124, 5629–5649, https://doi.org/10.1029/2018jd029904, 2019.
Li, J., Gao, W., Cao, L., Xiao, Y., Zhang, Y., Zhao, S., Liu, Z., Liu, Z.,
Tang, G., Ji, D., bo, H., Song, T., He, L., Hu, M., and Wang, Y.:
Significant changes in autumn and winter aerosol composition and sources in
Beijing from 2012 to 2018: effects of clean air actions, Environ.
Pollut., 268, 115855, https://doi.org/10.1016/j.envpol.2020.115855, 2020a.
Li, J., Liu, Z., Gao, W., Tang, G., Hu, B., Ma, Z., and Wang, Y.: Insight
into the formation and evolution of secondary organic aerosol in the
megacity of Beijing, China, Atmos. Environ., 220, 117070, https://doi.org/10.1016/j.atmosenv.2019.117070, 2020b.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422–427, https://doi.org/10.1073/pnas.1812168116, 2019.
Liao, K., Chen, Q., Liu, Y., Li, Y. J., Lambe, A. T., Zhu, T., Huang, R. J.,
Zheng, Y., Cheng, X., Miao, R., Huang, G., Khuzestani, R. B., and Jia, T.:
Secondary Organic Aerosol Formation of Fleet Vehicle Emissions in China:
Potential Seasonality of Spatial Distributions, Environ. Sci.
Technol., 55, 7276–7286, https://doi.org/10.1021/acs.est.0c08591, 2021.
Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., de Gouw, J., Warneke, C., Cappa, C. D., and Kroll, J. H.: Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions, Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019, 2019.
Liu, T., Li, Z., Chan, M., and Chan, C. K.: Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils, Atmos. Chem. Phys., 17, 7333–7344, https://doi.org/10.5194/acp-17-7333-2017, 2017a.
Liu, T., Liu, Q., Li, Z., Huo, L., Chan, M., Li, X., Zhou, Z., and Chan, C.
K.: Emission of volatile organic compounds and production of secondary
organic aerosol from stir-frying spices, Sci. Total Environ.,
599–600, 1614–1621, https://doi.org/10.1016/j.scitotenv.2017.05.147, 2017b.
Liu, T., Wang, Z., Huang, D. D., Wang, X., and Chan, C. K.: Significant
Production of Secondary Organic Aerosol from Emissions of Heated Cooking
Oils, Environ. Sci. Tech. Let., 5, 32–37, https://doi.org/10.1021/acs.estlett.7b00530, 2017c.
Liu, T., Wang, Z., Wang, X., and Chan, C. K.: Primary and secondary organic aerosol from heated cooking oil emissions, Atmos. Chem. Phys., 18, 11363–11374, https://doi.org/10.5194/acp-18-11363-2018, 2018.
Liu, T., Zhou, L., Liu, Q., Lee, B. P., Yao, D., Lu, H., Lyu, X., Guo, H.,
and Chan, C. K.: Secondary Organic Aerosol Formation from Urban Roadside Air
in Hong Kong, Environ. Sci. Technol., 53, 3001–3009, https://doi.org/10.1021/acs.est.8b06587, 2019.
Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G., Cohen, R. C., Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R., and Shetter, R. E.: Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163–173, https://doi.org/10.5194/acp-9-163-2009, 2009.
Masuda, M., Wang, Q., Tokumura, M., Miyake, Y., and Amagai, T.: Risk
assessment of polycyclic aromatic hydrocarbons and their chlorinated
derivatives produced during cooking and released in exhaust gas,
Ecotox. Environ. Safe., 197, 110592, https://doi.org/10.1016/j.ecoenv.2020.110592, 2020.
Matsui, H., Koike, M., Takegawa, N., Kondo, Y., Griffin, R. J., Miyazaki,
Y., Yokouchi, Y., and Ohara, T.: Secondary organic aerosol formation in
urban air: Temporal variations and possible contributions from unidentified
hydrocarbons, J. Geophys. Res., 114, D04201, https://doi.org/10.1029/2008jd010164,
2009.
Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Peñuelas, J., Jiménez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and Prévôt, A. S. H.: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmos. Chem. Phys., 12, 1649–1665, https://doi.org/10.5194/acp-12-1649-2012, 2012.
Nash, D. G., Baer, T., and Johnston, M. V.: Aerosol mass spectrometry: An
introductory review, Int. J. Mass Spectrom., 258, 2–12, https://doi.org/10.1016/j.ijms.2006.09.017, 2006.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M.,
and Worsnop, D. R.: Real-Time Methods for Estimating Organic Component Mass
Concentrations from Aerosol Mass Spectrometer Data, Environ. Sci.
Technol., 45, 910-916, https://doi.org/10.1021/es102951k, 2011.
Nordin, E. Z., Eriksson, A. C., Roldin, P., Nilsson, P. T., Carlsson, J. E., Kajos, M. K., Hellén, H., Wittbom, C., Rissler, J., Löndahl, J., Swietlicki, E., Svenningsson, B., Bohgard, M., Kulmala, M., Hallquist, M., and Pagels, J. H.: Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber, Atmos. Chem. Phys., 13, 6101–6116, https://doi.org/10.5194/acp-13-6101-2013, 2013.
Peng, Z., Day, D. A., Ortega, A. M., Palm, B. B., Hu, W., Stark, H., Li, R., Tsigaridis, K., Brune, W. H., and Jimenez, J. L.: Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling, Atmos. Chem. Phys., 16, 4283–4305, https://doi.org/10.5194/acp-16-4283-2016, 2016.
Presto, A. A., Gordon, T. D., and Robinson, A. L.: Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources, Atmos. Chem. Phys., 14, 5015–5036, https://doi.org/10.5194/acp-14-5015-2014, 2014.
Qin, Y. M., Tan, H. B., Li, Y. J., Schurman, M. I., Li, F., Canonaco, F., Prévôt, A. S. H., and Chan, C. K.: Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China, Atmos. Chem. Phys., 17, 10245–10258, https://doi.org/10.5194/acp-17-10245-2017, 2017.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simonelt,
B. R. T.: Sources of fine organic aerosol .1. charbroilers and meat cooking
operations, Environ. Sci. Technol., 25, 1112–1125, https://doi.org/10.1021/es00018a015, 1991.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol .2. noncatalyst and
catalyst-equipped automobiles and heavy-duty diesel trucks, Environ.
Sci. Technol., 27, 636–651, https://doi.org/10.1021/es00041a007, 1993.
Seow, A., Poh, W. T., Teh, M., Eng, P., Wang, Y. T., Tan, W. C., Yu, M. C.,
and Lee, H. P.: Fumes from meat cooking and lung cancer risk in Chinese
women, Cancer Epidemiol. Biomarkers Prev., 9, 1215–1221, 2000.
Song, K., Guo, S., et al.: Cooking emitted S/IVOCs are a large pool of SOA formation precursors, in preparation, 2021.
Suarez-Bertoa, R., Zardini, A. A., Platt, S. M., Hellebust, S., Pieber, S.
M., El Haddad, I., Temime-Roussel, B., Baltensperger, U., Marchand, N.,
Prévôt, A. S. H., and Astorga, C.: Primary emissions and secondary
organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle,
Atmospheric Environment, 117, 200-211, https://doi.org/10.1016/j.atmosenv.2015.07.006, 2015.
Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-N., Bae, M.-S., Hung, H.-M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y.-C.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581–1602, https://doi.org/10.5194/acp-11-1581-2011, 2011.
Sun, Y. L., Zhang, Q., Schwab, J. J., Chen, W.-N., Bae, M.-S., Hung, H.-M., Lin, Y.-C., Ng, N. L., Jayne, J., Massoli, P., Williams, L. R., and Demerjian, K. L.: Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 12, 2215–2227, https://doi.org/10.5194/acp-12-2215-2012, 2012.
