Articles | Volume 20, issue 15
https://doi.org/10.5194/acp-20-9419-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-9419-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of contact angle and pore width on pore condensation and freezing
Institute for Atmospheric and Climate Science, ETH Zürich, 8092
Zurich, Switzerland
now at: Department of Geosciences, University of Oslo, Oslo, 0315,
Norway
Jonas Fahrni
Institute of Chemistry and Biotechnology, Zürich University of
Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
now at: RISE Processum AB, Bioeconomy and Health, Örnsköldsvik,
891 22, Sweden
Claudia Marcolli
Institute for Atmospheric and Climate Science, ETH Zürich, 8092
Zurich, Switzerland
Fabian Mahrt
Institute for Atmospheric and Climate Science, ETH Zürich, 8092
Zurich, Switzerland
now at: Department of Chemistry, University of British Columbia, 2036
Main Mall, Vancouver, BC, V6T 1Z1, Canada
Dominik Brühwiler
Institute of Chemistry and Biotechnology, Zürich University of
Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
Institute for Atmospheric and Climate Science, ETH Zürich, 8092
Zurich, Switzerland
Related authors
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024, https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Short summary
Our innovative IceDetectNet algorithm classifies each part of aggregated ice crystals, considering both their basic shape and physical processes. Trained on ice crystal images from the Arctic taken by a holographic camera, it correctly classifies over 92 % of the ice crystals. These more detailed insights into the components of aggregated ice crystals have the potential to improve our estimates of microphysical properties such as riming rate, aggregation rate, and ice water content.
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1879, https://doi.org/10.5194/egusphere-2024-1879, 2024
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-754, https://doi.org/10.5194/egusphere-2024-754, 2024
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat-CALIPSO, ERA5, and CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Sorin Nicolae Vâjâiac, Andreea Calcan, Robert Oscar David, Denisa-Elena Moacă, Gabriela Iorga, Trude Storelvmo, Viorel Vulturescu, and Valeriu Filip
Atmos. Meas. Tech., 14, 6777–6794, https://doi.org/10.5194/amt-14-6777-2021, https://doi.org/10.5194/amt-14-6777-2021, 2021
Short summary
Short summary
Warm clouds (with liquid droplets) play an important role in modulating the amount of incoming solar radiation to Earth’s surface and thus the climate. The most efficient way to study them is by in situ optical measurements. This paper proposes a new methodology for providing more detailed and reliable structural analyses of warm clouds through post-flight processing of collected data. The impact fine aerosol incorporation in water droplets might have on such measurements is also discussed.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origin of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells. Our results indicate that secondary ice processes are active in the feeder region, which can enhance orographic precipitation.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, https://doi.org/10.5194/amt-14-3131-2021, 2021
Short summary
Short summary
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), which involves the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with two other DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with three DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000 and add FINC.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Short summary
Interactions between dynamics, microphysics and orography can enhance precipitation. Yet the exact role of these interactions is still uncertain. Here we investigate the role of low-level blocking and turbulence for precipitation by combining remote sensing and in situ observations. The observations show that blocked flow can induce the formation of feeder clouds and that turbulence can enhance hydrometeor growth, demonstrating the importance of local flow effects for orographic precipitation.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
Short summary
Atmospheric ice-nucleating particles are rare but relevant for cloud glaciation. A source of particles that nucleate ice above −15 °C is biological material including some proteins. Here we show that proteins of very diverse functions and structures can nucleate ice. Among these, the iron storage protein apoferritin stands out, with activity up to −4 °C. We show that its activity does not stem from correctly assembled proteins but from misfolded protein monomers or oligomers and aggregates.
Killian P. Brennan, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, https://doi.org/10.5194/acp-20-163-2020, 2020
Short summary
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Nadine Borduas-Dedekind, Rachele Ossola, Robert O. David, Lin S. Boynton, Vera Weichlinger, Zamin A. Kanji, and Kristopher McNeill
Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, https://doi.org/10.5194/acp-19-12397-2019, 2019
Short summary
Short summary
During atmospheric transport, dissolved organic matter (DOM) within aqueous aerosols undergoes photochemistry. We find that photochemical processing of DOM increases its ability to form cloud droplets but decreases its ability to form ice crystals over a simulated 4.6 days in the atmosphere. A photomineralization mechanism involving the loss of organic carbon and the production of organic acids, CO and CO2 explains the observed changes and affects the liquid-water-to-ice ratio in clouds.
Douglas H. Lowenthal, A. Gannet Hallar, Robert O. David, Ian B. McCubbin, Randolph D. Borys, and Gerald G. Mace
Atmos. Chem. Phys., 19, 5387–5401, https://doi.org/10.5194/acp-19-5387-2019, https://doi.org/10.5194/acp-19-5387-2019, 2019
Short summary
Short summary
Snow and liquid cloud particles were measured during the StormVEx and IFRACS programs at Storm Peak Lab to better understand snow formation in wintertime mountain clouds. We found significant interactions between the ice and liquid phases of the cloud. A relationship between large droplet and small ice crystal concentrations suggested snow formation by droplet freezing. Blowing snow can bias surface measurements, but its effect was ambiguous, calling for further work on this issue.
Mikhail Paramonov, Robert O. David, Ruben Kretzschmar, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 16515–16536, https://doi.org/10.5194/acp-18-16515-2018, https://doi.org/10.5194/acp-18-16515-2018, 2018
Short summary
Short summary
The paper presents an overview of the ice nucleation activity of surface-collected mineral and soil dust. Emphasis is placed on disentangling the effects of mineral, biogenic and soluble components of the dust on its ice nucleation activity. The results revealed that it is not possible to predict the ice nucleation activity of the surface-collected dust based on the presence and amount of certain minerals or any particular class of compounds, such as soluble or proteinaceous/organic compounds.
Fabian Mahrt, Claudia Marcolli, Robert O. David, Philippe Grönquist, Eszter J. Barthazy Meier, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, https://doi.org/10.5194/acp-18-13363-2018, 2018
Short summary
Short summary
The ice nucleation ability of different soot particles in the cirrus and mixed-phase cloud temperature regime is presented. The impact of aerosol particle size, particle morphology, organic matter and hydrophilicity on ice nucleation is examined. We propose ice nucleation proceeds via a pore condensation freezing mechanism for soot particles with the necessary physicochemical properties that nucleated ice well below water saturation.
Alexander Beck, Jan Henneberger, Jacob P. Fugal, Robert O. David, Larissa Lacher, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, https://doi.org/10.5194/acp-18-8909-2018, 2018
Short summary
Short summary
This study assesses the impact of surface processes (e.g. blowing snow) on in situ cloud observations at Sonnblick Observatory. Vertical profiles of ice crystal number concentrations (ICNCs) above a snow-covered surface were observed up to a height of 10 m. The ICNC near the ground is at least a factor of 2 larger than at 10 m. Therefore, in situ measurements of ICNCs at mountain-top research stations close to the surface are strongly influenced by surface processes and overestimate the ICNC.
Sarvesh Garimella, Daniel A. Rothenberg, Martin J. Wolf, Robert O. David, Zamin A. Kanji, Chien Wang, Michael Rösch, and Daniel J. Cziczo
Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, https://doi.org/10.5194/acp-17-10855-2017, 2017
Short summary
Short summary
This study investigates systematic and variable low bias in the measurement of ice nucleating particle concentration using continuous flow diffusion chambers. We find that non-ideal instrument behavior exposes particles to different humidities and/or temperatures than predicted from theory. We use a machine learning approach to quantify and minimize the uncertainty associated with this measurement bias.
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024, https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Short summary
Our innovative IceDetectNet algorithm classifies each part of aggregated ice crystals, considering both their basic shape and physical processes. Trained on ice crystal images from the Arctic taken by a holographic camera, it correctly classifies over 92 % of the ice crystals. These more detailed insights into the components of aggregated ice crystals have the potential to improve our estimates of microphysical properties such as riming rate, aggregation rate, and ice water content.
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3230, https://doi.org/10.5194/egusphere-2024-3230, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyzed the ability of silver iodide particles to form ice crystals in naturally-occurring liquid clouds below 0 °C and found that ≈0.1−1 % of particles nucleate ice, with a negative dependence on temperature. Contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments and which also helps to inform future cloud seeding projects.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2838, https://doi.org/10.5194/egusphere-2024-2838, 2024
Short summary
Short summary
We model the CCN activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updrafts.
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1879, https://doi.org/10.5194/egusphere-2024-1879, 2024
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-754, https://doi.org/10.5194/egusphere-2024-754, 2024
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat-CALIPSO, ERA5, and CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Anna J. Miller, Fabiola Ramelli, Christopher Fuchs, Nadja Omanovic, Robert Spirig, Huiying Zhang, Ulrike Lohmann, Zamin A. Kanji, and Jan Henneberger
Atmos. Meas. Tech., 17, 601–625, https://doi.org/10.5194/amt-17-601-2024, https://doi.org/10.5194/amt-17-601-2024, 2024
Short summary
Short summary
We present a method for aerosol and cloud research using two uncrewed aerial vehicles (UAVs). The UAVs have a propeller heating mechanism that allows flights in icing conditions, which has so far been a limitation for cloud research with UAVs. One UAV burns seeding flares, producing a plume of particles that causes ice formation in supercooled clouds. The second UAV measures aerosol size distributions and is used for measuring the seeding plume or for characterizing the boundary layer.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022, https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary
Short summary
The concentration of ice-nucleating particles (INPs) is atmospherically relevant for primary ice formation in clouds. In this work, from 12 weeks of field measurement data in the Arctic, we developed a new parameterization to predict INP concentrations applicable for pristine background conditions based only on temperature. The INP parameterization could improve the cloud microphysical representation in climate models, aiding in Arctic climate predictions.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Florin N. Isenrich, Nadia Shardt, Michael Rösch, Julia Nette, Stavros Stavrakis, Claudia Marcolli, Zamin A. Kanji, Andrew J. deMello, and Ulrike Lohmann
Atmos. Meas. Tech., 15, 5367–5381, https://doi.org/10.5194/amt-15-5367-2022, https://doi.org/10.5194/amt-15-5367-2022, 2022
Short summary
Short summary
Ice nucleation in the atmosphere influences cloud properties and lifetimes. Microfluidic instruments have recently been used to investigate ice nucleation, but these instruments are typically made out of a polymer that contributes to droplet instability over extended timescales and relatively high temperature uncertainty. To address these drawbacks, we develop and validate a new microfluidic instrument that uses fluoropolymer tubing to extend droplet stability and improve temperature accuracy.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7557–7573, https://doi.org/10.5194/acp-22-7557-2022, https://doi.org/10.5194/acp-22-7557-2022, 2022
Short summary
Short summary
Microscopic particles called ice-nucleating particles (INPs) are essential for ice crystals to form in clouds. INPs are a tiny proportion of atmospheric aerosol, and their abundance is poorly constrained. We study how the concentration of INPs changes diurnally and seasonally at a mountaintop station in central Europe. Unsurprisingly, a diurnal cycle is only found when considering air masses that have had lower-altitude ground contact. The highest INP concentrations occur in spring.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Kunfeng Gao, Chong-Wen Zhou, Eszter J. Barthazy Meier, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, https://doi.org/10.5194/acp-22-5331-2022, 2022
Short summary
Short summary
Incomplete combustion of fossil fuel produces carbonaceous particles called soot. These particles can affect cloud formation by acting as centres for droplet or ice formation. The atmospheric residence time of soot particles is of the order of days to weeks, which can result in them becoming coated by various trace species in the atmosphere such as acids. In this study, we quantify the cirrus cloud-forming ability of soot particles coated with the atmospherically ubiquitous sulfuric acid.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Kunfeng Gao, Franz Friebel, Chong-Wen Zhou, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 4985–5016, https://doi.org/10.5194/acp-22-4985-2022, https://doi.org/10.5194/acp-22-4985-2022, 2022
Short summary
Short summary
Soot particles impact cloud formation and radiative properties in the upper atmosphere where aircraft emit carbonaceous particles. We use cloud chambers to mimic the upper atmosphere temperature and humidity to test the influence of the morphology of the soot particles on ice cloud formation. For particles larger than 200 nm, the compacted (densified) samples have a higher affinity for ice crystal formation in the cirrus regime than the fluffy (un-compacted) soot particles of the same sample.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022, https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
Short summary
We investigate the variation in ice-nucleating particles (INPs) relevant for primary ice formation in mixed-phased clouds over the Alps based on simultaneous in situ observations at a mountaintop and a nearby high valley (1060 m height difference). In most cases, advection from the surrounding lower regions was responsible for changes in INP concentration, causing a diurnal cycle at the mountaintop. Our study underlines the importance of the planetary boundary layer as an INP reserve.
