Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5861-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-5861-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica
V. Holly L. Winton
CORRESPONDING AUTHOR
British Antarctic Survey, Cambridge, CB3 0ET, UK
Alison Ming
British Antarctic Survey, Cambridge, CB3 0ET, UK
Nicolas Caillon
University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000
Grenoble, France
Lisa Hauge
British Antarctic Survey, Cambridge, CB3 0ET, UK
Anna E. Jones
British Antarctic Survey, Cambridge, CB3 0ET, UK
Joel Savarino
University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000
Grenoble, France
British Antarctic Survey, Cambridge, CB3 0ET, UK
Markus M. Frey
British Antarctic Survey, Cambridge, CB3 0ET, UK
Related authors
V. Holly L. Winton, Robert Mulvaney, Joel Savarino, Kyle R. Clem, and Markus M. Frey
Clim. Past, 20, 1213–1232, https://doi.org/10.5194/cp-20-1213-2024, https://doi.org/10.5194/cp-20-1213-2024, 2024
Short summary
Short summary
In 2018, a new 120 m ice core was drilled in a region located under the Antarctic ozone hole. We present the first results including a 1300-year record of snow accumulation and aerosol chemistry. We investigate the aerosol and moisture source regions and atmospheric processes related to the ice core record and discuss what this means for developing a record of past ultraviolet radiation and ozone depletion using the stable isotopic composition of nitrate measured in the same ice core.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Abhijith U. Venugopal, Nancy A. N. Bertler, Rebecca L. Pyne, Helle A. Kjær, V. Holly L. Winton, Paul A. Mayewski, and Giuseppe Cortese
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-151, https://doi.org/10.5194/cp-2020-151, 2020
Manuscript not accepted for further review
Short summary
Short summary
We present a new and highly resolved glacial record of nitrate and calcium from a deep ice core obtained from Roosevelt Island, West Antarctica. Our data show a dependent association among nitrate and non-sea salt calcium (mineral dust) as observed previously in East Antarctica. The spatial pattern indicates that mineral dust is scavenging nitrate from the atmosphere and the westerlies are dispersing the dust-bound nitrate across Antarctica, making nitrate a potential paleo-westerly wind proxy.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Marc D. Mallet, Maximilien J. Desservettaz, Branka Miljevic, Andelija Milic, Zoran D. Ristovski, Joel Alroe, Luke T. Cravigan, E. Rohan Jayaratne, Clare Paton-Walsh, David W. T. Griffith, Stephen R. Wilson, Graham Kettlewell, Marcel V. van der Schoot, Paul Selleck, Fabienne Reisen, Sarah J. Lawson, Jason Ward, James Harnwell, Min Cheng, Rob W. Gillett, Suzie B. Molloy, Dean Howard, Peter F. Nelson, Anthony L. Morrison, Grant C. Edwards, Alastair G. Williams, Scott D. Chambers, Sylvester Werczynski, Leah R. Williams, V. Holly L. Winton, Brad Atkinson, Xianyu Wang, and Melita D. Keywood
Atmos. Chem. Phys., 17, 13681–13697, https://doi.org/10.5194/acp-17-13681-2017, https://doi.org/10.5194/acp-17-13681-2017, 2017
Short summary
Short summary
Fires play an important role within atmosphere. Gaseous and aerosol emissions influence Earth's temperature but these emissions can vary drastically across region and season. The SAFIRED (Savannah Fires in the Early Dry Season) campaign was undertaken at the Australian Tropical Research Station in north Australia during the 2014 early dry season. This paper presents an overview of the fires in this region, the measurements of their emissions and the implications of these fires on the atmosphere.
