Articles | Volume 20, issue 15
https://doi.org/10.5194/acp-20-9419-2020
https://doi.org/10.5194/acp-20-9419-2020
Research article
 | 
12 Aug 2020
Research article |  | 12 Aug 2020

The role of contact angle and pore width on pore condensation and freezing

Robert O. David, Jonas Fahrni, Claudia Marcolli, Fabian Mahrt, Dominik Brühwiler, and Zamin A. Kanji

Related authors

Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model
Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1617–1637, https://doi.org/10.5194/acp-25-1617-2025,https://doi.org/10.5194/acp-25-1617-2025, 2025
Short summary
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025,https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
IceDetectNet: a rotated object detection algorithm for classifying components of aggregated ice crystals with a multi-label classification scheme
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024,https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024,https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023,https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Retention During Freezing of Raindrops, Part I: Investigation of Single and Binary Mixtures
Martanda Gautam, Alexander Theis, Jackson Seymore, Moritz Hey, Stephan Borrmann, Karoline Diehl, Subir K. Mitra, and Miklós Szakáll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3917,https://doi.org/10.5194/egusphere-2024-3917, 2024
Short summary
Ice Nucleating Properties of Glassy Organic and Organosulfate Aerosol
Christopher Nathan Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3935,https://doi.org/10.5194/egusphere-2024-3935, 2024
Short summary
Measurement Report: Influence of particle density on secondary ice production by graupel and ice pellet collisions
Sudha Yadav, Lilly Metten, Pierre Grzegorczyk, Alexander Theis, Subir Kumar Mitra, and Miklós Szakáll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3222,https://doi.org/10.5194/egusphere-2024-3222, 2024
Short summary
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024,https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary

Cited articles

Atkinson, J. D., Murray, B. J., and O'Sullivan, D.: Rate of Homogenous Nucleation of Ice in Supercooled Water, J. Phys. Chem. A, 120, 6513–6520, https://doi.org/10.1021/acs.jpca.6b03843, 2016. 
Bassett, D. R., Boucher, E. A., and Zettlemoyer, A. C.: Adsorption studies on ice-nucleating substrates. Hydrophobed silicas and silver iodide, J. Colloid Interf. Sci., 34, 436–446, https://doi.org/10.1016/0021-9797(70)90203-1, 1970. 
Beard, K. V. and Pruppacher, H. R.: A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air, J. Atmos. Sci., 28, 1455–1464, https://doi.org/10.1175/1520-0469(1971)028<1455:AWTIOT>2.0.CO;2, 1971. 
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., and McCullen, S. B.: A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834–10843, 1992. 
Download
Short summary
Ice crystal formation plays an important role in controlling the Earth's climate. However, the mechanisms responsible for ice formation in the atmosphere are still uncertain. Here we use surrogates for atmospherically relevant porous particles to determine the role of pore diameter and wettability on the ability of porous particles to nucleate ice in the atmosphere. Our results are consistent with the pore condensation and freeing mechanism.
Share
Altmetrics
Final-revised paper
Preprint