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Maxime Hervo, Stephan Henne, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 18029–18053, https://doi.org/10.5194/acp-21-18029-2021, https://doi.org/10.5194/acp-21-18029-2021, 2021
Short summary
Short summary
Special microscopic particles called ice-nucleating particles (INPs) are essential for ice crystals to form in the atmosphere. INPs are sparse and their atmospheric concentration and properties are not well understood. Mineral dust particles make up a significant fraction of INPs but how much remains unknown. Here, we address this knowledge gap by studying periods when mineral particles are present in large quantities at a mountaintop station in central Europe.
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, https://doi.org/10.5194/acp-21-16925-2021, 2021
Short summary
Short summary
We investigate ice-nucleating particle properties at Jungfraujoch during the 2017 joint INUIT/CLACE field campaign, to improve the knowledge about those rare particles in a cloud-relevant environment. By quantifying ice-nucleating particles in parallel to single-particle mass spectrometry measurements, we find that mineral dust and aged sea spray particles are potential candidates for ice-nucleating particles. Our findings are supported by ice residual analysis and source region modeling.
Sorin Nicolae Vâjâiac, Andreea Calcan, Robert Oscar David, Denisa-Elena Moacă, Gabriela Iorga, Trude Storelvmo, Viorel Vulturescu, and Valeriu Filip
Atmos. Meas. Tech., 14, 6777–6794, https://doi.org/10.5194/amt-14-6777-2021, https://doi.org/10.5194/amt-14-6777-2021, 2021
Short summary
Short summary
Warm clouds (with liquid droplets) play an important role in modulating the amount of incoming solar radiation to Earth’s surface and thus the climate. The most efficient way to study them is by in situ optical measurements. This paper proposes a new methodology for providing more detailed and reliable structural analyses of warm clouds through post-flight processing of collected data. The impact fine aerosol incorporation in water droplets might have on such measurements is also discussed.
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021, https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions play an important role in climate change. Simulations of the competition between homogeneous solution droplet freezing and heterogeneous ice nucleation can be compromised by the misapplication of ice-active particle fractions frequently derived from laboratory measurements or parametrizations. Our study frames the problem and establishes a solution that is easy to implement in cloud models.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Claudia Marcolli, Fabian Mahrt, and Bernd Kärcher
Atmos. Chem. Phys., 21, 7791–7843, https://doi.org/10.5194/acp-21-7791-2021, https://doi.org/10.5194/acp-21-7791-2021, 2021
Short summary
Short summary
Pores are aerosol particle features that trigger ice nucleation, as they take up water by capillary condensation below water saturation that freezes at low temperatures. The pore ice can then grow into macroscopic ice crystals making up cirrus clouds. Here, we investigate the pores in soot aggregates responsible for pore condensation and freezing (PCF). Moreover, we present a framework to parameterize soot PCF that is able to predict the ice nucleation activity based on soot properties.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origin of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells. Our results indicate that secondary ice processes are active in the feeder region, which can enhance orographic precipitation.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, https://doi.org/10.5194/amt-14-3131-2021, 2021
Short summary
Short summary
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), which involves the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with two other DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with three DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000 and add FINC.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Short summary
Interactions between dynamics, microphysics and orography can enhance precipitation. Yet the exact role of these interactions is still uncertain. Here we investigate the role of low-level blocking and turbulence for precipitation by combining remote sensing and in situ observations. The observations show that blocked flow can induce the formation of feeder clouds and that turbulence can enhance hydrometeor growth, demonstrating the importance of local flow effects for orographic precipitation.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Cyril Brunner and Zamin A. Kanji
Atmos. Meas. Tech., 14, 269–293, https://doi.org/10.5194/amt-14-269-2021, https://doi.org/10.5194/amt-14-269-2021, 2021
Short summary
Short summary
Subvisual microscopic particles in the atmosphere are needed to act as seeds for cloud droplets or ice crystals to form. The microscopic particles, called ice-nucleating particles (INPs), form ice crystals and are rare, and their properties are not well understood, in part because measuring them is challenging and time consuming, and to date has not been automated. Here, we present the first online instrument that can continuously and autonomously measure INP concentration at 243 K.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
Mikhail Paramonov, Saskia Drossaart van Dusseldorp, Ellen Gute, Jonathan P. D. Abbatt, Paavo Heikkilä, Jorma Keskinen, Xuemeng Chen, Krista Luoma, Liine Heikkinen, Liqing Hao, Tuukka Petäjä, and Zamin A. Kanji
Atmos. Chem. Phys., 20, 6687–6706, https://doi.org/10.5194/acp-20-6687-2020, https://doi.org/10.5194/acp-20-6687-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) measurements were performed in the boreal environment of southern Finland in the winter–spring of 2018. It was found that no single parameter could be used to predict the INP number concentration at the measurement location during the examined time period. It was also not possible to identify physical and chemical properties of ambient INPs despite the complexity of the instrumental set-up. Therefore, this paper addresses the necessity for future INP measurements.
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
Short summary
Atmospheric ice-nucleating particles are rare but relevant for cloud glaciation. A source of particles that nucleate ice above −15 °C is biological material including some proteins. Here we show that proteins of very diverse functions and structures can nucleate ice. Among these, the iron storage protein apoferritin stands out, with activity up to −4 °C. We show that its activity does not stem from correctly assembled proteins but from misfolded protein monomers or oligomers and aggregates.
Claudia Marcolli
Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, https://doi.org/10.5194/acp-20-3209-2020, 2020
Short summary
Short summary
Pore condensation and freezing (PCF) is an ice nucleation mechanism explaining ice formation at low ice supersaturation. It is assumed that liquid water condenses in pores of solid aerosol particles below water saturation followed by ice nucleation within the pores. This study discusses conditions of pore filling, homogeneous ice nucleation within the volume of porewater, and growth of ice out of the pores, taking the effect of negative pressure within pores below water saturation into account.
Killian P. Brennan, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, https://doi.org/10.5194/acp-20-163-2020, 2020
Short summary
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Johannes Bühl, Patric Seifert, Ronny Engelmann, Julian Hofer, Argyro Nisantzi, James D. Atkinson, Zamin A. Kanji, Berko Sierau, Mihalis Vrekoussis, and Jean Sciare
Atmos. Chem. Phys., 19, 15087–15115, https://doi.org/10.5194/acp-19-15087-2019, https://doi.org/10.5194/acp-19-15087-2019, 2019
Short summary
Short summary
For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. The closure studies were conducted in Cyprus. A focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers. The closure studies show that heterogeneous ice nucleation can play a dominant role in ice formation.
Nadine Borduas-Dedekind, Rachele Ossola, Robert O. David, Lin S. Boynton, Vera Weichlinger, Zamin A. Kanji, and Kristopher McNeill
Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, https://doi.org/10.5194/acp-19-12397-2019, 2019
Short summary
Short summary
During atmospheric transport, dissolved organic matter (DOM) within aqueous aerosols undergoes photochemistry. We find that photochemical processing of DOM increases its ability to form cloud droplets but decreases its ability to form ice crystals over a simulated 4.6 days in the atmosphere. A photomineralization mechanism involving the loss of organic carbon and the production of organic acids, CO and CO2 explains the observed changes and affects the liquid-water-to-ice ratio in clouds.
André Welti, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 19, 10901–10918, https://doi.org/10.5194/acp-19-10901-2019, https://doi.org/10.5194/acp-19-10901-2019, 2019
Short summary
Short summary
The ice nucleation ability of singly immersed feldspar particles in suspended water droplets relevant for ice crystal formation under mixed-phase cloud conditions is presented. The effects of particle size, crystal structure, trace metal and mineralogical composition are discussed by testing up to five different diameters in the submicron range and nine different feldspar samples at conditions relevant for ice nucleation in mixed-phase clouds.
Fabian Mahrt, Jörg Wieder, Remo Dietlicher, Helen R. Smith, Chris Stopford, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 3183–3208, https://doi.org/10.5194/amt-12-3183-2019, https://doi.org/10.5194/amt-12-3183-2019, 2019
Short summary
Short summary
A new instrument, the High Speed Particle Phase Discriminator (PPD-HS), is presented, with the goal of quantifying liquid and ice fraction in conditions relevant for mixed-phase clouds. PPD-HS captures the near-forward spatial intensity distribution of scattered light on a single particle basis. Symmetry analysis of the scattering pattern is used to determine the shape of the particles, with cloud droplets and ice crystals producing symmetrical and asymmetrical scattering patterns, respectively.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6035–6058, https://doi.org/10.5194/acp-19-6035-2019, https://doi.org/10.5194/acp-19-6035-2019, 2019
Short summary
Short summary
This paper not only interests the atmospheric science community but has a potential to cater to a broader audience. We discuss both long- and
short-term effects of various
atmospherically relevantchemical species on a fairly abundant mineral surface
Quartz. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, https://doi.org/10.5194/acp-19-6059-2019, 2019
Short summary
Short summary
This paper not only interests the Atmospheric Science community but has a potential to cater to a broader audience. We discuss both long- and short-term effects of various
atmospherically relevantchemical species on fairly abundant mineral surfaces like feldspars and clays. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Douglas H. Lowenthal, A. Gannet Hallar, Robert O. David, Ian B. McCubbin, Randolph D. Borys, and Gerald G. Mace
Atmos. Chem. Phys., 19, 5387–5401, https://doi.org/10.5194/acp-19-5387-2019, https://doi.org/10.5194/acp-19-5387-2019, 2019
Short summary
Short summary
Snow and liquid cloud particles were measured during the StormVEx and IFRACS programs at Storm Peak Lab to better understand snow formation in wintertime mountain clouds. We found significant interactions between the ice and liquid phases of the cloud. A relationship between large droplet and small ice crystal concentrations suggested snow formation by droplet freezing. Blowing snow can bias surface measurements, but its effect was ambiguous, calling for further work on this issue.
