Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6707-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-6707-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI–MODIS
Satellite Observations Department, Royal Netherlands
Meteorological Institute (KNMI), De Bilt, the Netherlands
Ruben Schulte
Geosciences & Remote Sensing Department, Delft University of Technology (TUD), Delft, the Netherlands
Fanny Peers
University of Exeter, Exeter, UK
Fabien Waquet
Université des Sciences et Technologies de Lille 1, Lille, France
L. Gijsbert Tilstra
Satellite Observations Department, Royal Netherlands
Meteorological Institute (KNMI), De Bilt, the Netherlands
Piet Stammes
Satellite Observations Department, Royal Netherlands
Meteorological Institute (KNMI), De Bilt, the Netherlands
Related authors
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Martin de Graaf, Karolina Sarna, Jessica Brown, Elma V. Tenner, Manon Schenkels, and David P. Donovan
Atmos. Chem. Phys., 23, 5373–5391, https://doi.org/10.5194/acp-23-5373-2023, https://doi.org/10.5194/acp-23-5373-2023, 2023
Short summary
Short summary
Clouds over the oceans reflect sunlight and cool the earth. Simultaneous measurements were performed of cloud droplet sizes and smoke particles in and near the cloud base over Ascension Island, a remote island in the Atlantic Ocean, to determine the sensitivity of cloud droplets to smoke from the African continent. The smoke was found to reduce cloud droplet sizes, which makes the cloud droplets more susceptible to evaporation, reducing cloud lifetime.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Short summary
We investigated the influence of clouds on the Absorbing Aerosol Index (AAI), an indicator of the presence of small particles in the atmosphere. Clouds produce artifacts in AAI calculations on the individual measurement (7 km) scale, which was not seen with previous instruments, as well as on large (1000+ km) scales. To reduce these artefacts, we used three different AAI calculation techniques of varying complexity. We find that the AAI artifacts are reduced when using more complex techniques.
Lieuwe G. Tilstra, Martin de Graaf, Ping Wang, and Piet Stammes
Atmos. Meas. Tech., 13, 4479–4497, https://doi.org/10.5194/amt-13-4479-2020, https://doi.org/10.5194/amt-13-4479-2020, 2020
Short summary
Short summary
The goal of the study was to determine the accuracy of the radiometric calibration of the TROPOMI instrument on board the Sentinel-5 Precursor satellite in flight. The Earth reflectances were compared to radiative transfer calculations. We report calibration accuracies and errors for 21 selected wavelength bands between 328 and 2314 nm, located in TROPOMI spectral bands 3–7. The reported numbers can be used to perform corrections that will benefit the retrievals of many atmospheric properties.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Mark ter Linden, Maarten Sneep, Johan de Haan, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 6619–6634, https://doi.org/10.5194/amt-12-6619-2019, https://doi.org/10.5194/amt-12-6619-2019, 2019
Short summary
Short summary
This paper discusses a neural network forward model used by the operational aerosol layer height (ALH) retrieval algorithm for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Sentinel-5 Precursor satellite mission. This model replaces online radiative transfer calculations within the oxygen A-band, improving the speed of the algorithm by 3 orders of magnitude. With this advancement in the algorithm's speed, TROPOMI is set to deliver the ALH product operationally.
Martin de Graaf, L. Gijsbert Tilstra, and Piet Stammes
Atmos. Meas. Tech., 12, 5119–5135, https://doi.org/10.5194/amt-12-5119-2019, https://doi.org/10.5194/amt-12-5119-2019, 2019
Short summary
Short summary
A new algorithm is described, which was used to derive direct radiative effects of aerosols above clouds. These effects are among the largest uncertainties in global climate model simulations, and observations are needed to constrain these simulations. A recently developed method was applied to a combination of satellite reflectance measurements to cover the entire shortwave (solar) spectrum. Radiative effects of aerosols over the south-east Atlantic are presented, where the effects are largest.
Swadhin Nanda, J. Pepijn Veefkind, Martin de Graaf, Maarten Sneep, Piet Stammes, Johan F. de Haan, Abram F. J. Sanders, Arnoud Apituley, Olaf Tuinder, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 3263–3280, https://doi.org/10.5194/amt-11-3263-2018, https://doi.org/10.5194/amt-11-3263-2018, 2018
Short summary
Short summary
An approach to estimate the height of aerosol plumes over land from satellite measurements of the oxygen A band is proposed. The method, termed dynamic scaling, forces the retrieval to use spectral points that contain more height information. The method is tested in a synthetic environment as well as with GOME-2A and GOME-2B measurements of wildfire plumes over Europe, with very encouraging results. This method can be easily applied to other aerosol height algorithms using least squares.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Swadhin Nanda, Martin de Graaf, Maarten Sneep, Johan F. de Haan, Piet Stammes, Abram F. J. Sanders, Olaf Tuinder, J. Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 161–175, https://doi.org/10.5194/amt-11-161-2018, https://doi.org/10.5194/amt-11-161-2018, 2018
Short summary
Short summary
Estimating aerosol layer height in the atmosphere from satellite data in the oxygen A band (758–770 nm) over land is challenging over land, since the surface is generally very bright in this wavelength region. This paper discusses an interplay between the surface and the atmosphere in their contributions to the top-of-atmosphere reflectance spectrum and the consequent biases obtained while estimating aerosol layer height, using synthetic data and real data from the GOME-2 satellite instrument.
Holger Sihler, Peter Lübcke, Rüdiger Lang, Steffen Beirle, Martin de Graaf, Christoph Hörmann, Johannes Lampel, Marloes Penning de Vries, Julia Remmers, Ed Trollope, Yang Wang, and Thomas Wagner
Atmos. Meas. Tech., 10, 881–903, https://doi.org/10.5194/amt-10-881-2017, https://doi.org/10.5194/amt-10-881-2017, 2017
Short summary
Short summary
This paper presents the independent and simple IFR method to retrieve the FOV of an instrument, i.e. the two-dimensional sensitivity distribution. IFR relies on correlated measurements featuring a higher spatial resolution and was applied to two satellite instruments, GOME-2 and OMI, and a DOAS instrument integrated in an SO2 camera. Our results confirm the commonly applied FOV distributions. IFR is applicable for verification exercises as well as degradation monitoring in the field.
Yerong Wu, Martin de Graaf, and Massimo Menenti
Atmos. Meas. Tech., 9, 5575–5589, https://doi.org/10.5194/amt-9-5575-2016, https://doi.org/10.5194/amt-9-5575-2016, 2016
Short summary
Short summary
In this paper, we developed a new algorithm to improve the retrieval of aerosol optical depth (AOD) over land with satellite measurement by refining the shape of the spectral surface reflectance to improve the estimated background reflectance in the channel used for AOD retrieval. The results show that the angular effects of the retrievals are largely reduced, including fewer occurrences of negative retrievals. This implies that the users can get more accurate data without angular bias.