V. Holly L. Winton, Ross Edwards, Andrew R. Bowie, Melita Keywood, Alistair G. Williams, Scott D. Chambers, Paul W. Selleck, Maximilien Desservettaz, Marc D. Mallet, and Clare Paton-Walsh
Atmos. Chem. Phys., 16, 12829–12848, https://doi.org/10.5194/acp-16-12829-2016, https://doi.org/10.5194/acp-16-12829-2016, 2016
Short summary
Short summary
The deposition of soluble aerosol iron (Fe) can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from northern Australia that reflect coincident dust and biomass burning sources of soluble Fe. Our results show that while biomass burning species are not a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust with fractional Fe solubility up to 12 % in mixed aerosols.
Holly Winton, Andrew Bowie, Melita Keywood, Pier van der Merwe, and Ross Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-12, https://doi.org/10.5194/amt-2016-12, 2016
Revised manuscript not accepted
Short summary
Short summary
Aerosols containing iron have been investigated over the remote Southern Ocean to constrain iron budgets in surface waters and related biological production. Protocols for the sampling of ambient air were used to assess the suitability of high-volume aerosol samplers for aerosol iron studies in pristine air masses. Significant evidence of airborne insect and local soil contamination was detected in exposure blank filters. Suggestions for future aerosol iron sampling in clean air are provided.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3937, https://doi.org/10.5194/egusphere-2024-3937, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions, atmospheric acidity, and oxidation chemistry driven by human activity. However, nitrate in snow can be altered by UV-driven post-depositional processes, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in an SE-Dome ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
V. Holly L. Winton, Robert Mulvaney, Joel Savarino, Kyle R. Clem, and Markus M. Frey
Clim. Past, 20, 1213–1232, https://doi.org/10.5194/cp-20-1213-2024, https://doi.org/10.5194/cp-20-1213-2024, 2024
Short summary
Short summary
In 2018, a new 120 m ice core was drilled in a region located under the Antarctic ozone hole. We present the first results including a 1300-year record of snow accumulation and aerosol chemistry. We investigate the aerosol and moisture source regions and atmospheric processes related to the ice core record and discuss what this means for developing a record of past ultraviolet radiation and ozone depletion using the stable isotopic composition of nitrate measured in the same ice core.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
James Brean, David C. S. Beddows, Eija Asmi, Ari Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Ralf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall´Osto
EGUsphere, https://doi.org/10.5194/egusphere-2024-987, https://doi.org/10.5194/egusphere-2024-987, 2024
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Zhuang Jiang, Becky Alexander, Joel Savarino, and Lei Geng
Atmos. Chem. Phys., 24, 4895–4914, https://doi.org/10.5194/acp-24-4895-2024, https://doi.org/10.5194/acp-24-4895-2024, 2024
Short summary
Short summary
Ice-core nitrate could track the past atmospheric NOx and oxidant level, but its interpretation is hampered by the post-depositional processing. In this work, an inverse model was developed and tested against two polar sites and was shown to well reproduce the observed nitrate signals in snow and atmosphere, suggesting that the model can properly correct for the effect of post-depositional processing. This model offers a very useful tool for future studies on ice-core nitrate records.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023, https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Amelia M. H. Bond, Markus M. Frey, Jan Kaiser, Jörg Kleffmann, Anna E. Jones, and Freya A. Squires
Atmos. Chem. Phys., 23, 5533–5550, https://doi.org/10.5194/acp-23-5533-2023, https://doi.org/10.5194/acp-23-5533-2023, 2023
Short summary
Short summary
Atmospheric nitrous acid (HONO) amount fractions measured at Halley Research Station, Antarctica, were found to be low. Vertical fluxes of HONO from the snow were also measured and agree with the estimated HONO production rate from photolysis of snow nitrate. In a simple box model of HONO sources and sinks, there was good agreement between the measured flux and amount fraction. HONO was found to be an important OH radical source at Halley.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Lubica Vetráková, Vilém Neděla, Kamila Závacká, Xin Yang, and Dominik Heger