Zamin A. Kanji, Ryan C. Sullivan, Monika Niemand, Paul J. DeMott, Anthony J. Prenni, Cédric Chou, Harald Saathoff, and Ottmar Möhler
Atmos. Chem. Phys., 19, 5091–5110, https://doi.org/10.5194/acp-19-5091-2019, https://doi.org/10.5194/acp-19-5091-2019, 2019
Short summary
Short summary
The ice nucleation ability of two natural desert dusts coated with a proxy of secondary organic aerosol is presented for temperatures and relative humidity conditions relevant for mixed-phase clouds. We find that at the tested conditions, there is no effect on the ice nucleation ability of the particles due to the organic coating. Furthermore, the two dust samples do not show variability within measurement uncertainty. Particle size and surface area may play a role in any difference observed.
Yvonne Boose, Philipp Baloh, Michael Plötze, Johannes Ofner, Hinrich Grothe, Berko Sierau, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 19, 1059–1076, https://doi.org/10.5194/acp-19-1059-2019, https://doi.org/10.5194/acp-19-1059-2019, 2019
Short summary
Short summary
The role non-mineral components play in the freezing behavior of atmospheric desert dust is not well known. In this study, we use chemical imaging methods to investigate this for airborne and surface-collected desert dust samples. We find that in most cases the ice nucleation behavior is determined by the dust mineralogical composition. However, volatile organic material can coat active sites and decrease the dust ice nucleation ability, while biological particles can significantly increase it.
Mikhail Paramonov, Robert O. David, Ruben Kretzschmar, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 16515–16536, https://doi.org/10.5194/acp-18-16515-2018, https://doi.org/10.5194/acp-18-16515-2018, 2018
Short summary
Short summary
The paper presents an overview of the ice nucleation activity of surface-collected mineral and soil dust. Emphasis is placed on disentangling the effects of mineral, biogenic and soluble components of the dust on its ice nucleation activity. The results revealed that it is not possible to predict the ice nucleation activity of the surface-collected dust based on the presence and amount of certain minerals or any particular class of compounds, such as soluble or proteinaceous/organic compounds.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Fabian Mahrt, Claudia Marcolli, Robert O. David, Philippe Grönquist, Eszter J. Barthazy Meier, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, https://doi.org/10.5194/acp-18-13363-2018, 2018
Short summary
Short summary
The ice nucleation ability of different soot particles in the cirrus and mixed-phase cloud temperature regime is presented. The impact of aerosol particle size, particle morphology, organic matter and hydrophilicity on ice nucleation is examined. We propose ice nucleation proceeds via a pore condensation freezing mechanism for soot particles with the necessary physicochemical properties that nucleated ice well below water saturation.
Alexander Beck, Jan Henneberger, Jacob P. Fugal, Robert O. David, Larissa Lacher, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, https://doi.org/10.5194/acp-18-8909-2018, 2018
Short summary
Short summary
This study assesses the impact of surface processes (e.g. blowing snow) on in situ cloud observations at Sonnblick Observatory. Vertical profiles of ice crystal number concentrations (ICNCs) above a snow-covered surface were observed up to a height of 10 m. The ICNC near the ground is at least a factor of 2 larger than at 10 m. Therefore, in situ measurements of ICNCs at mountain-top research stations close to the surface are strongly influenced by surface processes and overestimate the ICNC.
Anand Kumar, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, https://doi.org/10.5194/acp-18-7057-2018, 2018
Short summary
Short summary
We have performed immersion freezing experiments with microcline (most active ice nucleation, IN, K-feldspar polymorph) and investigated the effect of ammonium and non-ammonium solutes on its IN efficiency. We report increased IN efficiency of microcline in dilute ammonia- or ammonium-containing solutions, which opens up a pathway for condensation freezing occurring at a warmer temperature than immersion freezing.
Ulrich K. Krieger, Franziska Siegrist, Claudia Marcolli, Eva U. Emanuelsson, Freya M. Gøbel, Merete Bilde, Aleksandra Marsh, Jonathan P. Reid, Andrew J. Huisman, Ilona Riipinen, Noora Hyttinen, Nanna Myllys, Theo Kurtén, Thomas Bannan, Carl J. Percival, and David Topping
Atmos. Meas. Tech., 11, 49–63, https://doi.org/10.5194/amt-11-49-2018, https://doi.org/10.5194/amt-11-49-2018, 2018
Short summary
Short summary
Vapor pressures of low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique, which is generally reported to be smaller than a factor of 2. We determined saturation vapor pressures for the homologous series of polyethylene glycols ranging in vapor pressure at 298 K from 1E−7 Pa to 5E−2 Pa as a reference set.
Larissa Lacher, Ulrike Lohmann, Yvonne Boose, Assaf Zipori, Erik Herrmann, Nicolas Bukowiecki, Martin Steinbacher, and Zamin A. Kanji
Atmos. Chem. Phys., 17, 15199–15224, https://doi.org/10.5194/acp-17-15199-2017, https://doi.org/10.5194/acp-17-15199-2017, 2017
Short summary
Short summary
We characterize the new Horizontal Ice Nucleation Chamber HINC to measure ambient ice nucleating particle concentrations at mixed‐phase cloud conditions. Results from winter measurements at the High Altitude Research Station Jungfraujoch compare well to previous measurements. We find increased ice nucleating particle concentrations during the influence of Saharan dust events and marine events, which highlights the importance of these species on ice nucleation in the free troposphere.
Monika Burkert-Kohn, Heike Wex, André Welti, Susan Hartmann, Sarah Grawe, Lisa Hellner, Paul Herenz, James D. Atkinson, Frank Stratmann, and Zamin A. Kanji
Atmos. Chem. Phys., 17, 11683–11705, https://doi.org/10.5194/acp-17-11683-2017, https://doi.org/10.5194/acp-17-11683-2017, 2017
Short summary
Short summary
Several instruments can investigate properties of ice-nucleating particles (INPs), which are crucial to understanding ice cloud formation. We intercompare four online ice nucleation counters and reasonable agreement is found when the same ice nucleation mode is tested. A variable scaling factor was necessary to reconcile condensation freezing results with immersion freezing. Factors related to instrumental setup and aerosol generation are discussed to explain observed differences.
Sarvesh Garimella, Daniel A. Rothenberg, Martin J. Wolf, Robert O. David, Zamin A. Kanji, Chien Wang, Michael Rösch, and Daniel J. Cziczo
Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, https://doi.org/10.5194/acp-17-10855-2017, 2017
Short summary
Short summary
This study investigates systematic and variable low bias in the measurement of ice nucleating particle concentration using continuous flow diffusion chambers. We find that non-ideal instrument behavior exposes particles to different humidities and/or temperatures than predicted from theory. We use a machine learning approach to quantify and minimize the uncertainty associated with this measurement bias.
Lisa Stirnweis, Claudia Marcolli, Josef Dommen, Peter Barmet, Carla Frege, Stephen M. Platt, Emily A. Bruns, Manuel Krapf, Jay G. Slowik, Robert Wolf, Andre S. H. Prévôt, Urs Baltensperger, and Imad El-Haddad
Atmos. Chem. Phys., 17, 5035–5061, https://doi.org/10.5194/acp-17-5035-2017, https://doi.org/10.5194/acp-17-5035-2017, 2017
Lukas Kaufmann, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 17, 3525–3552, https://doi.org/10.5194/acp-17-3525-2017, https://doi.org/10.5194/acp-17-3525-2017, 2017
Short summary
Short summary
To improve the understanding of heterogeneous ice nucleation, we have subjected different ice nuclei to repeated freezing cycles and evaluated the freezing temperatures with different parameterizations of classical nucleation theory. It was found that two fit parameters were necessary to describe the temperature dependence of the nucleation rate.
Claudia Marcolli
Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, https://doi.org/10.5194/acp-17-1595-2017, 2017
Short summary
Short summary
Laboratory studies from the last century have shown that some types of particles are susceptible to pre-activation, i.e. they are able to develop macroscopic ice at warmer temperatures or lower relative humidities after they had been involved in an ice nucleation event before. This review analyses these works under the presumption that pre-activation occurs by ice preserved in pores, and it discusses atmospheric scenarios for which pre-activation might be important.
Yvonne Boose, André Welti, James Atkinson, Fabiola Ramelli, Anja Danielczok, Heinz G. Bingemer, Michael Plötze, Berko Sierau, Zamin A. Kanji, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 15075–15095, https://doi.org/10.5194/acp-16-15075-2016, https://doi.org/10.5194/acp-16-15075-2016, 2016
Short summary
Short summary
We compare the immersion freezing behavior of four airborne to 11 surface-collected dust samples to investigate the role of different minerals for atmospheric ice nucleation on desert dust. We find that present K-feldspars dominate at T > 253 K, while quartz does at colder temperatures, and surface-collected dust samples are not necessarily representative for airborne dust. For improved ice cloud prediction, modeling of quartz and feldspar emission and transport are key.
Lukas Kaufmann, Claudia Marcolli, Julian Hofer, Valeria Pinti, Christopher R. Hoyle, and Thomas Peter
Atmos. Chem. Phys., 16, 11177–11206, https://doi.org/10.5194/acp-16-11177-2016, https://doi.org/10.5194/acp-16-11177-2016, 2016
Short summary
Short summary
We investigated dust samples from dust source regions all over the globe with respect to their ice nucleation activity and their mineralogical composition. Stones of reference minerals were milled and investigated the same way as the natural dust samples. We found that the mineralogical composition is a major determinant of ice nucleation ability. Natural samples consist of mixtures of minerals with remarkably similar ice nucleation ability.
Yvonne Boose, Berko Sierau, M. Isabel García, Sergio Rodríguez, Andrés Alastuey, Claudia Linke, Martin Schnaiter, Piotr Kupiszewski, Zamin A. Kanji, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 9067–9087, https://doi.org/10.5194/acp-16-9067-2016, https://doi.org/10.5194/acp-16-9067-2016, 2016
Short summary
Short summary
Mineral dust is known to be among the most prevalent ice-nucleating particles (INPs) in the atmosphere, playing a crucial role for ice cloud formation. We present 2 months of ground-based in situ measurements of INP concentrations in the free troposphere close to the largest global dust source, the Sahara. We find that some atmospheric processes such as mixing with biological particles and ammonium increase the dust INP ability. This is important when predicting INPs based on emissions.
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Short summary
The relative importance of contact freezing and immersion freezing at mixed-phase cloud temperatures is the subject of debate. We performed experiments using continuous-flow diffusion chambers to compare the freezing efficiency of ice-nucleating particles for both these nucleation modes. Silver iodide, kaolinite and Arizona Test Dust were used as ice-nucleating particles. We could not confirm the dominance of contact freezing over immersion freezing for our experimental conditions.