Martin de Graaf, Holger Sihler, Lieuwe G. Tilstra, and Piet Stammes
Atmos. Meas. Tech., 9, 3607–3618, https://doi.org/10.5194/amt-9-3607-2016, https://doi.org/10.5194/amt-9-3607-2016, 2016
Short summary
Short summary
The shapes and sizes of the FoV from the OMI satellite instrument were determined with extensive lab tests but never verified after launch. Here, collocated measurements from MODIS, flying in formation, were used to find the most optimal shape of the OMI FoV. This shape is not quadrangular, as suggested by the provided corner coordinates of a pixel, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
Mégane Ventura, Fabien Waquet, Isabelle Chiapello, Gérard Brogniez, Frédéric Parol, Frédérique Auriol, Rodrigue Loisil, Cyril Delegove, Luc Blarel, Oleg Dubovik, Marc Mallet, Cyrille Flamant, and Paola Formenti
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-121, https://doi.org/10.5194/amt-2024-121, 2024
Preprint under review for AMT
Short summary
Short summary
Biomass burning aerosols (BBA) from Central Africa, are transported above stratocumulus clouds. The absorption of solar energy by aerosols induce warming, altering the clouds dynamics. We developed an approach that combines polarimeter and lidar to quantify it. This methodology is assessed during the AEROCLO-SA campaign. To validate it, we used flux measurements acquired during aircraft loop descents. Major perspective is the generalization of this method to the global level.
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024, https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary
Short summary
Removal of stratospheric nitrogen oxides is crucial for the formation of the ozone hole. TROPOMI satellite measurements of nitrogen dioxide reveal the presence of a not dissimilar "nitrogen hole" that largely coincides with the ozone hole. Three very distinct regimes were identified: inside and outside the ozone hole and the transition zone in between. Our results introduce a valuable and innovative application highly relevant for Antarctic ozone hole and ozone layer recovery.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Martin de Graaf, Karolina Sarna, Jessica Brown, Elma V. Tenner, Manon Schenkels, and David P. Donovan
Atmos. Chem. Phys., 23, 5373–5391, https://doi.org/10.5194/acp-23-5373-2023, https://doi.org/10.5194/acp-23-5373-2023, 2023
Short summary
Short summary
Clouds over the oceans reflect sunlight and cool the earth. Simultaneous measurements were performed of cloud droplet sizes and smoke particles in and near the cloud base over Ascension Island, a remote island in the Atlantic Ocean, to determine the sensitivity of cloud droplets to smoke from the African continent. The smoke was found to reduce cloud droplet sizes, which makes the cloud droplets more susceptible to evaporation, reducing cloud lifetime.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
Alexandre Siméon, Fabien Waquet, Jean-Christophe Péré, Fabrice Ducos, François Thieuleux, Fanny Peers, Solène Turquety, and Isabelle Chiapello
Atmos. Chem. Phys., 21, 17775–17805, https://doi.org/10.5194/acp-21-17775-2021, https://doi.org/10.5194/acp-21-17775-2021, 2021
Short summary
Short summary
For the first time, we accurately modelled the optical properties of the biomass burning aerosols (BBA) observed over the Southeast Atlantic region during their transport above clouds and over their source regions, combining a meteorology coupled with chemistry model (WRF-Chem) with innovative satellite absorbing aerosol retrievals (POLDER-3). Our results suggest a low but non-negligible brown carbon fraction (3 %) for the chemical composition of the BBA plumes observed over the source regions.
Lieuwe G. Tilstra, Olaf N. E. Tuinder, Ping Wang, and Piet Stammes
Atmos. Meas. Tech., 14, 4219–4238, https://doi.org/10.5194/amt-14-4219-2021, https://doi.org/10.5194/amt-14-4219-2021, 2021
Short summary
Short summary
In this paper we introduce the new concept of directionally dependent Lambertian-equivalent reflectivity (DLER) of the Earth's surface retrieved from satellite observations. We apply this concept to data of the GOME-2 satellite instruments to create a global database of the reflectivity of the Earth's surface, providing surface DLER for 26 wavelength bands between 328 and 772 nm as a function of the satellite viewing angle via a second-degree polynomial parameterisation.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Nikolaos Siomos, Dimitris Balis, Olaf Tuinder, L. Gijsbert Tilstra, Lucia Mona, Gelsomina Pappalardo, and Daniele Bortoli
Atmos. Chem. Phys., 21, 3193–3213, https://doi.org/10.5194/acp-21-3193-2021, https://doi.org/10.5194/acp-21-3193-2021, 2021
Short summary
Short summary
The aim of this study is to investigate the potential of the GOME-2 instrument aboard the MetOp-A, MetOp-B and MetOp-C platforms to deliver accurate geometrical features of lofted aerosol layers. For this purpose, we use archived ground-based data from lidar stations available from the EARLINET database. We show that for this well-developed and spatially well-spread aerosol layer, most GOME-2 retrievals fall within 1 km of the exact temporally collocated lidar observation.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Short summary
We investigated the influence of clouds on the Absorbing Aerosol Index (AAI), an indicator of the presence of small particles in the atmosphere. Clouds produce artifacts in AAI calculations on the individual measurement (7 km) scale, which was not seen with previous instruments, as well as on large (1000+ km) scales. To reduce these artefacts, we used three different AAI calculation techniques of varying complexity. We find that the AAI artifacts are reduced when using more complex techniques.
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020, https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Short summary
This paper presents numerical simulations using two regional climate models to study the impact of biomass fire plumes from central Africa on the radiative balance of this region. The results indicate that biomass fires can either warm the regional climate when they are located above low clouds or cool it when they are located above land. They can also alter sea and land surface temperatures by decreasing solar radiation at the surface. Finally, they can also modify the atmospheric dynamics.
Lieuwe G. Tilstra, Martin de Graaf, Ping Wang, and Piet Stammes
Atmos. Meas. Tech., 13, 4479–4497, https://doi.org/10.5194/amt-13-4479-2020, https://doi.org/10.5194/amt-13-4479-2020, 2020
Short summary
Short summary
The goal of the study was to determine the accuracy of the radiometric calibration of the TROPOMI instrument on board the Sentinel-5 Precursor satellite in flight. The Earth reflectances were compared to radiative transfer calculations. We report calibration accuracies and errors for 21 selected wavelength bands between 328 and 2314 nm, located in TROPOMI spectral bands 3–7. The reported numbers can be used to perform corrections that will benefit the retrievals of many atmospheric properties.
Erik van Schaik, Maurits L. Kooreman, Piet Stammes, L. Gijsbert Tilstra, Olaf N. E. Tuinder, Abram F. J. Sanders, Willem W. Verstraeten, Rüdiger Lang, Alessandra Cacciari, Joanna Joiner, Wouter Peters, and K. Folkert Boersma
Atmos. Meas. Tech., 13, 4295–4315, https://doi.org/10.5194/amt-13-4295-2020, https://doi.org/10.5194/amt-13-4295-2020, 2020
Short summary
Short summary
With our improved algorithm we have generated a stable, long-term dataset of fluorescence measurements from the GOME-2A satellite instrument. In this study we determined a correction for the degradation of GOME-2A in orbit and applied this correction along with other improvements to our SIFTER v2 retrieval algorithm. The result is a coherent dataset of daily and monthly averaged fluorescence values for the period 2007–2018 to track worldwide changes in photosynthetic activity by vegetation.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Adrianus de Laat, Margarita Vazquez-Navarro, Nicolas Theys, and Piet Stammes
Nat. Hazards Earth Syst. Sci., 20, 1203–1217, https://doi.org/10.5194/nhess-20-1203-2020, https://doi.org/10.5194/nhess-20-1203-2020, 2020
Short summary
Short summary
TROPOMI satellite measurements can accurately determine the height of thick volcanic ash clouds from a short-lived volcanic eruption of the Sinabung volcano in Indonesia. Standard geostationary satellite detection of volcanic ash was limited due to the presence of water and ice in the upper parts of volcanic ash clouds, a known issue. The TROPOMI satellite measurements do not suffer from this limitation, hence providing information where standard geostationary volcanic ash detection is limited.