Atmos. Chem. Phys., 23, 4463–4488, https://doi.org/10.5194/acp-23-4463-2023, https://doi.org/10.5194/acp-23-4463-2023, 2023
Short summary
Short summary
Salt aerosols are important to polar atmospheric chemistry and global climate. Therefore, we utilized a unique electron microscope to identify the most suitable conditions for formation of the small salt (CsCl) particles, proxies of the aerosols, from sublimating salty snow. Very low sublimation temperature and low salt concentration are needed for formation of such particles. These observations may help us to better understand polar spring ozone depletion and bromine explosion events.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Zhuang Jiang, Joel Savarino, Becky Alexander, Joseph Erbland, Jean-Luc Jaffrezo, and Lei Geng
The Cryosphere, 16, 2709–2724, https://doi.org/10.5194/tc-16-2709-2022, https://doi.org/10.5194/tc-16-2709-2022, 2022
Short summary
Short summary
A record of year-round atmospheric nitrate isotopic composition along with snow nitrate isotopic data from Summit, Greenland, revealed apparent enrichments in nitrogen isotopes in snow nitrate compared to atmospheric nitrate, in addition to a relatively smaller degree of changes in oxygen isotopes. The results suggest that at this site post-depositional processing takes effect, which should be taken into account when interpreting ice-core nitrate isotope records.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Ľubica Vetráková, Vilém Neděla, Jiří Runštuk, Xin Yang, and Dominik Heger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-376, https://doi.org/10.5194/tc-2021-376, 2022
Manuscript not accepted for further review
Short summary
Short summary
In polar regions, sea salt aerosols are important to polar atmospheric chemistry, yet their mechanism of formation is not well understood. We inspected the sublimation residues of salty ices in a unique electron microscope and sought for small salt particles, proxies of sea salt aerosols. Our experiments showed that aerosolizable salt particles are preferably generated from low-concentrated ices and at low temperatures. This condition favors salty snow as an efficient source of the aerosols.
Linh N. T. Nguyen, Harro A. J. Meijer, Charlotte van Leeuwen, Bert A. M. Kers, Hubertus A. Scheeren, Anna E. Jones, Neil Brough, Thomas Barningham, Penelope A. Pickers, Andrew C. Manning, and Ingrid T. Luijkx
Earth Syst. Sci. Data, 14, 991–1014, https://doi.org/10.5194/essd-14-991-2022, https://doi.org/10.5194/essd-14-991-2022, 2022
Short summary
Short summary
We present 20-year flask sample records of atmospheric CO2, O2, and APO from the stations Lutjewad (the Netherlands), Mace Head (Ireland), and Halley (Antarctica). Data from Lutjewad and Mace Head show similar long-term trends and seasonal cycles, agreeing with measurements from another station (Weybourne, UK). Measurements from Halley agree partly with those conducted by other institutes. From our 2002–2018 Lutjewad and Mace Head records, we find good agreement for global ocean carbon uptake.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
William J. Randel, Fei Wu, Alison Ming, and Peter Hitchcock
Atmos. Chem. Phys., 21, 18531–18542, https://doi.org/10.5194/acp-21-18531-2021, https://doi.org/10.5194/acp-21-18531-2021, 2021
Short summary
Short summary
Balloon and satellite observations show strong coupling between large-scale ozone and temperature fields in the tropical lower stratosphere, spanning timescales of days to years. We present a simple interpretation of this behavior based on an idealized model of transport by the tropical stratospheric circulation, and good quantitative agreement with observations demonstrates that this is a useful simplification. The results provide simple understanding of observed atmospheric behavior.
Laura Crick, Andrea Burke, William Hutchison, Mika Kohno, Kathryn A. Moore, Joel Savarino, Emily A. Doyle, Sue Mahony, Sepp Kipfstuhl, James W. B. Rae, Robert C. J. Steele, R. Stephen J. Sparks, and Eric W. Wolff
Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, https://doi.org/10.5194/cp-17-2119-2021, 2021
Short summary
Short summary
The ~ 74 ka eruption of Toba was one of the largest eruptions of the last 100 ka. We have measured the sulfur isotopic composition for 11 Toba eruption candidates in two Antarctic ice cores. Sulfur isotopes allow us to distinguish between large eruptions that have erupted material into the stratosphere and smaller ones that reach lower altitudes. Using this we have identified the events most likely to be Toba and place the eruption on the transition into a cold period in the Northern Hemisphere.
Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, and Lei Geng
The Cryosphere, 15, 4207–4220, https://doi.org/10.5194/tc-15-4207-2021, https://doi.org/10.5194/tc-15-4207-2021, 2021
Short summary
Short summary
We used a snow photochemistry model (TRANSITS) to simulate the seasonal nitrate snow profile at Summit, Greenland. Comparisons between model outputs and observations suggest that at Summit post-depositional processing is active and probably dominates the snowpack δ15N seasonality. We also used the model to assess the degree of snow nitrate loss and the consequences in its isotopes at present and in the past, which helps for quantitative interpretations of ice-core nitrate records.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Shona E. Wilde, Pamela A. Dominutti, Grant Allen, Stephen J. Andrews, Prudence Bateson, Stephane J.-B. Bauguitte, Ralph R. Burton, Ioana Colfescu, James France, James R. Hopkins, Langwen Huang, Anna E. Jones, Tom Lachlan-Cope, James D. Lee, Alastair C. Lewis, Stephen D. Mobbs, Alexandra Weiss, Stuart Young, and Ruth M. Purvis
Atmos. Chem. Phys., 21, 3741–3762, https://doi.org/10.5194/acp-21-3741-2021, https://doi.org/10.5194/acp-21-3741-2021, 2021
Short summary
Short summary
We use airborne measurements to evaluate the speciation of volatile organic compound (VOC) emissions from offshore oil and gas (O&G) installations in the North Sea. The composition of emissions varied across regions associated with either gas, condensate or oil extraction, demonstrating that VOC emissions are not uniform across the whole O&G sector. We compare our results to VOC source profiles in the UK emissions inventory, showing these emissions are not currently fully characterized.
James L. France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E. Fisher, Langwen Huang, Anna E. Jones, James Lee, David Lowry, Joseph Pitt, Ruth Purvis, John Pyle, Jacob Shaw, Nicola Warwick, Alexandra Weiss, Shona Wilde, Jonathan Witherstone, and Stuart Young
Atmos. Meas. Tech., 14, 71–88, https://doi.org/10.5194/amt-14-71-2021, https://doi.org/10.5194/amt-14-71-2021, 2021
Short summary
Short summary
Measuring emission rates of methane from installations is tricky, and it is even more so when those installations are located offshore. Here, we show the aircraft set-up and demonstrate an effective methodology for surveying emissions from UK and Dutch offshore oil and gas installations. We present example data collected from two campaigns to demonstrate the challenges and solutions encountered during these surveys.
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020, https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
Short summary
This is a modelling-based study on Arctic surface ozone, with a particular focus on spring ozone depletion events (i.e. with concentrations < 10 ppbv). Model experiments show that model runs with blowing-snow-sourced sea salt aerosols implemented as a source of reactive bromine can reproduce well large-scale ozone depletion events observed in the Arctic. This study supplies modelling evidence of the proposed mechanism of reactive-bromine release from blowing snow on sea ice (Yang et al., 2008).
Abhijith U. Venugopal, Nancy A. N. Bertler, Rebecca L. Pyne, Helle A. Kjær, V. Holly L. Winton, Paul A. Mayewski, and Giuseppe Cortese
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-151, https://doi.org/10.5194/cp-2020-151, 2020
Manuscript not accepted for further review
Short summary
Short summary
We present a new and highly resolved glacial record of nitrate and calcium from a deep ice core obtained from Roosevelt Island, West Antarctica. Our data show a dependent association among nitrate and non-sea salt calcium (mineral dust) as observed previously in East Antarctica. The spatial pattern indicates that mineral dust is scavenging nitrate from the atmosphere and the westerlies are dispersing the dust-bound nitrate across Antarctica, making nitrate a potential paleo-westerly wind proxy.