Claudia Marcolli, Baban Nagare, André Welti, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, https://doi.org/10.5194/acp-16-8915-2016, 2016
Short summary
Short summary
Silver iodide is one of the best-investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Nevertheless, many open questions remain. This paper gives an overview of silver iodide as an ice nucleus and tries to identify the factors that influence the ice nucleation ability of silver iodide.
Lindsay Renbaum-Wolff, Mijung Song, Claudia Marcolli, Yue Zhang, Pengfei F. Liu, James W. Grayson, Franz M. Geiger, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, https://doi.org/10.5194/acp-16-7969-2016, 2016
B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 15, 13759–13776, https://doi.org/10.5194/acp-15-13759-2015, https://doi.org/10.5194/acp-15-13759-2015, 2015
Short summary
Short summary
We determined collision efficiencies of cloud droplets with aerosol particles experimentally and found that they were around 1 order of magnitude higher than theoretical formulations that include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This is most probably due to uncertainties and inaccuracies in the theoretical formulations of thermophoretic and diffusiophoretic processes.
D. M. Lienhard, A. J. Huisman, U. K. Krieger, Y. Rudich, C. Marcolli, B. P. Luo, D. L. Bones, J. P. Reid, A. T. Lambe, M. R. Canagaratna, P. Davidovits, T. B. Onasch, D. R. Worsnop, S. S. Steimer, T. Koop, and T. Peter
Atmos. Chem. Phys., 15, 13599–13613, https://doi.org/10.5194/acp-15-13599-2015, https://doi.org/10.5194/acp-15-13599-2015, 2015
Short summary
Short summary
New data of water diffusivity in secondary organic aerosol (SOA) material and organic/inorganic model mixtures is presented over an extensive temperature range. Our data suggest that water diffusion in SOA is sufficiently fast so that it is unlikely to have significant consequences on the direct climatic effect under tropospheric conditions. Glass formation in SOA is unlikely to restrict homogeneous ice nucleation.
E. Hammer, N. Bukowiecki, B. P. Luo, U. Lohmann, C. Marcolli, E. Weingartner, U. Baltensperger, and C. R. Hoyle
Atmos. Chem. Phys., 15, 10309–10323, https://doi.org/10.5194/acp-15-10309-2015, https://doi.org/10.5194/acp-15-10309-2015, 2015
Short summary
Short summary
An important quantity which determines aerosol activation and cloud formation is the effective peak supersaturation. The box model ZOMM was used to simulate the effective peak supersaturation experienced by an air parcel approaching a high-alpine research station in Switzerland. With the box model the sensitivity of the effective peak supersaturation to key aerosol and dynamical parameters was investigated.
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Short summary
Seventeen ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of illite NX. All data showed a similar temperature trend, but the measured ice nucleation activity was on average smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples at high temperatures. A continued investigation and collaboration is necessary to obtain further insights into consistency or diversity of ice nucleation measurements.
H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, and F. Stratmann
Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, https://doi.org/10.5194/acp-15-1463-2015, 2015
Short summary
Short summary
Immersion freezing measurements from seven different measurement techniques were intercompared using a biological ice nucleating material from bacteria. Although different techniques examined differently concentrated droplets, it was possible to find a uniform description, which showed that results from all experiments were generally in good agreement and were also in agreement with parameterizations published earlier in literature.
G. Ganbavale, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 15, 447–493, https://doi.org/10.5194/acp-15-447-2015, https://doi.org/10.5194/acp-15-447-2015, 2015
Short summary
Short summary
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients implemented in the AIOMFAC group-contribution model. The AIOMFAC model with the improved parameterisation is applicable for a large variety of aqueous organic as well as water-free organic solutions of relevance for atmospheric aerosols. The new model parameters were determined based on published and new thermodynamic equilibrium data covering a temperature range from ~190 to 440 K.
G. Ganbavale, C. Marcolli, U. K. Krieger, A. Zuend, G. Stratmann, and T. Peter
Atmos. Chem. Phys., 14, 9993–10012, https://doi.org/10.5194/acp-14-9993-2014, https://doi.org/10.5194/acp-14-9993-2014, 2014
C. Marcolli
Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, https://doi.org/10.5194/acp-14-2071-2014, 2014
Z. A. Kanji, A. Welti, C. Chou, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 13, 9097–9118, https://doi.org/10.5194/acp-13-9097-2013, https://doi.org/10.5194/acp-13-9097-2013, 2013
A. J. Huisman, U. K. Krieger, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 13, 6647–6662, https://doi.org/10.5194/acp-13-6647-2013, https://doi.org/10.5194/acp-13-6647-2013, 2013
C. Chou, Z. A. Kanji, O. Stetzer, T. Tritscher, R. Chirico, M. F. Heringa, E. Weingartner, A. S. H. Prévôt, U. Baltensperger, and U. Lohmann
Atmos. Chem. Phys., 13, 761–772, https://doi.org/10.5194/acp-13-761-2013, https://doi.org/10.5194/acp-13-761-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Stable and unstable fall motions of plate-like ice crystal analogues
Secondary ice production – no evidence of efficient rime-splintering mechanism
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Re-evaluating cloud chamber constraints on depositional ice growth in cirrus clouds – Part 1: Model description and sensitivity tests
Ice nucleation by smectites: the role of the edges
A single-parameter hygroscopicity model for functionalized insoluble aerosol surfaces
Mexican agricultural soil dust as a source of ice nucleating particles
The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions
Secondary ice production during the break-up of freezing water drops on impact with ice particles
High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
Laboratory and field studies of ice-nucleating particles from open-lot livestock facilities in Texas
Comment on “Review of experimental studies of secondary ice production” by Korolev and Leisner (2020)
Effect of chemically induced fracturing on the ice nucleation activity of alkali feldspar
Ice nucleation ability of ammonium sulfate aerosol particles internally mixed with secondary organics
Ice-nucleating particles in precipitation samples from the Texas Panhandle
Comparative study on immersion freezing utilizing single-droplet levitation methods
Exploratory experiments on pre-activated freezing nucleation on mercuric iodide
Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals
Review of experimental studies of secondary ice production
Technical note: Equilibrium droplet size distributions in a turbulent cloud chamber with uniform supersaturation
Protein aggregates nucleate ice: the example of apoferritin
No anomalous supersaturation in ultracold cirrus laboratory experiments
Lateral facet growth of ice and snow – Part 1: Observations and applications to secondary habits
The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
Ice nucleation properties of K-feldspar polymorphs and plagioclase feldspars
Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores
A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
Activation of intact bacteria and bacterial fragments mixed with agar as cloud droplets and ice crystals in cloud chamber experiments
Anomalous holiday precipitation over southern China
Coal fly ash: linking immersion freezing behavior and physicochemical particle properties
Surface roughness during depositional growth and sublimation of ice crystals
Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber
The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions
Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
Experimental evidence of the rear capture of aerosol particles by raindrops
Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory
Pre-activation of aerosol particles by ice preserved in pores
Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 1: Immersion freezing
A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay
Ice nucleation efficiency of AgI: review and new insights
The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles
Exploring an approximation for the homogeneous freezing temperature of water droplets
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments
Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model
Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism
Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles
Comparison of measured and calculated collision efficiencies at low temperatures
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024, https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Short summary
This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal.
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024, https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Short summary
Clouds often contain several thousand times more ice crystals than aerosol particles catalyzing ice formation. This phenomenon, commonly known as ice multiplication, is often explained by secondary ice formation due to the collisions between falling ice particles and droplets. In this study, we mimic this riming process. Contrary to earlier experiments, we found no efficient ice multiplication, which fundamentally questions the importance of the rime-splintering mechanism.
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023, https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Short summary
Secondary ice production generates high concentrations of ice crystals in clouds. These processes have been poorly understood. We conducted experiments at the wind tunnel laboratory of the Johannes Gutenberg University, Mainz, on graupel–graupel and graupel–snowflake collisions. From these experiments fragment number, size, cross-sectional area, and aspect ratio were determined.
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023, https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Short summary
Using computer simulations of water, we find that water under tension freezes more easily than under normal conditions. A linear equation describes how freezing temperature increases with tension. Accordingly, simulations show that naturally occurring tension in water capillary bridges leads to higher freezing temperatures. This work is an early step in determining if atmospheric cloud droplets freeze due to naturally occurring tension, for example, during processes such as droplet collisions.
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Short summary
Attachment rate coefficients between ions and charged aerosol particles determine their lifetimes and may also influence cloud dynamics and aerosol processing. Here we present novel experiments that measure ion–aerosol attachment rate coefficients for multiply charged aerosol particles under atmospheric conditions in the CERN CLOUD chamber. Our results provide experimental discrimination between various theoretical models.
Kara D. Lamb, Jerry Y. Harrington, Benjamin W. Clouser, Elisabeth J. Moyer, Laszlo Sarkozy, Volker Ebert, Ottmar Möhler, and Harald Saathoff
Atmos. Chem. Phys., 23, 6043–6064, https://doi.org/10.5194/acp-23-6043-2023, https://doi.org/10.5194/acp-23-6043-2023, 2023
Short summary
Short summary
This study investigates how ice grows directly from vapor in cirrus clouds by comparing observations of populations of ice crystals growing in a cloud chamber against models developed in the context of single-crystal laboratory studies. We demonstrate that previous discrepancies between different experimental measurements do not necessarily point to different physical interpretations but are rather due to assumptions that were made in terms of how experiments were modeled in previous studies.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228, https://doi.org/10.5194/acp-22-13219-2022, https://doi.org/10.5194/acp-22-13219-2022, 2022
Short summary
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
Diana L. Pereira, Irma Gavilán, Consuelo Letechipía, Graciela B. Raga, Teresa Pi Puig, Violeta Mugica-Álvarez, Harry Alvarez-Ospina, Irma Rosas, Leticia Martinez, Eva Salinas, Erika T. Quintana, Daniel Rosas, and Luis A. Ladino
Atmos. Chem. Phys., 22, 6435–6447, https://doi.org/10.5194/acp-22-6435-2022, https://doi.org/10.5194/acp-22-6435-2022, 2022
Short summary
Short summary
Airborne particles were i) collected in an agricultural fields and ii) generated in the laboratory from agricultural soil samples to analyze their ice nucleating abilities. It was found that the size and chemical composition of the Mexican agricultural dust particles influence their ice nucleating behavior, where the organic components are likely responsible for their efficiency as INPs. The INP concentrations from the present study are comparable to those from higher latitudes.
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022, https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021, https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary
Short summary
Homogeneous freezing is a relevant mechanism for the formation of cirrus clouds in the upper troposphere. Based on an extensive set of homogeneous freezing experiments at the AIDA chamber with aqueous sulfuric acid aerosol, we provide a new fit line for homogeneous freezing onset conditions of sulfuric acid aerosol focusing on cirrus temperatures. In the atmosphere, homogeneous freezing thresholds have important implications on the cirrus cloud occurrence and related cloud radiative effects.