Steven J. Abel, Paul A. Barrett, Paquita Zuidema, Jianhao Zhang, Matt Christensen, Fanny Peers, Jonathan W. Taylor, Ian Crawford, Keith N. Bower, and Michael Flynn
Atmos. Chem. Phys., 20, 4059–4084, https://doi.org/10.5194/acp-20-4059-2020, https://doi.org/10.5194/acp-20-4059-2020, 2020
Short summary
Short summary
In situ measurements of a free-tropospheric (FT) biomass burning aerosol plume in contact with the boundary layer inversion overriding a pocket of open cells (POC) and surrounding stratiform cloud are presented. The data highlight the contrasting thermodynamic, aerosol and cloud properties in the two cloud regimes and further demonstrate that the cloud regime plays a key role in regulating the flow of FT aerosols into the boundary layer, which has implications for the aerosol indirect effect.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Ping Wang, Ankie Piters, Jos van Geffen, Olaf Tuinder, Piet Stammes, and Stefan Kinne
Atmos. Meas. Tech., 13, 1413–1426, https://doi.org/10.5194/amt-13-1413-2020, https://doi.org/10.5194/amt-13-1413-2020, 2020
Short summary
Short summary
The comparison of shipborne MAX-DOAS and TROPOMI NO2 products is important for the evaluation of the TROPOMI products. The ship cruises were mainly over remote oceans, thus we only measured background tropospheric NO2. Stratospheric NO2 was measured more accurately because there was almost no contamination from tropospheric NO2. We found that the TROPOMI stratospheric NO2 vertical column densities were slightly higher than the MAX-DOAS measurements.
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Athina Argyrouli, Ronny Lutz, L. Gijsbert Tilstra, Vincent Huijnen, François Hendrick, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 755–787, https://doi.org/10.5194/amt-13-755-2020, https://doi.org/10.5194/amt-13-755-2020, 2020
Short summary
Short summary
This paper presents an improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations that are
performed with a more accurate knowledge of surface albedo, the a priori NO2 profile, and cloud and aerosol corrections.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Mark ter Linden, Maarten Sneep, Johan de Haan, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 6619–6634, https://doi.org/10.5194/amt-12-6619-2019, https://doi.org/10.5194/amt-12-6619-2019, 2019
Short summary
Short summary
This paper discusses a neural network forward model used by the operational aerosol layer height (ALH) retrieval algorithm for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Sentinel-5 Precursor satellite mission. This model replaces online radiative transfer calculations within the oxygen A-band, improving the speed of the algorithm by 3 orders of magnitude. With this advancement in the algorithm's speed, TROPOMI is set to deliver the ALH product operationally.
Martin de Graaf, L. Gijsbert Tilstra, and Piet Stammes
Atmos. Meas. Tech., 12, 5119–5135, https://doi.org/10.5194/amt-12-5119-2019, https://doi.org/10.5194/amt-12-5119-2019, 2019
Short summary
Short summary
A new algorithm is described, which was used to derive direct radiative effects of aerosols above clouds. These effects are among the largest uncertainties in global climate model simulations, and observations are needed to constrain these simulations. A recently developed method was applied to a combination of satellite reflectance measurements to cover the entire shortwave (solar) spectrum. Radiative effects of aerosols over the south-east Atlantic are presented, where the effects are largest.
Lucia T. Deaconu, Nicolas Ferlay, Fabien Waquet, Fanny Peers, François Thieuleux, and Philippe Goloub
Atmos. Chem. Phys., 19, 11613–11634, https://doi.org/10.5194/acp-19-11613-2019, https://doi.org/10.5194/acp-19-11613-2019, 2019
Short summary
Short summary
We analyse and quantify the effect of above-cloud aerosol (AAC) loading on the underlying cloud properties in the South Atlantic Ocean. We use a synergy of remote sensing retrievals collocated with ERA-Interim meteorological profiles. The results show that for larger loads of AACs, clouds are optically thicker, with an increase in liquid water path by 20 g m−2 and lower cloud-top altitudes. We also observe a strong covariation between the aerosol plume and the presence of water vapour.
Fanny Peers, Peter Francis, Cathryn Fox, Steven J. Abel, Kate Szpek, Michael I. Cotterell, Nicholas W. Davies, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, and Jim M. Haywood
Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, https://doi.org/10.5194/acp-19-9595-2019, 2019
Short summary
Short summary
The measurements from the geostationary satellite MSG/SEVIRI are used to retrieve the cloud and above-cloud aerosol properties over the South Atlantic. The technique relies on the spectral contrast and the magnitude of the signal in the visible to shortwave infrared region as well as the atmospheric correction based on forecasted water vapour profiles. The sensitivity analysis and the stability of the retrieval over time show great potential of the high-temporal-resolution observations.
Nikos Benas, Jan Fokke Meirink, Martin Stengel, and Piet Stammes
Atmos. Meas. Tech., 12, 2863–2879, https://doi.org/10.5194/amt-12-2863-2019, https://doi.org/10.5194/amt-12-2863-2019, 2019
Short summary
Short summary
Cloud glory and bow phenomena cause irregularities in satellite-based retrievals of cloud optical and microphysical properties. Here we combine two geostationary satellites over the same areas to analyze retrievals under those conditions. Results show a high sensitivity of retrievals to the assumed width of the cloud droplet size distribution and provide insights into possible improvements in satellite retrievals by appropriately adjusting this assumed parameter.
Aristeidis K. Georgoulias, Ronald J. van der A, Piet Stammes, K. Folkert Boersma, and Henk J. Eskes
Atmos. Chem. Phys., 19, 6269–6294, https://doi.org/10.5194/acp-19-6269-2019, https://doi.org/10.5194/acp-19-6269-2019, 2019
Short summary
Short summary
In this paper, a ∼21-year self-consistent global dataset from four different satellite sensors is compiled for the first time to study the long-term tropospheric NO2 patterns and trends. A novel method capable of detecting the year when a reversal of trends happened shows that tropospheric NO2 concentrations switched from positive to negative trends and vice versa over several regions around the globe during the last 2 decades.
Julien Chimot, J. Pepijn Veefkind, Johan F. de Haan, Piet Stammes, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 491–516, https://doi.org/10.5194/amt-12-491-2019, https://doi.org/10.5194/amt-12-491-2019, 2019
Short summary
Short summary
The reference OMI tropospheric NO2 product was reprocessed by new aerosol correction parameters retrieved from the 477 nm O2–O2 band over eastern China and South America for 2 years. These new parameters are from different and separate algorithms, allowing improved use of the 477 nm O2–O2 band. All the tested approaches improve the aerosol correction in the OMI tropospheric NO2 product. We demonstrate the possibility of applying an explicit aerosol correction based on the 477 nm O2–O2 band.
Alba Lorente, K. Folkert Boersma, Piet Stammes, L. Gijsbert Tilstra, Andreas Richter, Huan Yu, Said Kharbouche, and Jan-Peter Muller
Atmos. Meas. Tech., 11, 4509–4529, https://doi.org/10.5194/amt-11-4509-2018, https://doi.org/10.5194/amt-11-4509-2018, 2018
Short summary
Short summary
Light reflected by Earth’s surface is different in each direction: it appears brighter or darker in certain viewing directions. Currently this effect is not accounted for in satellite retrievals; thus surface reflectance climatologies and cloud fractions show an east-west bias across orbits (GOME2,OMI). The effect for NO2 measurements in partly cloudy scenes is substantial. We recommend that this effect in UV/Vis sensors coherently accounted for, and will be especially beneficial for TROPOMI.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-554, https://doi.org/10.5194/acp-2018-554, 2018
Preprint withdrawn
Short summary
Short summary
In this study we analyse aerosol and cloud changes over South China and investigate their possible interactions. The results show decreasing aerosol loads and increasing liquid clouds. Further analysis of these changes based on various satellite data sets show consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in evaporation of cloud droplets, thus increasing cloud amount and cover.