Albane Barbero, Camille Blouzon, Joël Savarino, Nicolas Caillon, Aurélien Dommergue, and Roberto Grilli
Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, https://doi.org/10.5194/amt-13-4317-2020, 2020
Short summary
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Thomas Lachlan-Cope, David C. S. Beddows, Neil Brough, Anna E. Jones, Roy M. Harrison, Angelo Lupi, Young Jun Yoon, Aki Virkkula, and Manuel Dall'Osto
Atmos. Chem. Phys., 20, 4461–4476, https://doi.org/10.5194/acp-20-4461-2020, https://doi.org/10.5194/acp-20-4461-2020, 2020
Short summary
Short summary
We present a statistical cluster analysis of the physical characteristics of particle size distributions collected at Halley (Antarctica) for the year 2015. Complex interactions between multiple ecosystems, coupled with different atmospheric circulation, result in very different aerosol size distributions populating the Southern Hemisphere.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Markus M. Frey, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Xin Yang, Anna E. Jones, Michelle G. Nerentorp Mastromonaco, David H. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 20, 2549–2578, https://doi.org/10.5194/acp-20-2549-2020, https://doi.org/10.5194/acp-20-2549-2020, 2020
Short summary
Short summary
A winter sea ice expedition to Antarctica provided the first direct observations of sea salt aerosol (SSA) production during snow storms above sea ice, thereby validating a model hypothesis to account for winter time SSA maxima in Antarctica not explained otherwise. Defining SSA sources is important given the critical roles that aerosol plays for climate, for air quality and as a potential ice core proxy for sea ice conditions in the past.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Charel Wohl, David Capelle, Anna Jones, William T. Sturges, Philip D. Nightingale, Brent G. T. Else, and Mingxi Yang
Ocean Sci., 15, 925–940, https://doi.org/10.5194/os-15-925-2019, https://doi.org/10.5194/os-15-925-2019, 2019
Short summary
Short summary
In this paper we present a gas equilibrator that can be used to equilibrate gases continuously or in discrete samples from seawater into a carrier gas. The headspace is analysed by a commercially available proton-transfer-reaction mass spectrometer. This allows for the measurement of a broad range of dissolved gases up to a very high solubility in seawater. The main advantage of this equilibrator is its unique design and ease of reproducibility.
Xin Yang, Markus M. Frey, Rachael H. Rhodes, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Anna E. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 19, 8407–8424, https://doi.org/10.5194/acp-19-8407-2019, https://doi.org/10.5194/acp-19-8407-2019, 2019
Short summary
Short summary
This is a comprehensive model–data comparison aiming to evaluate the proposed mechanism of sea salt aerosol (SSA) production from blowing snow on sea ice. Some key parameters such as snow salinity and blowing-snow size distribution were constrained by data collected in the Weddell Sea. The good agreement between modelled SSA and the cruise data strongly indicates that sea ice surface is a large SSA source in polar regions, a process which has not been considered in current climate models.
Marianna Linz, Marta Abalos, Anne Sasha Glanville, Douglas E. Kinnison, Alison Ming, and Jessica L. Neu
Atmos. Chem. Phys., 19, 5069–5090, https://doi.org/10.5194/acp-19-5069-2019, https://doi.org/10.5194/acp-19-5069-2019, 2019
Short summary
Short summary
The stratospheric circulation is important for transporting ozone and water vapor, and models of the stratosphere differ. The metrics used to compare models are inconsistent between studies and cannot be calculated from observational data. In this paper, we explore a metric for the circulation that can be calculated from observations and examine how it relates to the more commonly used metrics. We find substantial differences in the upper and lower stratosphere depending on the choice of metric.