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021, https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
Short summary
We present laboratory and field studies showing that an open-lot livestock facility is a substantial source of atmospheric ice-nucleating particles (INPs). The ambient concentration of INPs from livestock facilities in Texas is very high. It is up to several thousand INPs per liter below –20 °C and may impact regional aerosol–cloud interactions. About 50% of feedlot INPs were supermicron in diameter. No notable amount of known ice-nucleating microorganisms was found in our feedlot samples.
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
Alexei A. Kiselev, Alice Keinert, Tilia Gaedeke, Thomas Leisner, Christoph Sutter, Elena Petrishcheva, and Rainer Abart
Atmos. Chem. Phys., 21, 11801–11814, https://doi.org/10.5194/acp-21-11801-2021, https://doi.org/10.5194/acp-21-11801-2021, 2021
Short summary
Short summary
Alkali feldspar is the most abundant mineral in the Earth's crust and is often present in mineral dust aerosols that are responsible for the formation of rain and snow in clouds. However, the cloud droplets containing pure potassium-rich feldspar would not freeze unless cooled down to a very low temperature. Here we show that partly replacing potassium with sodium would induce fracturing of feldspar, exposing a crystalline surface that could initiate freezing at higher temperature.
Barbara Bertozzi, Robert Wagner, Junwei Song, Kristina Höhler, Joschka Pfeifer, Harald Saathoff, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 10779–10798, https://doi.org/10.5194/acp-21-10779-2021, https://doi.org/10.5194/acp-21-10779-2021, 2021
Short summary
Short summary
Internally mixed particles composed of sulfate and organics are among the most abundant aerosol types. Their ice nucleation (IN) ability influences the formation of cirrus and, thus, the climate. We show that the presence of a thin organic coating suppresses the heterogeneous IN ability of crystalline ammonium sulfate particles. However, the IN ability of the same particle can substantially change if subjected to atmospheric processing, mainly due to differences in the resulting morphology.
Hemanth S. K. Vepuri, Cheyanne A. Rodriguez, Dimitrios G. Georgakopoulos, Dustin Hume, James Webb, Gregory D. Mayer, and Naruki Hiranuma
Atmos. Chem. Phys., 21, 4503–4520, https://doi.org/10.5194/acp-21-4503-2021, https://doi.org/10.5194/acp-21-4503-2021, 2021
Short summary
Short summary
Due to a high frequency of storm events, West Texas is an ideal location to study ice-nucleating particles (INPs) in severe precipitation. Our results present that cumulative INP concentration in our precipitation samples below −20 °C could be high in the samples collected while observing > 10 mm h−1 precipitation with notably large hydrometeor sizes and an implication of cattle feedyard bacteria inclusion. Marine bacteria were found in a subset of our precipitation and cattle feedyard samples.
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021, https://doi.org/10.5194/acp-21-3289-2021, 2021
Short summary
Short summary
The freezing of cloud drops is promoted by ice-nucleating particles immersed in the drops. This process is essential to understand ice and subsequent precipitation formation in clouds. We investigated the efficiency of several particle types to trigger immersion freezing with two single-drop levitation techniques: a wind tunnel and an acoustic levitator. The evaluation accounted for different conditions during our two series of experiments, which is also applicable to future comparison studies.
Gabor Vali
Atmos. Chem. Phys., 21, 2551–2568, https://doi.org/10.5194/acp-21-2551-2021, https://doi.org/10.5194/acp-21-2551-2021, 2021
Short summary
Short summary
The freezing of water drops in clouds is a prime example for the role of ice-nucleating particles (INPs). Mercuric iodide particles and a few other substances can be conditioned to become very effective INPs after previous ice formation and moderate heating to melt temperatures, opening a new pathway to ice formation in the atmosphere and in other systems like tissue preservation, artificial snow making, and more.
Maximilian Weitzel, Subir K. Mitra, Miklós Szakáll, Jacob P. Fugal, and Stephan Borrmann
Atmos. Chem. Phys., 20, 14889–14901, https://doi.org/10.5194/acp-20-14889-2020, https://doi.org/10.5194/acp-20-14889-2020, 2020
Short summary
Short summary
The properties of ice crystals smaller than 150 µm in diameter were investigated in a cold-room laboratory using digital holography and microscopy. Automated image processing has been used to determine the track of falling ice crystals, and collected crystals were melted and scanned under a microscope to infer particle mass. A parameterization relating particle size and mass was determined which describes ice crystals in this size range more accurately than existing relationships.
Alexei Korolev and Thomas Leisner
Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, https://doi.org/10.5194/acp-20-11767-2020, 2020
Short summary
Short summary
Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. This work presents a critical review of the laboratory studies related to secondary ice production. It aims to identify gaps in our knowledge of SIP as well as to stimulate further laboratory studies focused on obtaining a quantitative description of efficiencies for each SIP mechanism.
Steven K. Krueger
Atmos. Chem. Phys., 20, 7895–7909, https://doi.org/10.5194/acp-20-7895-2020, https://doi.org/10.5194/acp-20-7895-2020, 2020
Short summary
Short summary
When CCN are injected into a turbulent cloud chamber at a constant rate, and the rate of droplet activation is balanced by the rate of droplet fallout, a steady-state droplet size distribution (DSD) can be achieved. Analytic DSDs and PDFs of droplet radius were derived for such conditions when there is uniform supersaturation. Given the chamber height, the analytic PDF is determined by the supersaturation alone. This could allow one to infer the supersaturation that produced a measured PDF.
María Cascajo-Castresana, Robert O. David, Maiara A. Iriarte-Alonso, Alexander M. Bittner, and Claudia Marcolli
Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, https://doi.org/10.5194/acp-20-3291-2020, 2020
Short summary
Short summary
Atmospheric ice-nucleating particles are rare but relevant for cloud glaciation. A source of particles that nucleate ice above −15 °C is biological material including some proteins. Here we show that proteins of very diverse functions and structures can nucleate ice. Among these, the iron storage protein apoferritin stands out, with activity up to −4 °C. We show that its activity does not stem from correctly assembled proteins but from misfolded protein monomers or oligomers and aggregates.
Benjamin W. Clouser, Kara D. Lamb, Laszlo C. Sarkozy, Jan Habig, Volker Ebert, Harald Saathoff, Ottmar Möhler, and Elisabeth J. Moyer
Atmos. Chem. Phys., 20, 1089–1103, https://doi.org/10.5194/acp-20-1089-2020, https://doi.org/10.5194/acp-20-1089-2020, 2020
Short summary
Short summary
Previous measurements of water vapor in the upper troposphere and lower stratosphere (UT/LS) have shown unexpectedly high concentrations of water vapor in ice clouds, which may be due to an incomplete understanding of the structure of ice and the behavior of ice growth in this part of the atmosphere. Water vapor measurements during the 2013 IsoCloud campaign at the AIDA cloud chamber show no evidence of this
anomalous supersaturationin conditions similar to the real atmosphere.
Jon Nelson and Brian D. Swanson
Atmos. Chem. Phys., 19, 15285–15320, https://doi.org/10.5194/acp-19-15285-2019, https://doi.org/10.5194/acp-19-15285-2019, 2019
Short summary
Short summary
Ice crystals in clouds have a wide variety. But many crystal forms are inexplicable using the common approach of modeling the growth rates normal to the crystal faces. Instead of using only this normal-growth approach, we suggest including lateral facet growth processes. Using such lateral processes, backed up by new experiments, we give explanations for some of these puzzling forms. The forms include the center droxtal in stellar crystals, scrolls, capped columns, sheath bundles, and trigonals.
Alexander D. Harrison, Katherine Lever, Alberto Sanchez-Marroquin, Mark A. Holden, Thomas F. Whale, Mark D. Tarn, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 19, 11343–11361, https://doi.org/10.5194/acp-19-11343-2019, https://doi.org/10.5194/acp-19-11343-2019, 2019
Short summary
Short summary
Mineral dusts are a source of ice-nucleating particles (INPs) in the atmosphere. Here we present a comprehensive survey of the ice-nucleating ability of naturally occurring quartz. We show the ice-nucleating variability of quartz and its sensitivity to time spent in water and air. We propose four new parameterizations for the minerals quartz, K feldspar, albite and plagioclase to predict INP concentrations in the atmosphere and show that K-feldspar is the dominant INP type in mineral dusts.
André Welti, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 19, 10901–10918, https://doi.org/10.5194/acp-19-10901-2019, https://doi.org/10.5194/acp-19-10901-2019, 2019
Short summary
Short summary
The ice nucleation ability of singly immersed feldspar particles in suspended water droplets relevant for ice crystal formation under mixed-phase cloud conditions is presented. The effects of particle size, crystal structure, trace metal and mineralogical composition are discussed by testing up to five different diameters in the submicron range and nine different feldspar samples at conditions relevant for ice nucleation in mixed-phase clouds.
Nsikanabasi Silas Umo, Robert Wagner, Romy Ullrich, Alexei Kiselev, Harald Saathoff, Peter G. Weidler, Daniel J. Cziczo, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, https://doi.org/10.5194/acp-19-8783-2019, 2019
Short summary
Short summary
Annually, over 600 Tg of coal fly ash (CFA) is produced; a significant proportion of this amount is injected into the atmosphere, which could significantly contribute to heterogeneous ice formation in clouds. This study presents an improved understanding of CFA particles' behaviour in forming ice in clouds, especially when exposed to lower temperatures before being re-circulated in the upper troposphere or entrained into the lower troposphere.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Kaitlyn J. Suski, David M. Bell, Naruki Hiranuma, Ottmar Möhler, Dan Imre, and Alla Zelenyuk
Atmos. Chem. Phys., 18, 17497–17513, https://doi.org/10.5194/acp-18-17497-2018, https://doi.org/10.5194/acp-18-17497-2018, 2018
Short summary
Short summary
This work investigates the cloud condensation nuclei and ice nucleation activity of bacteria using cloud chamber data and a single particle mass spectrometer. The size and chemical composition of the cloud residuals show that bacterial fragments mixed with agar growth media activate preferentially over intact bacteria cells as cloud condensation nuclei. Intact bacteria cells do not make it into cloud droplets; they thus cannot serve as immersion-mode ice nucleating particles.
Jiahui Zhang, Dao-Yi Gong, Rui Mao, Jing Yang, Ziyin Zhang, and Yun Qian
Atmos. Chem. Phys., 18, 16775–16791, https://doi.org/10.5194/acp-18-16775-2018, https://doi.org/10.5194/acp-18-16775-2018, 2018
Short summary
Short summary
The Chinese Spring Festival (also known as the Chinese New Year or Lunar New Year) is the most important festival in China. This paper reports that during the Chinese Spring Festival, the precipitation over southern China has been significantly reduced. The precipitation reduction is due to anomalous northerly winds. We suppose that anomalous atmospheric circulation is likely related to the human activity during holidays. It is an interesting phenomenon.