Swadhin Nanda, J. Pepijn Veefkind, Martin de Graaf, Maarten Sneep, Piet Stammes, Johan F. de Haan, Abram F. J. Sanders, Arnoud Apituley, Olaf Tuinder, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 3263–3280, https://doi.org/10.5194/amt-11-3263-2018, https://doi.org/10.5194/amt-11-3263-2018, 2018
Short summary
Short summary
An approach to estimate the height of aerosol plumes over land from satellite measurements of the oxygen A band is proposed. The method, termed dynamic scaling, forces the retrieval to use spectral points that contain more height information. The method is tested in a synthetic environment as well as with GOME-2A and GOME-2B measurements of wildfire plumes over Europe, with very encouraging results. This method can be easily applied to other aerosol height algorithms using least squares.
Sweta Shah, Olaf N. E. Tuinder, Jacob C. A. van Peet, Adrianus T. J. de Laat, and Piet Stammes
Atmos. Meas. Tech., 11, 2345–2360, https://doi.org/10.5194/amt-11-2345-2018, https://doi.org/10.5194/amt-11-2345-2018, 2018
Short summary
Short summary
The depletion of the Antarctic ozone layer and its changing vertical distribution have been monitored closely by satellites in the past decades ever since the Antarctic
ozone holewas discovered in the 1980s. We study and assess the quality of the ozone profiles using SCIAMACHY ultraviolet data and compare them against the ozone sondes.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Swadhin Nanda, Martin de Graaf, Maarten Sneep, Johan F. de Haan, Piet Stammes, Abram F. J. Sanders, Olaf Tuinder, J. Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 161–175, https://doi.org/10.5194/amt-11-161-2018, https://doi.org/10.5194/amt-11-161-2018, 2018
Short summary
Short summary
Estimating aerosol layer height in the atmosphere from satellite data in the oxygen A band (758–770 nm) over land is challenging over land, since the surface is generally very bright in this wavelength region. This paper discusses an interplay between the surface and the atmosphere in their contributions to the top-of-atmosphere reflectance spectrum and the consequent biases obtained while estimating aerosol layer height, using synthetic data and real data from the GOME-2 satellite instrument.
Lucia T. Deaconu, Fabien Waquet, Damien Josset, Nicolas Ferlay, Fanny Peers, François Thieuleux, Fabrice Ducos, Nicolas Pascal, Didier Tanré, Jacques Pelon, and Philippe Goloub
Atmos. Meas. Tech., 10, 3499–3523, https://doi.org/10.5194/amt-10-3499-2017, https://doi.org/10.5194/amt-10-3499-2017, 2017
Short summary
Short summary
This study presents a comparison between active (CALIOP) and passive (POLDER) remote sensing methods, developed for retrieving aerosol above-cloud optical and microphysical properties. Main results show a good agreement when the aerosol microphysics is dominated by fine-mode particles or coarse-mode dust or when the aerosol layer is well separated from the cloud below. The paper is also focused on understanding the differences between the retrievals and the limitations of each method.
Tim Vlemmix, Xinrui (Jerry) Ge, Bryan T. G. de Goeij, Len F. van der Wal, Gerard C. J. Otter, Piet Stammes, Ping Wang, Alexis Merlaud, Dirk Schüttemeyer, Andreas C. Meier, J. Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-257, https://doi.org/10.5194/amt-2017-257, 2017
Revised manuscript has not been submitted
Short summary
Short summary
We present a first analysis of UV/VIS spectral measurements obtained with the Spectrolite Breadboard Instrument (developed by TNO, The Netherlands) during the AROMAPEX campaign held in Berlin in April 2016 (campaign supported by ESA and EUFAR). This new sensor was used to measure air pollution in the form of tropospheric NO2 columns. The study focuses specifically on the retrieval of surface reflectances, an important intermediate step towards the final product.
Holger Sihler, Peter Lübcke, Rüdiger Lang, Steffen Beirle, Martin de Graaf, Christoph Hörmann, Johannes Lampel, Marloes Penning de Vries, Julia Remmers, Ed Trollope, Yang Wang, and Thomas Wagner
Atmos. Meas. Tech., 10, 881–903, https://doi.org/10.5194/amt-10-881-2017, https://doi.org/10.5194/amt-10-881-2017, 2017
Short summary
Short summary
This paper presents the independent and simple IFR method to retrieve the FOV of an instrument, i.e. the two-dimensional sensitivity distribution. IFR relies on correlated measurements featuring a higher spatial resolution and was applied to two satellite instruments, GOME-2 and OMI, and a DOAS instrument integrated in an SO2 camera. Our results confirm the commonly applied FOV distributions. IFR is applicable for verification exercises as well as degradation monitoring in the field.
Alba Lorente, K. Folkert Boersma, Huan Yu, Steffen Dörner, Andreas Hilboll, Andreas Richter, Mengyao Liu, Lok N. Lamsal, Michael Barkley, Isabelle De Smedt, Michel Van Roozendael, Yang Wang, Thomas Wagner, Steffen Beirle, Jin-Tai Lin, Nickolay Krotkov, Piet Stammes, Ping Wang, Henk J. Eskes, and Maarten Krol
Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, https://doi.org/10.5194/amt-10-759-2017, 2017
Short summary
Short summary
Choices and assumptions made to represent the state of the atmosphere introduce an uncertainty of 42 % in the air mass factor calculation in trace gas satellite retrievals in polluted regions. The AMF strongly depends on the choice of a priori trace gas profile, surface albedo data set and the correction method to account for clouds and aerosols. We call for well-designed validation exercises focusing on situations when AMF structural uncertainty has the highest impact on satellite retrievals.
Yerong Wu, Martin de Graaf, and Massimo Menenti
Atmos. Meas. Tech., 9, 5575–5589, https://doi.org/10.5194/amt-9-5575-2016, https://doi.org/10.5194/amt-9-5575-2016, 2016
Short summary
Short summary
In this paper, we developed a new algorithm to improve the retrieval of aerosol optical depth (AOD) over land with satellite measurement by refining the shape of the spectral surface reflectance to improve the estimated background reflectance in the channel used for AOD retrieval. The results show that the angular effects of the retrievals are largely reduced, including fewer occurrences of negative retrievals. This implies that the users can get more accurate data without angular bias.
Martin de Graaf, Holger Sihler, Lieuwe G. Tilstra, and Piet Stammes
Atmos. Meas. Tech., 9, 3607–3618, https://doi.org/10.5194/amt-9-3607-2016, https://doi.org/10.5194/amt-9-3607-2016, 2016
Short summary
Short summary
The shapes and sizes of the FoV from the OMI satellite instrument were determined with extensive lab tests but never verified after launch. Here, collocated measurements from MODIS, flying in formation, were used to find the most optimal shape of the OMI FoV. This shape is not quadrangular, as suggested by the provided corner coordinates of a pixel, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
W. Hewson, M. P. Barkley, G. Gonzalez Abad, H. Bösch, T. Kurosu, R. Spurr, and L. G. Tilstra
Atmos. Meas. Tech., 8, 4055–4074, https://doi.org/10.5194/amt-8-4055-2015, https://doi.org/10.5194/amt-8-4055-2015, 2015
Short summary
Short summary
This work presents the air mass factor (AMF) algorithm in use at the University of Leicester, which introduces scene-specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument-specific scattering weight calculation, and inclusion of an ozone vertical profile climatology.