Tang, R. Z., Wang, H., Liu, Y., and Guo, S.: Constituents of Atmospheric
Semi-Volatile and Intermediate Volatility Organic Compounds and Their
Contribution to Organic Aerosol, Prog. Chem., 31, 1800-190, https://doi.org/10.7536/pc180431,
2019.
Timonen, H., Karjalainen, P., Saukko, E., Saarikoski, S., Aakko-Saksa, P., Simonen, P., Murtonen, T., Dal Maso, M., Kuuluvainen, H., Bloss, M., Ahlberg, E., Svenningsson, B., Pagels, J., Brune, W. H., Keskinen, J., Worsnop, D. R., Hillamo, R., and Rönkkö, T.: Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle, Atmos. Chem. Phys., 17, 5311–5329, https://doi.org/10.5194/acp-17-5311-2017, 2017.
Tkacik, D. S., Lambe, A. T., Jathar, S., Li, X., Presto, A. A., Zhao, Y.,
Blake, D., Meinardi, S., Jayne, J. T., Croteau, P. L., and Robinson, A. L.:
Secondary organic aerosol formation from in-use motor vehicle emissions
using a potential aerosol mass reactor, Environ. Sci. Technol., 48, 11235–11242, https://doi.org/10.1021/es502239v, 2014.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Vesna, O., Sax, M., Kalberer, M., Gaschen, A., and Ammann, M.: Product study
of oleic acid ozonolysis as function of humidity, Atmos. Environ.,
43, 3662–3669, https://doi.org/10.1016/j.atmosenv.2009.04.047, 2009.
Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q.,
Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondary
organic aerosol formation from anthropogenic air pollution: Rapid and higher
than expected, Geophys. Res. Lett., 33, L17811, https://doi.org/10.1029/2006gl026899, 2006.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total
Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Watne, A. K., Psichoudaki, M., Ljungstrom, E., Le Breton, M., Hallquist, M.,
Jerksjo, M., Fallgren, H., Jutterstrom, S., and Hallquist, A. M.: Fresh and
Oxidized Emissions from In-Use Transit Buses Running on Diesel, Biodiesel,
and CNG, Environ. Sci. Technol., 52, 7720–7728, https://doi.org/10.1021/acs.est.8b01394, 2018.
Wei, W., Cheng, S., Li, G., Wang, G., and Wang, H.: Characteristics of ozone
and ozone precursors (VOCs and NOx) around a petroleum refinery in Beijing,
China, J. Environ. Sci., 26, 332–342, https://doi.org/10.1016/s1001-0742(13)60412-x, 2014.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Wu, Y., Zhang, S., Hao, J., Liu, H., Wu, X., Hu, J., Walsh, M. P.,
Wallington, T. J., Zhang, K. M., and Stevanovic, S.: On-road vehicle
emissions and their control in China: A review and outlook, Sci.
Total Environ., 574, 332–349, https://doi.org/10.1016/j.scitotenv.2016.09.040, 2017.
Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J.,
Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Effects of Aqueous-Phase and
Photochemical Processing on Secondary Organic Aerosol Formation and
Evolution in Beijing, China, Environ. Sci. Technol., 51,
762–770, https://doi.org/10.1021/acs.est.6b04498, 2017.
Yinhui, W., Rong, Z., Yanhong, Q., Jianfei, P., Mengren, L., Jianrong, L.,
Yusheng, W., Min, H., and Shijin, S.: The impact of fuel compositions on the
particulate emissions of direct injection gasoline engine, Fuel, 166,
543–552, https://doi.org/10.1016/j.fuel.2015.11.019, 2016.
Yu, Y., Wang, H., Wang, T., Song, K., Tan, T., Wan, Z., Gao, Y., Dong, H.,
Chen, S., Zeng, L., Hu, M., Wang, H., Lou, S., Zhu, W., and Guo, S.:
Elucidating the importance of semi-volatile organic compounds to secondary
organic aerosol formation at a regional site during the EXPLORE-YRD
campaign, Atmos. Environ., 246, 118043, https://doi.org/10.1016/j.atmosenv.2020.118043,
2020.