Sarah Grawe, Stefanie Augustin-Bauditz, Hans-Christian Clemen, Martin Ebert, Stine Eriksen Hammer, Jasmin Lubitz, Naama Reicher, Yinon Rudich, Johannes Schneider, Robert Staacke, Frank Stratmann, André Welti, and Heike Wex
Atmos. Chem. Phys., 18, 13903–13923, https://doi.org/10.5194/acp-18-13903-2018, https://doi.org/10.5194/acp-18-13903-2018, 2018
Short summary
Short summary
In this study, coal fly ash particles immersed in supercooled cloud droplets were analyzed concerning their freezing behavior. Additionally, physico-chemical particle properties (morphology, chemical composition, crystallography) were investigated. In combining both aspects, components that potentially contribute to the observed freezing behavior of the ash could be identified. Interactions at the particle-water interface, that depend on suspension time and influence freezing, are discussed.
Jens Voigtländer, Cedric Chou, Henner Bieligk, Tina Clauss, Susan Hartmann, Paul Herenz, Dennis Niedermeier, Georg Ritter, Frank Stratmann, and Zbigniew Ulanowski
Atmos. Chem. Phys., 18, 13687–13702, https://doi.org/10.5194/acp-18-13687-2018, https://doi.org/10.5194/acp-18-13687-2018, 2018
Short summary
Short summary
Surface roughness of ice crystals has recently been acknowledged to strongly influence the radiative properties of cold clouds such as cirrus, but it is unclear how this roughness arises. The study investigates the origins of ice surface roughness under a variety of atmospherically relevant conditions, using a novel method to measure roughness quantitatively. It is found that faster growth leads to stronger roughness. Roughness also increases following repeated growth–sublimation cycles.
Fabian Mahrt, Claudia Marcolli, Robert O. David, Philippe Grönquist, Eszter J. Barthazy Meier, Ulrike Lohmann, and Zamin A. Kanji
Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, https://doi.org/10.5194/acp-18-13363-2018, 2018
Short summary
Short summary
The ice nucleation ability of different soot particles in the cirrus and mixed-phase cloud temperature regime is presented. The impact of aerosol particle size, particle morphology, organic matter and hydrophilicity on ice nucleation is examined. We propose ice nucleation proceeds via a pore condensation freezing mechanism for soot particles with the necessary physicochemical properties that nucleated ice well below water saturation.
Wiebke Frey, Dawei Hu, James Dorsey, M. Rami Alfarra, Aki Pajunoja, Annele Virtanen, Paul Connolly, and Gordon McFiggans
Atmos. Chem. Phys., 18, 9393–9409, https://doi.org/10.5194/acp-18-9393-2018, https://doi.org/10.5194/acp-18-9393-2018, 2018
Short summary
Short summary
The coupled system of the Manchester Aerosol Chamber and Manchester Ice Cloud Chamber was used to study the ice-forming abilities of secondary
organic aerosol particles under mixed-phase cloud conditions. Given the vast abundance of secondary organic particles in the atmosphere, they
might present an important contribution to ice-nucleating particles. However, we find that in the studied temperature range (20 to 28 °C)
the secondary organic particles do not nucleate ice particles.
Sarvesh Garimella, Daniel A. Rothenberg, Martin J. Wolf, Robert O. David, Zamin A. Kanji, Chien Wang, Michael Rösch, and Daniel J. Cziczo
Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, https://doi.org/10.5194/acp-17-10855-2017, 2017
Short summary
Short summary
This study investigates systematic and variable low bias in the measurement of ice nucleating particle concentration using continuous flow diffusion chambers. We find that non-ideal instrument behavior exposes particles to different humidities and/or temperatures than predicted from theory. We use a machine learning approach to quantify and minimize the uncertainty associated with this measurement bias.
Pascal Lemaitre, Arnaud Querel, Marie Monier, Thibault Menard, Emmanuel Porcheron, and Andrea I. Flossmann
Atmos. Chem. Phys., 17, 4159–4176, https://doi.org/10.5194/acp-17-4159-2017, https://doi.org/10.5194/acp-17-4159-2017, 2017
Short summary
Short summary
We present new measurements of the efficiency with which aerosol particles are collected by raindrops. These measurements provide the link to reconcile the scavenging coefficients obtained from theoretical approaches with those from experimental studies. We provide proof of the rear capture that is a fundamental effect on submicroscopic particles. Finally, we propose an expression to take into account this mechanism to calculate the collection efficiency for drops within the rain size range.
Lukas Kaufmann, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 17, 3525–3552, https://doi.org/10.5194/acp-17-3525-2017, https://doi.org/10.5194/acp-17-3525-2017, 2017
Short summary
Short summary
To improve the understanding of heterogeneous ice nucleation, we have subjected different ice nuclei to repeated freezing cycles and evaluated the freezing temperatures with different parameterizations of classical nucleation theory. It was found that two fit parameters were necessary to describe the temperature dependence of the nucleation rate.
Claudia Marcolli
Atmos. Chem. Phys., 17, 1595–1622, https://doi.org/10.5194/acp-17-1595-2017, https://doi.org/10.5194/acp-17-1595-2017, 2017
Short summary
Short summary
Laboratory studies from the last century have shown that some types of particles are susceptible to pre-activation, i.e. they are able to develop macroscopic ice at warmer temperatures or lower relative humidities after they had been involved in an ice nucleation event before. This review analyses these works under the presumption that pre-activation occurs by ice preserved in pores, and it discusses atmospheric scenarios for which pre-activation might be important.
Yvonne Boose, André Welti, James Atkinson, Fabiola Ramelli, Anja Danielczok, Heinz G. Bingemer, Michael Plötze, Berko Sierau, Zamin A. Kanji, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 15075–15095, https://doi.org/10.5194/acp-16-15075-2016, https://doi.org/10.5194/acp-16-15075-2016, 2016
Short summary
Short summary
We compare the immersion freezing behavior of four airborne to 11 surface-collected dust samples to investigate the role of different minerals for atmospheric ice nucleation on desert dust. We find that present K-feldspars dominate at T > 253 K, while quartz does at colder temperatures, and surface-collected dust samples are not necessarily representative for airborne dust. For improved ice cloud prediction, modeling of quartz and feldspar emission and transport are key.
Andreas Peckhaus, Alexei Kiselev, Thibault Hiron, Martin Ebert, and Thomas Leisner
Atmos. Chem. Phys., 16, 11477–11496, https://doi.org/10.5194/acp-16-11477-2016, https://doi.org/10.5194/acp-16-11477-2016, 2016
Short summary
Short summary
The precipitation in midlatitude clouds proceeds predominantly via nucleation of ice in the supercooled droplets containing foreign inclusions, like feldspar mineral dust, that have been recently identified as one of the most active ice nucleating agents in the atmosphere. We have built an apparatus to observe the freezing of feldspar immersed in up to 1500 identical droplets simultaneously. With this setup we investigated four feldspar samples and show that it can induce freezing at −5 °C.
Claudia Marcolli, Baban Nagare, André Welti, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, https://doi.org/10.5194/acp-16-8915-2016, 2016
Short summary
Short summary
Silver iodide is one of the best-investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Nevertheless, many open questions remain. This paper gives an overview of silver iodide as an ice nucleus and tries to identify the factors that influence the ice nucleation ability of silver iodide.
Daniel O'Sullivan, Benjamin J. Murray, James F. Ross, and Michael E. Webb
Atmos. Chem. Phys., 16, 7879–7887, https://doi.org/10.5194/acp-16-7879-2016, https://doi.org/10.5194/acp-16-7879-2016, 2016
Short summary
Short summary
In the absence of particles which can trigger freezing, cloud droplets can exist in a supercooled liquid state well below the melting point. However, the sources of efficient ice-nucleating particles in the atmosphere are uncertain. Here we show that ice-nucleating proteins produced by soil fungi can bind to clay particles in soils. Hence, the subsequent dispersion of soil particles into the atmosphere acts as a route through which biological ice nucleators can influence clouds.
Kuan-Ting O and Robert Wood
Atmos. Chem. Phys., 16, 7239–7249, https://doi.org/10.5194/acp-16-7239-2016, https://doi.org/10.5194/acp-16-7239-2016, 2016
Short summary
Short summary
In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature at which the mean number of critical embryos inside a droplet is unity is derived from the Boltzmann distribution function and explored as a new simplified approximation for homogeneous freezing temperature. It thus appears that the simplicity of this approximation makes it potentially useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.
Martin Schnaiter, Emma Järvinen, Paul Vochezer, Ahmed Abdelmonem, Robert Wagner, Olivier Jourdan, Guillaume Mioche, Valery N. Shcherbakov, Carl G. Schmitt, Ugo Tricoli, Zbigniew Ulanowski, and Andrew J. Heymsfield
Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016, https://doi.org/10.5194/acp-16-5091-2016, 2016
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
Peter A. Alpert and Daniel A. Knopf
Atmos. Chem. Phys., 16, 2083–2107, https://doi.org/10.5194/acp-16-2083-2016, https://doi.org/10.5194/acp-16-2083-2016, 2016
Short summary
Short summary
A stochastic immersion freezing model is introduced capable of reproducing laboratory data for a variety of experimental methods using a time and surface area dependent ice nucleation process. The assumption that droplets contain identical surface area is evaluated. A quantitative uncertainty analysis of the laboratory observed freezing process is presented. Our results imply that ice nuclei surface area assumptions are crucial for interpretation of experimental immersion freezing results.
Robert Wagner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, and Isabelle Steinke
Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, https://doi.org/10.5194/acp-16-2025-2016, 2016
Short summary
Short summary
We have investigated the enhancement of the ice nucleation ability of well-known and abundant ice nucleating particles like dust grains due to pre-activation. Temporary exposure to a low temperature (228 K) provokes that pores and surface cracks of the particles are filled with ice, which makes them better nuclei for the growth of macroscopic ice crystals at high temperatures (245–260 K).
M. L. López and E. E. Ávila
Atmos. Chem. Phys., 16, 927–932, https://doi.org/10.5194/acp-16-927-2016, https://doi.org/10.5194/acp-16-927-2016, 2016
Short summary
Short summary
This work deals with the origin and nature of atmospheric ice-nucleating particles (INPs). An accurate determination of the atmospheric INP concentration is relevant since INPs induce freezing in clouds, thus initiating an efficient mechanism for cloud particles to reach a precipitating size.
The effect of relative humidity on the INP concentration at ground level was analyzed and discussed.
B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 15, 13759–13776, https://doi.org/10.5194/acp-15-13759-2015, https://doi.org/10.5194/acp-15-13759-2015, 2015
Short summary
Short summary
We determined collision efficiencies of cloud droplets with aerosol particles experimentally and found that they were around 1 order of magnitude higher than theoretical formulations that include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This is most probably due to uncertainties and inaccuracies in the theoretical formulations of thermophoretic and diffusiophoretic processes.
Cited articles
Atkinson, J. D., Murray, B. J., and O'Sullivan, D.: Rate of Homogenous
Nucleation of Ice in Supercooled Water, J. Phys. Chem. A, 120,
6513–6520, https://doi.org/10.1021/acs.jpca.6b03843, 2016.
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T. F., Thomas, J. L., Thomson, E. S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S. G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M., and Sodeau, J. R.: A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow, Atmos. Chem. Phys., 14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014, 2014.