M. J. M. Penning de Vries, S. Beirle, C. Hörmann, J. W. Kaiser, P. Stammes, L. G. Tilstra, O. N. E. Tuinder, and T. Wagner
Atmos. Chem. Phys., 15, 10597–10618, https://doi.org/10.5194/acp-15-10597-2015, https://doi.org/10.5194/acp-15-10597-2015, 2015
A. Castagna, H. Evangelista, L. G. Tilstra, and R. Kerr
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11671-2014, https://doi.org/10.5194/bgd-11-11671-2014, 2014
Revised manuscript not accepted
L. G. Tilstra, R. Lang, R. Munro, I. Aben, and P. Stammes
Atmos. Meas. Tech., 7, 2047–2059, https://doi.org/10.5194/amt-7-2047-2014, https://doi.org/10.5194/amt-7-2047-2014, 2014
P. Wang and P. Stammes
Atmos. Meas. Tech., 7, 1331–1350, https://doi.org/10.5194/amt-7-1331-2014, https://doi.org/10.5194/amt-7-1331-2014, 2014
J.-T. Lin, R. V. Martin, K. F. Boersma, M. Sneep, P. Stammes, R. Spurr, P. Wang, M. Van Roozendael, K. Clémer, and H. Irie
Atmos. Chem. Phys., 14, 1441–1461, https://doi.org/10.5194/acp-14-1441-2014, https://doi.org/10.5194/acp-14-1441-2014, 2014
J. F. Meirink, R. A. Roebeling, and P. Stammes
Atmos. Meas. Tech., 6, 2495–2508, https://doi.org/10.5194/amt-6-2495-2013, https://doi.org/10.5194/amt-6-2495-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
Remote Sensing detectability of airborne Arctic dust
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
The role of refractive indices in measuring mineral dust with high-spectral resolution infrared satellite sounders: Application to the Gobi Desert
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Opinion: Aerosol remote sensing over the next 20 years
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Thermal infrared observations of a western United States biomass burning aerosol plume
A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves
Wind-driven emissions of coarse-mode particles in an urban environment
Measurement report: Dust and anthropogenic aerosols' vertical distributions over northern China dense aerosols gathered at the top of the mixing layer
Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Spectral dependence of birch and pine pollen optical properties using a synergy of lidar instruments
Validation activities of Aeolus wind products on the southeastern Iberian Peninsula
Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India
Spatiotemporal variation characteristics of global fires and their emissions
The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: a sub-daily variability analysis
Comparison of dust optical depth from multi-sensor products and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) dust reanalysis over North Africa, the Middle East, and Europe
Understanding day–night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia
Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest
Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions
Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars
Vertical characterization of fine and coarse dust particles during an intense Saharan dust outbreak over the Iberian Peninsula in springtime 2021
Aerosol optical depth regime over megacities of the world
South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season
Circular polarization in atmospheric aerosols
Spatiotemporal continuous estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
Robust evidence for reversal of the trend in aerosol effective climate forcing
Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season
A decadal assessment of the climatology of aerosol and cloud properties over South Africa
Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
Long-range transport of Asian dust to the Arctic: identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024, https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Short summary
This study looks at the influence of aerosol and meteorology on precipitating and non-precipitating clouds over the Indo-Gangetic Plain (IGP). A major finding of this study was that the high loading of aerosols led to a high occurrence of precipitating clouds under unstable conditions in summer. The study has the potential to open a new avenue for the scientific community to further explore and understand the complications of aerosol–cloud–precipitation over the complex topography of the IGP.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024, https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
Short summary
We found that the formation of the extreme trans-Atlantic African dust event in June 2015 was associated with a brief surge in dust emissions over western North Africa and extreme circulation patterns, including intensified easterly jets, which facilitated the westward transport of dust. The dust plume modified radiative flux along its transport pathway but had minor impacts on air quality in the US due to the record-high Caribbean low-level jet advecting part of the plume to the Pacific.
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024, https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Short summary
Wildfires in California (CA) have grown very large during the past 20 years. These fires emit sunlight-absorbing aerosols. Analyzing observational data, our study finds that aerosols emitted from large fires in northern CA spread throughout CA and Nevada and heat the atmosphere. This heating is consistent with larger-than-normal temperatures and dry conditions. Further study is needed to determine how much the aerosols heat the atmosphere and whether they are drying the atmosphere as well.
Norman T. O’Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1057, https://doi.org/10.5194/egusphere-2024-1057, 2024
Short summary
Short summary
Dust from mid-latitude deserts or from local drainage basins is a weak component of atmospheric aerosols in the Arctic. Satellite-based dust estimates are often overestimated because dust and cloud measurements can be confused. Illustrations are given with an emphasis on the flawed claim that a classic indicator of dust (negative brightness temperature differences) is proof of the presence of airborne Arctic dust. Low altitude “warm” water plumes are the likely source of such negative values.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024, https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Short summary
A new method, the geographical detector method (GDM), has been applied to satellite data, in addition to commonly used statistical methods, to study the sensitivity of cloud properties to aerosol over China. Different constraints for aerosol and cloud liquid water path apply over polluted and clean areas. The GDM shows that cloud parameters are more sensitive to combinations of parameters than to individual parameters, but confounding effects due to co-variation of parameters cannot be excluded.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Perla Alalam, Fabrice Ducos, and Hervé Herbin
EGUsphere, https://doi.org/10.5194/egusphere-2024-888, https://doi.org/10.5194/egusphere-2024-888, 2024
Short summary
Short summary
This study dives into the impact of mineral dust laboratory complex refractive indices (CRI) on quantifying the dust microphysical properties using satellite infrared remote sensing. Results show that using new CRI obtained by advanced realistic techniques can improve the accuracy of these measurements, emphasizing the importance of choosing the suitable CRI in atmospheric models. This improvement is crucial for better predicting the dust radiative effect and impact on the climate.