Zhan, J., Feng, Z., Liu, P., He, X., He, Z., Chen, T., Wang, Y., He, H., Mu,
Y., and Liu, Y.: Ozone and SOA formation potential based on photochemical
loss of VOCs during the Beijing summer, Environ. Pollut., 285,
117444, https://doi.org/10.1016/j.envpol.2021.117444, 2021.
Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols, Atmos. Chem. Phys., 5, 3289–3311, https://doi.org/10.5194/acp-5-3289-2005, 2005.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,
Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols via
factor analysis of aerosol mass spectrometry: a review, Anal.
Bioanal. Chem., 401, 3045–3067, https://doi.org/10.1007/s00216-011-5355-y, 2011.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of urban fine particulate matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, Y., Deng, W., Hu, Q., Wu, Z., Yang, W., Zhang, H., Wang, Z., Fang,
Z., Zhu, M., Li, S., Song, W., Ding, X., and Wang, X.: Comparison between
idling and cruising gasoline vehicles in primary emissions and secondary
organic aerosol formation during photochemical ageing, Sci.
Total Environ., 722, 137934, https://doi.org/10.1016/j.scitotenv.2020.137934, 2020a.
Zhang, Z., Zhu, W., Hu, M., Wang, H., Chen, Z., Shen, R., Yu, Y., Tan, R.,
and Guo, S.: Secondary Organic Aerosol from Typical Chinese Domestic Cooking
Emissions, Environ. Sci. Tech. Let., 8, 24–31, https://doi.org/10.1021/acs.estlett.0c00754, 2020b.
Zhang, Z., Hu, M., et al.: Secondary Organic Aerosol Formation from Urban Lifestyle Sources in Beijing, in preparation, 2021.
Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and
Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from
On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and
Estimated Secondary Organic Aerosol Production, Environ. Sci. Technol., 49, 11516–11526, https://doi.org/10.1021/acs.est.5b02841, 2015.
Zhao, Y., Lambe, A. T., Saleh, R., Saliba, G., and Robinson, A. L.:
Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects
of Engine Technology, Cold Start, and Emission Certification Standard,
Environ. Sci. Technol., 52, 1253–1261, https://doi.org/10.1021/acs.est.7b05045, 2018.
Zhao, Y. L., Saleh, R., Saliba, G., Presto, A. A., Gordon, T. D., Drozd, G.
T., Goldstein, A. H., Donahue, N. M., and Robinson, A. L.: Reducing
secondary organic aerosol formation from gasoline vehicle exhaust,
P. Natl. Acad. Sci. USA, 114, 6984–6989, https://doi.org/10.1073/pnas.1620911114, 2017.
Zhong, L. J., Goldberg, M. S., Gao, Y. T., and Jin, F.: Lung cancer and
indoor air pollution arising from Chinese style cooking among nonsmoking
women living in Shanghai, China, Epidemiology, 10, 488–494, https://doi.org/10.1097/00001648-199909000-00005, 1999.
Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., and Sun, Y.: A
review of aerosol chemistry in Asia: insights from aerosol mass spectrometer
measurements, Environ. Sci., 22, 1616–1653, https://doi.org/10.1039/d0em00212g, 2020.
Short summary
We comprehensively investigated the mass growth potential, oxidation degree, formation pathway, and mass spectra features of typical urban-lifestyle secondary organic aerosols (SOAs) including vehicle SOAs and cooking SOAs. The mass spectra we acquired could provide necessary references to estimate the mass fractions of vehicle and cooking SOAs in the atmosphere, which would greatly decrease the uncertainty in air quality evaluation and health risk assessment in urban areas.
We comprehensively investigated the mass growth potential, oxidation degree, formation pathway,...
Altmetrics
Final-revised paper
Preprint