Bassett, D. R., Boucher, E. A., and Zettlemoyer, A. C.: Adsorption studies on
ice-nucleating substrates. Hydrophobed silicas and silver iodide, J. Colloid
Interf. Sci., 34, 436–446, https://doi.org/10.1016/0021-9797(70)90203-1, 1970.
Beard, K. V. and Pruppacher, H. R.: A Wind Tunnel Investigation of the Rate
of Evaporation of Small Water Drops Falling at Terminal Velocity in Air, J.
Atmos. Sci., 28, 1455–1464, https://doi.org/10.1175/1520-0469(1971)028<1455:AWTIOT>2.0.CO;2, 1971.
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T.,
Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., and McCullen,
S. B.: A new family of mesoporous molecular sieves prepared with liquid
crystal templates, J. Am. Chem. Soc., 114, 10834–10843, 1992.
Bergna, H. E.: Colloid Chemistry of Silica, in: The Colloid Chemistry of
Silica, Advances in Chemistry, vol. 234, American Chemical Society, Washington DC, 1–47, https://doi.org/10.1021/ba-1994-0234.ch001, 1994.
Bhambhani, M. R., Cutting, P. A., Sing, K. S. W., and Turk, D. H.: Analysis
of nitrogen adsorption isotherms on porous and nonporous silicas by the BET
and αs methods, J. Colloid Interf. Sci., 38, 109–117,
https://doi.org/10.1016/0021-9797(72)90226-3, 1972.
Boose, Y., Kanji, Z. A., Kohn, M., Sierau, B., Zipori, A., Crawford, I.,
Lloyd, G., Bukowiecki, N., Herrmann, E., Kupiszewski, P., Steinbacher, M., and Lohmann, U.: Ice Nucleating Particle Measurements at 241 K during Winter
Months at 3580 m MSL in the Swiss Alps, J. Atmos. Sci., 73,
2203–2228, https://doi.org/10.1175/JAS-D-15-0236.1, 2016.
Broekhoff, J. C. P. and de Boer, J. H.: Studies on pore systems in
catalysts: IX. Calculation of pore distributions from the adsorption branch
of nitrogen sorption isotherms in the case of open cylindrical pores A.
Fundamental equations, J. Catal., 9, 8–14,
https://doi.org/10.1016/0021-9517(67)90174-1, 1967.
Brunauer, S., Emmett, P. H., and Teller, E.: Adsorption of gases in
multimolecular layers, J. Am. Chem. Soc., 60, 309–319, 1938.
Burkert-Kohn, M., Wex, H., Welti, A., Hartmann, S., Grawe, S., Hellner, L., Herenz, P., Atkinson, J. D., Stratmann, F., and Kanji, Z. A.: Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters, Atmos. Chem. Phys., 17, 11683–11705, https://doi.org/10.5194/acp-17-11683-2017, 2017.
Campbell, J. M. and Christenson, H. K.: Nucleation- and Emergence-Limited
Growth of Ice from Pores, Phys. Rev. Lett., 120, 165701,
https://doi.org/10.1103/PhysRevLett.120.165701, 2018.
Campbell, J. M., Meldrum, F. C., and Christenson, H. K.: Is Ice Nucleation
from Supercooled Water Insensitive to Surface Roughness?, J. Phys. Chem. C,
119, 1164–1169, https://doi.org/10.1021/jp5113729, 2015.
Campbell, J. M., Meldrum, F. C., and Christenson, H. K.: Observing the
formation of ice and organic crystals in active sites, P. Natl. Acad. Sci. USA, 114, 810–815, 2017.
Chen, J., Li, Q., Xu, R., and Xiao, F.: Distinguishing the Silanol Groups in
the Mesoporous Molecular Sieve MCM-41, Angew. Chem. Int. Ed.,
34, 2694–2696, https://doi.org/10.1002/anie.199526941, 1996.
Christenson, H. K.: Two-step crystal nucleation via capillary condensation,
CrystEngComm, 15, 2030, https://doi.org/10.1039/c3ce26887j, 2013.
Cooper, W. A.: A Possible Mechanism for Contact Nucleation, J. Atmos. Sci., 31, 1832–1837, https://doi.org/10.1175/1520-0469(1974)031<1832:APMFCN>2.0.CO;2, 1974.
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y., Sirkin, Y. A. P., Molinero,
V., Mahrt, F., Brühwiler, D., Lohmann, U., and Kanji, Z. A.: Pore
condensation and freezing is responsible for ice formation below water
saturation for porous particles, P. Natl. Acad. Sci. USA, 116,
8184–8189, https://doi.org/10.1073/pnas.1813647116, 2019.
David, R. O., Fahrni, J., Marcolli, C., Mahrt, F., Brühwiler, D., and Kanji, Z. A.: The Role of Contact Angle and Pore Width on Pore Condensation and Freezing, ETH Zurich, https://doi.org/10.3929/ethz-b-000420623, 2020.
Deschamps, J., Audonnet, F., Brodie-Linder, N., Schoeffel, M., and
Alba-Simionesco, C.: A thermodynamic limit of the melting/freezing processes
of water under strongly hydrophobic nanoscopic confinement, Phys. Chem. Chem. Phys., 12, 1440–1443, https://doi.org/10.1039/B920816J, 2010.
Earle, M. E., Kuhn, T., Khalizov, A. F., and Sloan, J. J.: Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach, Atmos. Chem. Phys., 10, 7945–7961, https://doi.org/10.5194/acp-10-7945-2010, 2010.
Findenegg, G. H., Jähnert, S., Akcakayiran, D., and Schreiber, A.:
Freezing and Melting of Water Confined in Silica Nanopores, ChemPhysChem,
9, 2651–2659, https://doi.org/10.1002/cphc.200800616, 2008.
Fletcher, N. H.: The physics of rainclouds, Cambridge University Press, Cambridge, UK, ISBN 978-0-521-05013-5, 1962.
Fletcher, N. H.: Active Sites and Ice Crystal Nucleation, J. Atmos. Sci., 26, 1266–1271, https://doi.org/10.1175/1520-0469(1969)026<1266:ASAICN>2.0.CO;2, 1969.
Fukuta, N.: Activation of Atmospheric Particles as Ice Nuclei in Cold and
Dry Air, J. Atmos. Sci., 23, 741–750,
https://doi.org/10.1175/1520-0469(1966)023<0741:AOAPAI>2.0.CO;2,
1966.
Garimella, S., Rothenberg, D. A., Wolf, M. J., David, R. O., Kanji, Z. A., Wang, C., Rösch, M., and Cziczo, D. J.: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers, Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, 2017.
Hall, W. D. and Pruppacher, H. R.: The Survival of Ice Particles Falling
from Cirrus Clouds in Subsaturated Air, J. Atmos. Sci., 33,
1995–2006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2, 1976.
Hamadeh, I. M., Yeboah, S. A., Trumbull, K. A., and Griffiths, P. R.:
Preparation of Calibration Standards for Quantitative Diffuse Reflectance
Infrared Spectrometry, Appl. Spectrosc., 38, 486–491, 1984.
Harrington, J. Y., Moyle, A., Hanson, L. E., and Morrison, H.: On Calculating
Deposition Coefficients and Aspect-Ratio Evolution in Approximate Models of
Ice Crystal Vapor Growth, J. Atmos. Sci., 76, 1609–1625,
https://doi.org/10.1175/JAS-D-18-0319.1, 2019.
Higuchi, K. and Fukuta, N.: Ice in the Capillaries of Solid Particles and
its Effect on their Nucleating Ability, J. Atmos. Sci., 23,
187–190, https://doi.org/10.1175/1520-0469(1966)023<0187:IITCOS>2.0.CO;2, 1966.
Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical nucleation theory
of homogeneous freezing of water: thermodynamic and kinetic parameters,
Phys. Chem. Chem. Phys. PCCP, 17, 5514–5537, https://doi.org/10.1039/c4cp04184d,
2015.
Isono, K. and Iwai, K.: Growth Mode of Ice Crystals in Air at Low Pressure,
Nature, 22, 1149–1150, https://doi.org/10.1038/2231149a0, 1969.
Jähnert, S., Vaca Chávez, F., Schaumann, G. E., Schreiber, A.,
Schönhoff, M., and Findenegg, G. H.: Melting and freezing of water in
cylindrical silica nanopores, Phys. Chem. Chem. Phys., 10, 6039,
https://doi.org/10.1039/b809438c, 2008.
Janssen, A. H., Talsma, H., van Steenbergen, M. J., and de Jong, K. P.: Homogeneous Nucleation of Water in Mesoporous Zeolite Cavities, Langmuir, 20, 41–45, https://doi.org/10.1021/la034340k, 2004.
Jelassi, J., Castricum, H. L., Bellissent-Funel, M.-C., Dore, J., Webber, J. B. W., and Sridi-Dorbez, R.: Studies of water and ice in hydrophilic and hydrophobic mesoporous silicas: pore characterisation and phase transformations, Phys. Chem. Chem. Phys., 12, 2838–2849, https://doi.org/10.1039/B908400B, 2010.
Kanji, Z. A., Florea, O., and Abbatt, J. P. D.: Ice formation via deposition
nucleation on mineral dust and organics: dependence of onset relative
humidity on total particulate surface area, Environ. Res. Lett., 3,
025004, https://doi.org/10.1088/1748-9326/3/2/025004, 2008.
Kanji, Z. A., Welti, A., Chou, C., Stetzer, O., and Lohmann, U.: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles, Atmos. Chem. Phys., 13, 9097–9118, https://doi.org/10.5194/acp-13-9097-2013, 2013.
Kaufmann, L., Marcolli, C., Luo, B., and Peter, T.: Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory, Atmos. Chem. Phys., 17, 3525–3552, https://doi.org/10.5194/acp-17-3525-2017, 2017.
Ketcham, W. M. and Hobbs, P. V.: An experimental determination of the
surface energies of ice, Philos. Mag., 19, 1161–1173,
https://doi.org/10.1080/14786436908228641, 1969.
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A.,
Gerthsen, D., and Leisner, T.: Active sites in heterogeneous ice
nucleation – the example of K-rich feldspars, Science, 355, 367–371,
https://doi.org/10.1126/science.aai8034, 2017.
Kittaka, S., Ueda, Y., Fujisaki, F., Iiyama, T., and Yamaguchi, T.: Mechanism
of freezing of water in contact with mesoporous silicas MCM-41, SBA-15 and
SBA-16: role of boundary water of pore outlets in freezing, Phys. Chem.
Chem. Phys., 13, 17222, https://doi.org/10.1039/c1cp21458f, 2011.
Kocherbitov, V. and Alfredsson, V.: Hydration of MCM-41 Studied by Sorption
Calorimetry, J. Phys. Chem. C, 111, 12906–12913, https://doi.org/10.1021/jp072474r,
2007.
Koop, T.: Crystals creeping out of cracks, P. Natl. Acad. Sci. USA, 114,
797–799, https://doi.org/10.1073/pnas.1620084114, 2017.