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024, https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
Short summary
Increased wildfire intensity has resulted in taller wildfire smoke plumes. We investigate the vertical structure of wildfire smoke plumes using aircraft lidar data and establish two effective smoke plume height metrics. Four novel satellite-based plume height products are evaluated for wildfires in the western US. Our results provide guidance on the strengths and limitations of these satellite products and set the stage for improved plume rise estimates by leveraging satellite products.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Farnaz Hosseinpour and Eric M. Wilcox
Atmos. Chem. Phys., 24, 707–724, https://doi.org/10.5194/acp-24-707-2024, https://doi.org/10.5194/acp-24-707-2024, 2024
Short summary
Short summary
This study shows mechanistic relationships between the radiative effect of dust aerosols in the Saharan air layer and the kinetic energy of the African easterly waves across the tropical Atlantic Ocean using 22 years of daily satellite observations and reanalysis data based on satellite assimilation. Our findings suggest that dust aerosols not merely are transported by these waves but also contribute to the growth of waves through the enhancement of diabatic heating induced by dust.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Zhuang Wang, Chune Shi, Hao Zhang, Yujia Chen, Xiyuan Chi, Congzi Xia, Suyao Wang, Yizhi Zhu, Kaidi Zhang, Xintong Chen, Chengzhi Xing, and Cheng Liu
Atmos. Chem. Phys., 23, 14271–14292, https://doi.org/10.5194/acp-23-14271-2023, https://doi.org/10.5194/acp-23-14271-2023, 2023
Short summary
Short summary
The annual cycle of dust and anthropogenic aerosols' vertical distributions was revealed by polarization Raman lidar in Beijing. Anthropogenic aerosols typically accumulate at the top of the mixing layer (ML) due to the hygroscopic growth of atmospheric particles, and this is most significant in summer. There is no significant relationship between bottom dust mass concentration and ML height, while the dust in the upper air tends to be distributed near the mixing layer.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023, https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating the assimilation of the NOAA VIIRS AOD product in the ECMWF model. It shows that the introduction of VIIRS in the CAMS data assimilation system enhances the accuracy of the aerosol analysis, particularly over Europe and desert and maritime sites.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Jesús Abril-Gago, Pablo Ortiz-Amezcua, Diego Bermejo-Pantaleón, Juana Andújar-Maqueda, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Francisco Navas-Guzmán, Lucas Alados-Arboledas, Inmaculada Foyo-Moreno, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 8453–8471, https://doi.org/10.5194/acp-23-8453-2023, https://doi.org/10.5194/acp-23-8453-2023, 2023
Short summary
Short summary
Validation activities of Aeolus wind products were performed in Granada with different upward-probing instrumentation (Doppler lidar system and radiosondes) and spatiotemporal collocation criteria. Specific advantages and disadvantages of each instrument were identified, and an optimal comparison criterion is proposed. Aeolus was proven to provide reliable wind products, and the upward-probing instruments were proven to be useful for Aeolus wind product validation activities.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Mukunda M. Gogoi, S. Suresh Babu, Ryoichi Imasu, and Makiko Hashimoto
Atmos. Chem. Phys., 23, 8059–8079, https://doi.org/10.5194/acp-23-8059-2023, https://doi.org/10.5194/acp-23-8059-2023, 2023
Short summary
Short summary
Considering the climate warming potential of atmospheric black carbon (BC), satellite-based retrieval is a novel idea. This study highlights the regional distribution of BC based on observations by the Cloud and Aerosol Imager-2 on board the GOSAT-2 satellite and near-surface measurements of BC in ARFINET. The satellite retrieval fairly depicts the regional and seasonal features of BC over the Indian region, which are similar to those recorded by surface observations.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Jacob Z. Tindan, Qinjian Jin, and Bing Pu
Atmos. Chem. Phys., 23, 5435–5466, https://doi.org/10.5194/acp-23-5435-2023, https://doi.org/10.5194/acp-23-5435-2023, 2023
Short summary
Short summary
We use the Infrared Atmospheric Sounder Interferometer (IASI) retrievals of dust variables (dust optical depth and dust layer height) and surface observations to understand the day- and nighttime variations in dust aerosols over the dust belt. Our results show that daytime dust aerosols are significantly different from nighttime, and such day–night variations are influenced by meteorological factors such as wind speed, precipitation, and turbulent motions within the atmospheric boundary layer.
Ross Herbert and Philip Stier
Atmos. Chem. Phys., 23, 4595–4616, https://doi.org/10.5194/acp-23-4595-2023, https://doi.org/10.5194/acp-23-4595-2023, 2023
Short summary
Short summary
We provide robust evidence from multiple sources showing that smoke from fires in the Amazon rainforest significantly modifies the diurnal cycle of convection and cools the climate. Low to moderate amounts of smoke increase deep convective clouds and rain, whilst beyond a threshold amount, the smoke starts to suppress the convection and rain. We are currently at this threshold, suggesting increases in fires from agricultural practices or droughts will reduce cloudiness and rain over the region.
Yue Huang, Jasper F. Kok, Masanori Saito, and Olga Muñoz
Atmos. Chem. Phys., 23, 2557–2577, https://doi.org/10.5194/acp-23-2557-2023, https://doi.org/10.5194/acp-23-2557-2023, 2023
Short summary
Short summary
Global aerosol models and remote sensing retrievals use dust optical models with inconsistent and inaccurate dust shape approximations. Here, we present a new dust optical model constrained by measured dust shape distributions. This new dust optical model is an improvement on the current dust optical models used in models and retrieval algorithms, as quantified by comparisons against laboratory and field observations of dust optics.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
María Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Diego Bermejo-Pantaleón, Michaël Sicard, Vanda Salgueiro, Francisco Molero, Clara Violeta Carvajal-Pérez, María José Granados-Muñoz, Adolfo Comerón, Flavio T. Couto, Rubén Barragán, María-Paz Zorzano, Juan Antonio Bravo-Aranda, Constantino Muñoz-Porcar, María João Costa, Begoña Artíñano, Alejandro Rodríguez-Gómez, Daniele Bortoli, Manuel Pujadas, Jesús Abril-Gago, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 143–161, https://doi.org/10.5194/acp-23-143-2023, https://doi.org/10.5194/acp-23-143-2023, 2023
Short summary
Short summary
An intense Saharan dust outbreak crossing the Iberian Peninsula in springtime was monitored to determinine the specific contribution of fine and coarse dust particles at five lidar stations, strategically covering its SW–central–NE pathway. Expected dust ageing along the transport started unappreciated. A different fine-dust impact on optical (~30 %) and mass (~10 %) properties was found. Use of polarized lidar measurements (mainly in elastic systems) for fine/coarse dust separation is crucial.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Santiago Gassó and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 22, 13581–13605, https://doi.org/10.5194/acp-22-13581-2022, https://doi.org/10.5194/acp-22-13581-2022, 2022
Short summary
Short summary
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we can learn about their composition from space. New satellite sensor technology measures full polarization of reflected sunlight. This paper considers circular polarization, an overlooked category of polarization with distinctive features that could bring new insights. We review existing literature and make novel computations to consider this previously underappreciated category of polarization.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Abdulaziz Tunde Yakubu and Naven Chetty
Atmos. Chem. Phys., 22, 11065–11087, https://doi.org/10.5194/acp-22-11065-2022, https://doi.org/10.5194/acp-22-11065-2022, 2022
Short summary
Short summary
This study examined the source of atmospheric aerosols and their role in forming clouds and rainfall over South Africa. The research provided answers to the cause of low precipitation, mainly linked to drought and water shortages experienced over the region. Further insight into the cause of occasional flooding that occurs in other parts of the area is provided. Finally, the study described the relationship between aerosol–cloud precipitation based on observation over the region.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022, https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Short summary
Long-range transport of Asian dust to the Arctic was considered an important source of Arctic air pollution. Different transport routes to the Arctic had divergent effects on the evolution of aerosol properties. Depositions of long-range-transported dust particles can reduce the Arctic surface albedo considerably. This study implied that the ubiquitous long-transport dust from China exerted considerable aerosol indirect effects on the Arctic and may have potential biogeochemical significance.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
David W. Fillmore, David A. Rutan, Seiji Kato, Fred G. Rose, and Thomas E. Caldwell
Atmos. Chem. Phys., 22, 10115–10137, https://doi.org/10.5194/acp-22-10115-2022, https://doi.org/10.5194/acp-22-10115-2022, 2022
Short summary
Short summary
This paper presents an evaluation of the aerosol analysis incorporated into the Clouds and the Earth's Radiant Energy System (CERES) data products as well as the aerosols' impact on solar radiation reaching the surface. CERES is a NASA Earth observation mission with instruments flying on various polar-orbiting satellites. Its primary objective is the study of the radiative energy balance of the climate system as well as examination of the influence of clouds and aerosols on this balance.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022, https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Short summary
The evolution of aerosol in biomass burning smoke plumes that travel over marine clouds off the Atlantic coast of central Africa was studied using measurements made by a lidar deployed on a high-altitude aircraft. The main finding was that the physical properties of aerosol do not change appreciably once the plume has left land and travels over the ocean over a timescale of 1 to 2 d. Almost all particles in the plume are of radius less than 1 micrometer and spherical in shape.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Sudip Chakraborty, Bin Guan, Duane E. Waliser, and Arlindo M. da Silva
Atmos. Chem. Phys., 22, 8175–8195, https://doi.org/10.5194/acp-22-8175-2022, https://doi.org/10.5194/acp-22-8175-2022, 2022
Short summary
Short summary
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AARs) and shows the characteristics of individual AARs such as length, width, length-to-width ratio, transport strength, and dominant transport direction, the seasonal variations, the relationship to the spatial distribution of surface emissions, the vertical profiles of wind, aerosol mixing ratio, and aerosol mass fluxes, and the major planetary-scale aerosol transport pathways.
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022, https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary
Short summary
In this paper, a Sahara dust event is tracked with the spaceborne lidars ALADIN and CALIOP and the models ECMWF and HYSPLIT. The performance of ALADIN and CALIOP on tracking the dust event and on the observations of dust optical properties and wind fields during the dust transport is evaluated. The dust mass advection is defined, which is calculated with the combination of data from ALADIN and CALIOP coupled with the products from models to describe the dust transport quantitatively.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Cited articles
Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan,
V., and Welton, E. J.: Reduction of Tropical Cloudiness by Soot, Science,
288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2000. a
Ahmad, Z., Bhartia, P. K., and Krotkov, N.: Spectral properties of
backscattered UV radiation in cloudy atmospheres, J. Geophys. Res., 109,
D01201, https://doi.org/10.1029/2003JD003395, 2004. a
Bergman, J. W. and Salby, M. L.: Diurnal Variations of Cloud Cover and Their
Relationship to Climatological Conditions, J. Climate, 9, 2802–2820,
https://doi.org/10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2, 1996. a
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007. a, b
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.,
Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 2013. a
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. a
Bréon, F.-M. and Doutriaux-Boucher, M.: A comparison of cloud droplet radii
measured from space, IEEETGR, 43, 1796–1805, https://doi.org/10.1109/TGRS.2005.852838,
2005. a
Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J. B.:
The Albedo of Fractal Stratocumulus Clouds, J. Atmos. Sci., 51, 2434–2455,
1994. a
Chand, D., Anderson, T. L., Wood, R., Charlson, R. J., Hu, Y., Liu, Z., and
Vaughan, M.: Quantifying above-cloud aerosol using spaceborne lidar for
improved understanding of cloud-sky direct climate forcing,
J. Geophys. Res., 113, D13206, https://doi.org/10.1029/2007JD009433, 2008. a
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.:
Satellite-derived direct radiative effect of aerosols dependent on cloud
cover, Nat. Geosci., 2, 181–184, https://doi.org/10.1038/NGEO437, 2009. a, b, c, d
Coddington, O. M., Pilewskie, P., Redemann, J., Platnick, S., Russell, P. B.,
Schmidt, K. S., Gore, W. J., Livingston, J., Wind, G., and Vukicevic, T.:
Examining the impact of overlying aerosols on the retrieval of cloud optical
properties from passive remote sensing, J. Geophys. Res., 115, D10211,
https://doi.org/10.1029/2009JD012829, 2010. a
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from
Photographs of the Sun's Glitter, J. Opt. Soc. Am., 44, 838–850,
https://doi.org/10.1364/JOSA.44.000838,
1954. a
de Graaf, M., Stammes, P., Torres, O., and Koelemeijer, R. B. A.: Absorbing
Aerosol Index: Sensitivity Analysis, application to GOME and comparison with
TOMS, J. Geophys. Res., 110, D01201, https://doi.org/10.1029/2004JD005178, 2005. a
de Graaf, M., Stammes, P., and Aben, E. A. A.: Analysis of reflectance spectra
of UV-absorbing aerosol scenes measured by SCIAMACHY, J. Geophys. Res.,
112, D02206, https://doi.org/10.1029/2006JD007249, 2007. a
de Graaf, M., Tilstra, L. G., Aben, I., and Stammes, P.: Satellite
observations of the seasonal cycles of absorbing aerosols in Africa related
to the monsoon rainfall, 1995–2008, Atmos. Environ., 44, 1274–1283,
https://doi.org/10.1016/j.atmosenv.2009.12.038, 2010. a
de Graaf, M., Bellouin, N., Tilstra, L. G., Haywood, J., and Stammes, P.:
Aerosol direct radiative effect of smoke over clouds over the southeast
Atlantic Ocean from 2006 to 2009, Geophys. Res. Lett., 41, 7723–7730,
https://doi.org/10.1002/2014GL061103, 2014. a, b, c
de Graaf, M., Sihler, H., Tilstra, L. G., and Stammes, P.: How big is an OMI pixel?, Atmos. Meas. Tech., 9, 3607–3618, https://doi.org/10.5194/amt-9-3607-2016, 2016. a, b
De Graaf, M., Stammes, P., and Tilstra, L. G.: OMI-MODIS aerosol direct radiative effect over clouds, version 1.0, Royal Netherlands Meteorological Institute (KNMI), available at: https://doi.org/10.21944/omi-modis-aerosol-direct-effect, 2019a. a
de Graaf, M., Tilstra, L. G., and Stammes, P.: Aerosol direct radiative effect over clouds from a synergy of Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances, Atmos. Meas. Tech., 12, 5119–5135, https://doi.org/10.5194/amt-12-5119-2019, 2019b. a, b, c, d, e
Deaconu, L. T., Waquet, F., Josset, D., Ferlay, N., Peers, F., Thieuleux, F., Ducos, F., Pascal, N., Tanré, D., Pelon, J., and Goloub, P.: Consistency of aerosols above clouds characterization from A-Train active and passive measurements, Atmos. Meas. Tech., 10, 3499–3523, https://doi.org/10.5194/amt-10-3499-2017, 2017. a
Deschamps, P. Y., Breon, F. M., Leroy, M., Podaire, A., Bricaud, A., Buriez,
J. C., and Seze, G.: The POLDER mission: instrument characteristics and
scientific objectives, IEEE T. Geosci. Remote,
32, 598–615, https://doi.org/10.1109/36.297978, 1994. a, b
Feingold, G., Jiang, H., and Harrington, J. Y.: On smoke suppression of clouds
in Amazonia, Geophys. Res. Lett., 32, L02804, https://doi.org/10.1029/2004GL021369, 2005. a
Feng, N. and Christopher, S. A.: Measurement-based estimates of direct
radiative effects of absorbing aerosols above clouds, J. Geophys. Res.,
120, 6908–6921, https://doi.org/10.1002/2015JD023252, 2015. a
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W.,
Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga,
G., Schulz, M., and Van Dorland, R.: Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
in: Climate Change 2007: The Physical Science Basis, edited by: Solomon, S.,
Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and
Miller, H., p. 996, Cambridge Univ. Press, Cambridge, UK and New York, NY,
USA, 2007. a
Haywood, J. M., Osborne, S. R., Francis, P. N., Neil, A., Formenti, P.,
Andreae, M. O., and Kaye, P. H.: The mean physical and optical properties of
regional haze dominated by biomass burning aerosol measured from the C–130
aircraft during SAFARI 2000, J. Geophys. Res., 108, 8473,
https://doi.org/10.1029/2002JD002226, 2003. a
Haywood, J. M., Osborne, S. R., and Abel, S. J.: The effect of overlying
absorbing aerosol layers on remote sensing retrievals of cloud effective
radius and cloud optical depth, Q. J. Roy. Meteorol. Soc., 130, 779–800,
https://doi.org/10.1256/qj.03.100, 2004. a
Jethva, H. and Torres, O.: Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument, Atmos. Chem. Phys., 11, 10541–10551, https://doi.org/10.5194/acp-11-10541-2011, 2011. a, b, c
Jethva, H., Torres, O., Remer, L. A., and Bhartia, P. K.: A Color Ratio Method
for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of
Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS
Measurements, IEEE T. Geosci. Remote, 51, 3862–3870,
https://doi.org/10.1109/TGRS.2012.2230008, 2013. a, b
Jethva, H., Torres, O., Waquet, F., Chand, D., and Hu, Y.: How do A-train
Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A
Case Study-based Assessment, Geophys. Res. Lett., 41, 186–192,
https://doi.org/10.1002/2013GL058405, 2014. a, b
Johnson, B. T., Shine, K. P., and Forster, P. M.: The semi–direct aerosol
effect: Impact of absorbing aerosols on marine stratocumulus,
Q. J. Roy. Meteorol. Soc., 130, 1407–1422, https://doi.org/10.1256/qj.03.61, 2004. a
Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser,
H., de Vries, J., Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone
monitoring instrument, IEEE T. Geosci. Remote, 44, 1093–1101, 2006. a
Marbach, T., Riedi, J., Lacan, A., and Schluessel, P.: The 3MI Mission:
Multi-Viewing-Channel-Polarisation Imager of the EUMETSAT Polar System
– Second Generation (EPS-SG) dedicated to aerosol and cloud monitoring, Proc.