Koop, T. and Murray, B. J.: A physically constrained classical description
of the homogeneous nucleation of ice in water, J. Chem. Phys., 145,
211915, https://doi.org/10.1063/1.4962355, 2016.
Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000.
Kovács, T. and Christenson, H. K.: A two-step mechanism for crystal
nucleation without supersaturation, Faraday Discuss., 159, 123–138,
https://doi.org/10.1039/C2FD20053H, 2012.
Kovács, T., Meldrum, F. C., and Christenson, H. K.: Crystal Nucleation
without Supersaturation, J. Phys. Chem. Lett., 3, 1602–1606,
https://doi.org/10.1021/jz300450g, 2012.
Kruk, M., Jaroniec, M., and Sayari, A.: Application of Large Pore MCM-41
Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption
Measurements, Langmuir, 13, 6267–6273, https://doi.org/10.1021/la970776m, 1997.
Kuhs, W. F., Sippel, C., Falenty, A., and Hansen, T. C.: Extent and relevance
of stacking disorder in “ice Ic,” P. Natl. Acad. Sci. USA, 109,
21259–21264, https://doi.org/10.1073/pnas.1210331110, 2012.
Kumar, A., Marcolli, C., Luo, B., and Peter, T.: Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 1: The K-feldspar microcline, Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, 2018.
Landers, J., Gor, G. Yu., and Neimark, A. V.: Density functional theory
methods for characterization of porous materials, Colloid. Surface. A, 437, 3–32, https://doi.org/10.1016/j.colsurfa.2013.01.007,
2013.
Linton, P., Rennie, A. R., Zackrisson, M., and Alfredsson*, V.: In Situ
Observation of the Genesis of Mesoporous Silica SBA-15: Dynamics on Length
Scales from 1 nm to 1 µm, Langmuir, 25, 4685–4691,
https://doi.org/10.1021/la803543z, 2009a.
Linton, P., Hernandez-Garrido, J.-C., Midgley, P. A., Wennerström, H., and Alfredsson, V.: Morphology of SBA-15-directed by association processes
and surface energies, Phys. Chem. Chem. Phys., 11, 10973–10982,
https://doi.org/10.1039/B913755F, 2009b.
Lohmann, U., Lüönd, F., and Mahrt, F.: An Introduction to Clouds:
From the Microscale to Climate, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139087513, 2016.
Lupi, L., Hudait, A., Peters, B., Grünwald, M., Mullen, R. G., Nguyen,
A. H., and Molinero, V.: Role of stacking disorder in ice nucleation, Nature,
551, 218–222, https://doi.org/10.1038/nature24279, 2017.
Magee, N., Moyle, A. M., and Lamb, D.: Experimental determination of the
deposition coefficient of small cirrus-like ice crystals near -50∘ C, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL026665, 2006.
Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, 2018.
Mahrt, F., Alpert, P. A., Dou, J., Grönquist, P., Arroyo, P. C., Ammann,
M., Lohmann, U., and Kanji, Z. A.: Aging induced changes in ice nucleation
activity of combustion aerosol as determined by near edge X-ray absorption
fine structure (NEXAFS) spectroscopy, Environ. Sci.-Proc. Imp., 22,
895–907, https://doi.org/10.1039/C9EM00525K, 2020a.
Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O.,
Rösch, M., Lohmann, U., and Kanji, Z. A.: The Impact of Cloud Processing
on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures, J.
Geophys. Res.-Atmos., 125, e2019JD030922, https://doi.org/10.1029/2019JD030922,
2020b.
Malkin, T. L., J. Murray, B., G. Salzmann, C., Molinero, V., J. Pickering,
S., and F. Whale, T.: Stacking disorder in ice I, Phys. Chem. Chem. Phys.,
17, 60–76, https://doi.org/10.1039/C4CP02893G, 2015.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, 2014.
Marcolli, C.: Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice, Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, 2020.
Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B.: Efficiency of immersion mode ice nucleation on surrogates of mineral dust, Atmos. Chem. Phys., 7, 5081–5091, https://doi.org/10.5194/acp-7-5081-2007, 2007.
McFarquhar, G. M., Baumgardner, D., and Heymsfield, A. J.: Background and
Overview, Meteor. Mon., 58, v–ix,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0018.1, 2017.
Miyahara, M., Kanda, H., Yoshioka, T., and Okazaki, M.: Modeling Capillary
Condensation in Cylindrical Nanopores: A Molecular Dynamics Study,
Langmuir, 16, 4293–4299, https://doi.org/10.1021/la991227e, 2000.
Moore, E. B., de la Llave, E., Welke, K., Scherlis, D. A., and Molinero, V.:
Freezing, melting and structure of ice in a hydrophilic nanopore, Phys.
Chem. Chem. Phys., 12, 4124, https://doi.org/10.1039/b919724a, 2010.
Moore, E. B., Allen, J. T., and Molinero, V.: Liquid-Ice Coexistence below
the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic
Nanopores, J. Phys. Chem. C, 116, 7507–7514, https://doi.org/10.1021/jp3012409,
2012.
Morishige, K. and Uematsu, H.: The proper structure of cubic ice confined in mesopores, J. Chem. Phys., 122, 044711, https://doi.org/10.1063/1.1836756, 2005.
Morishige, K., Yasunaga, H., and Uematsu, H.: Stability of Cubic Ice in
Mesopores, J. Phys. Chem. C, 113, 3056–3061, https://doi.org/10.1021/jp8088935,
2009.
Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.:
Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds
derived from A-Train satellite retrievals: RAIN FROM LIQUID- AND ICE-PHASE
CLOUDS, Geophys. Res. Lett., 42, 6502–6509, https://doi.org/10.1002/2015GL064604,
2015.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. R. Meteor. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Murray, B. J., L. Broadley, S., W. Wilson, T., J. Bull, S., H. Wills, R.,
K. Christenson, H., and J. Murray, E.: Kinetics of the homogeneous freezing
of water, Phys. Chem. Chem. Phys., 12, 10380–10387,
https://doi.org/10.1039/C003297B, 2010.
Muster, T. H., Prestidge, C. A., and Hayes, R. A.: Water adsorption kinetics
and contact angles of silica particles, Colloid. Surface. A, 176, 253–266, 2001.
Nichman, L., Wolf, M., Davidovits, P., Onasch, T. B., Zhang, Y., Worsnop, D. R., Bhandari, J., Mazzoleni, C., and Cziczo, D. J.: Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol, Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019, 2019.
Pach, E. and Verdaguer, A.: Pores Dominate Ice Nucleation on Feldspars, J.
Phys. Chem. C, 123, 20998–21004, https://doi.org/10.1021/acs.jpcc.9b05845, 2019.
Page, A. J. and Sear, R. P.: Heterogeneous Nucleation in and out of Pores,
Phys. Rev. Lett., 97, https://doi.org/10.1103/PhysRevLett.97.065701, 2006.
Pedevilla, P., Fitzner, M., and Michaelides, A.: What makes a good descriptor
for heterogeneous ice nucleation on OH-patterned surfaces, Phys. Rev. B,
96, 115441, https://doi.org/10.1103/PhysRevB.96.115441, 2017.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
Riechers, B., Wittbracht, F., Hütten, A., and Koop, T.: The homogeneous ice
nucleation rate of water droplets produced in a microfluidic device and the
role of temperature uncertainty, Phys. Chem. Chem. Phys., 15, 5873,
https://doi.org/10.1039/c3cp42437e, 2013.
Rogers, R. R. and Yau, M. K.: A short course in cloud physics, 3rd edn.,
Pergamon Press, Oxford., 1989.
Salazar, I. and Sepúlveda, L.: Nucleation of water by hydrophobic
silicas, J. Colloid Interf. Sci., 94, 70–74,
https://doi.org/10.1016/0021-9797(83)90235-7, 1983.
Schreiber, A., Ketelsen, I., and Findenegg, G. H.: Melting and freezing of
water in ordered mesoporous silica materials, Phys. Chem. Chem. Phys., 3,
1185–1195, https://doi.org/10.1039/B010086M, 2001.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016.
Sing, K. S. W.: Reporting physisorption data for gas/solid systems with
special reference to the determination of surface area and porosity
(Recommendations 1984), Pure Appl. Chem., 57, 603–619,
https://doi.org/10.1351/pac198557040603, 2009.
Skrotzki, J., Connolly, P., Schnaiter, M., Saathoff, H., Möhler, O., Wagner, R., Niemand, M., Ebert, V., and Leisner, T.: The accommodation coefficient of water molecules on ice – cirrus cloud studies at the AIDA simulation chamber, Atmos. Chem. Phys., 13, 4451–4466, https://doi.org/10.5194/acp-13-4451-2013, 2013.
Stetzer, O., Baschek, B., Lüönd, F., and Lohmann, U.: The Zurich Ice
Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmospheric Ice
Formation, Aerosol Sci. Tech., 42, 64–74,
https://doi.org/10.1080/02786820701787944, 2008.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso,
F., Rouquerol, J., and Sing, K. S. W.: Physisorption of gases, with special
reference to the evaluation of surface area and pore size distribution
(IUPAC Technical Report), Pure Appl. Chem., 87, 1051–1069,
https://doi.org/10.1515/pac-2014-1117, 2015.
Umo, N. S., Wagner, R., Ullrich, R., Kiselev, A., Saathoff, H., Weidler, P. G., Cziczo, D. J., Leisner, T., and Möhler, O.: Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores, Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, 2019.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Wagner, R., Kiselev, A., Möhler, O., Saathoff, H., and Steinke, I.: Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism, Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, 2016.
Wang, B., Knopf, D. A., China, S., Arey, B. W., Harder, T. H., Gilles, M. K., and Laskin, A.: Direct observation of ice nucleation events on individual
atmospheric particles, Phys. Chem. Chem. Phys., 18, 29721–29731,
https://doi.org/10.1039/C6CP05253C, 2016.
Wang, J., Xue, H., Zhou, B., Yao, Y.-F., and Hansen, E. W.: Interfacial water
in mesopores and its implications to the surface features – A solid state
NMR study, Appl. Surf. Sci., 484, 1154–1160,
https://doi.org/10.1016/j.apsusc.2019.04.095, 2019.
Zhuravlev, L. T.: The surface chemistry of amorphous silica. Zhuravlev
model, Colloid. Surface. A, 173, 1–38, 2000.
Zobrist, B., Koop, T., Luo, B. P., Marcolli, C., and Peter, T.: Heterogeneous
Ice Nucleation Rate Coefficient of Water Droplets Coated by a Nonadecanol
Monolayer, J. Phys. Chem. C, 111, 2149–2155, https://doi.org/10.1021/jp066080w,
2007.
Short summary
Ice crystal formation plays an important role in controlling the Earth's climate. However, the mechanisms responsible for ice formation in the atmosphere are still uncertain. Here we use surrogates for atmospherically relevant porous particles to determine the role of pore diameter and wettability on the ability of porous particles to nucleate ice in the atmosphere. Our results are consistent with the pore condensation and freeing mechanism.
Ice crystal formation plays an important role in controlling the Earth's climate. However, the...
Altmetrics
Final-revised paper
Preprint