SPIE, 9613, 271–278, https://doi.org/10.1117/12.2186978, 2015. a
Meyer, K., Platnick, S., Oreopoulos, L., and Lee, D.: Estimating the direct
radiative effect of absorbing aerosols overlying marine boundary layer clouds
in the southeast Atlantic using MODIS and CALIOP, J. Geophys. Res., 118, 4801–4815,
https://doi.org/10.1002/jgrd.50449, 2013. a, b
Meyer, K., Platnick, S., and Zhang, Z.: Simultaneously inferring above-cloud
absorbing aerosol optical thickness and underlying liquid phase cloud optical
and microphysical properties using MODIS, J. Geophys. Res., 120,
5524–5547, https://doi.org/10.1002/2015JD023128, 2015. a, b
Oreopoulos, L. and Davies, R.: Plane Parallel Albedo Biases from Satellite
Observations. Part I: Dependence on Resolution and Other Factors,
J. Climate, 11, 919–932,
https://doi.org/10.1175/1520-0442(1998)011<0919:PPABFS>2.0.CO;2, 1998. a
Peers, F., Waquet, F., Cornet, C., Dubuisson, P., Ducos, F., Goloub, P., Szczap, F., Tanré, D., and Thieuleux, F.: Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect, Atmos. Chem. Phys., 15, 4179–4196, https://doi.org/10.5194/acp-15-4179-2015, 2015. a, b, c, d, e, f, g, h
Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Livingston, J. M., Redemann, J., Dubovik, O., and Strawa, A.: Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155–1169, https://doi.org/10.5194/acp-10-1155-2010, 2010. a
Schulte, R.: A quantitative comparison of spaceborne spectrometry and
polarimetry measurements of the aerosol direct radiative effect over clouds,
Tech. Rep. KNMI IR–2016–09, Royal Netherlands Meteorological Institute
(KNMI), 2016. a
Sorooshian, A., Feingold, G., Lebsock, M. D., Jiang, H., and Stephens, G. L.:
On the precipitation susceptibility of clouds to aerosol perturbations,
Geophys. Res. Lett., 36, L13803, https://doi.org/10.1029/2009GL038993, 2009. a
Swap, R., Garstang, M., Macko, S. A., Tyson, P. D., Maenhaut, W., Artaxo, P.,
Kållberg, P., and Talbot, R.: The long-range transport of
southern African aerosols to the tropical South Atlantic,
J. Geophys. Res., 101, 23777–23791, https://doi.org/10.1029/95JD01049, 1996. a
Torres, O., Jethva, H., and Bhartia, P. K.: Retrieval of Aerosol Optical Depth
above Clouds from OMI Observations: Sensitivity Analysis and Case Studies,
J. Atmos. Sci., 69, 0022–4928, https://doi.org/10.1175/JAS-D-11-0130.1, 2011. a
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. a
Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M.: FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals, Atmos. Chem. Phys., 8, 6565–6576, https://doi.org/10.5194/acp-8-6565-2008, 2008. a
Waquet, F., Cornet, C., Deuzé, J.-L., Dubovik, O., Ducos, F., Goloub, P., Herman, M., Lapyonok, T., Labonnote, L. C., Riedi, J., Tanré, D., Thieuleux, F., and Vanbauce, C.: Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements, Atmos. Meas. Tech., 6, 991–1016, https://doi.org/10.5194/amt-6-991-2013, 2013a. a, b
Waquet, F., Peers, F., Ducos, F., Goloub, P., Platnick, S., Riedi, J., Tanré,
D., and Thieuleux, F.: Global analysis of aerosol properties above clouds,
Geophys. Res. Lett., 40, 5809–5814, https://doi.org/10.1002/2013GL057482,
2013b. a
Wilcox, E. M.: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol, Atmos. Chem. Phys., 10, 11769–11777, https://doi.org/10.5194/acp-10-11769-2010, 2010. a
Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke aerosols over clouds, Atmos. Chem. Phys., 12, 139–149, https://doi.org/10.5194/acp-12-139-2012, 2012. a
Yu, H. and Zhang, Z.: New Directions: Emerging satellite observations of
above-cloud aerosols and direct radiative forcing, Atmos. Environ., 72,
36–40, https://doi.org/10.1016/j.atmosenv.2013.02.017, 2013. a
Yu, H., Liu, S. C., and Dickinson, R. E.: Radiative effects of aerosols on the
evolution of the atmospheric boundary layer, J. Geophys. Res., 107, 4142,
https://doi.org/10.1029/2001JD000754, 2002. a
Zeng, S., Cornet, C., Parol, F., Riedi, J., and Thieuleux, F.: A better understanding of cloud optical thickness derived from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A-Train constellation, Atmos. Chem. Phys., 12, 11245–11259, https://doi.org/10.5194/acp-12-11245-2012, 2012. a
Zhang, Z., Meyer, K., Platnick, S., Oreopoulos, L., Lee, D., and Yu, H.: A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777–1789, https://doi.org/10.5194/amt-7-1777-2014, 2014.
a
Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M.,
and Formenti, P.: Smoke and Clouds above the Southeast Atlantic: Upcoming
Field Campaigns Probe Absorbing Aerosol’s Impact on Climate,
B. Am. Meteor. Soc., 97, 1131–1135, https://doi.org/10.1175/BAMS-D-15-00082.1,
2016. a, b
Short summary
The radiative effect from smoke by wildfires has been found to be much stronger than models predict. The effect is complex; smoke generally cools the climate system by reflecting sunlight but strongly warms the system when it is found over a bright cloud deck. In this paper three different satellite datasets are compared and all three confirm the strong warming of African smoke over the cloud deck in the south-east Atlantic. The intercomparison reduces the uncertainties in the observations.
The radiative effect from smoke by wildfires has been found to be much stronger than models...
Altmetrics
Final-revised paper
Preprint