Fraser Dennison, James Keeble, Olaf Morgenstern, Guang Zeng, N. Luke Abraham, and Xin Yang
Geosci. Model Dev., 12, 1227–1239, https://doi.org/10.5194/gmd-12-1227-2019, https://doi.org/10.5194/gmd-12-1227-2019, 2019
Short summary
Short summary
Two developments are made to the United Kingdom Chemistry and Aerosols (UKCA) model to improve simulation of stratospheric ozone. The first is the addition of a solar cycle. The influence on ozone from the solar cycle is found to be 1–2 %, which is consistent with other studies. The second is to the heterogeneous chemistry, the most significant change being the addition of reactions involving bromine species. This was shown to reduce ozone biases relative to observations in most regions.
Tommaso Galeazzo, Slimane Bekki, Erwan Martin, Joël Savarino, and Stephen R. Arnold
Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018, https://doi.org/10.5194/acp-18-17909-2018, 2018
Short summary
Short summary
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading also to pollution events. We provide model constraints on tropospheric volcanic sulfate formation, with implications for its lifetime and impacts on regional air quality. Oxygen isotope investigations from our model suggest that in the poor tropospheric plumes of halogens, the O2/TMI sulfur oxidation pathway might significantly control sulfate production. The produced sulfate has no isotopic anomaly.
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018, https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Short summary
Mercury is a trace metal with adverse health effects on human and wildlife. Its unique property makes it undergo long-range transport, and even remote Antarctica receives significant inputs. This paper presents the first model that aims to understand mercury behavior over the Antarctic Plateau. We find that mercury is quickly cycled between snow and air in the sunlit period, likely driven by bromine chemistry, and that several uncertain processes contribute to its behavior in the dark period.
Ori Adam, Kevin M. Grise, Paul Staten, Isla R. Simpson, Sean M. Davis, Nicholas A. Davis, Darryn W. Waugh, Thomas Birner, and Alison Ming
Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, https://doi.org/10.5194/gmd-11-4339-2018, 2018
Short summary
Short summary
Due to incoherent methodologies, estimates of tropical width variations differ significantly across studies. Here, methods for eight commonly-used metrics of the tropical width are implemented in the Tropical-width Diagnostics (TropD) code package. The method compilation and analysis provide tools and information which help reduce the methodological component of the uncertainty associated with calculations of the tropical width.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Hoi Ga Chan, Markus M. Frey, and Martin D. King
Atmos. Chem. Phys., 18, 1507–1534, https://doi.org/10.5194/acp-18-1507-2018, https://doi.org/10.5194/acp-18-1507-2018, 2018
Short summary
Short summary
Emissions of reactive nitrogen from snowpacks influence remote air quality. Two physical air–snow models for nitrate were developed. One assumes that below a threshold temperature the air–snow grain interface is pure ice and above it a disordered interface emerges. The other assumes an air–ice interface below melting and that any liquid present is concentrated in micropockets. Only the latter matches observations at two Antarctic lcoations covering a wide range of environmental conditions.
Xiaoyi Zhao, Dan Weaver, Kristof Bognar, Gloria Manney, Luis Millán, Xin Yang, Edwin Eloranta, Matthias Schneider, and Kimberly Strong
Atmos. Chem. Phys., 17, 14955–14974, https://doi.org/10.5194/acp-17-14955-2017, https://doi.org/10.5194/acp-17-14955-2017, 2017
Short summary
Short summary
Few scientific questions about surface ozone depletion have been addressed, using a variety of measurements and atmospheric models. The lifetime of reactive bromine is only a few hours in the absence of recycling. Evidence of this recycling over aerosol or blowing-snow/ice particles was found at Eureka. The blowing snow sublimation process is a key step in producing bromine-enriched sea-salt aerosol. Ground-based FTIR isotopologue measurements at Eureka provided evidence of this key step.
Marc D. Mallet, Maximilien J. Desservettaz, Branka Miljevic, Andelija Milic, Zoran D. Ristovski, Joel Alroe, Luke T. Cravigan, E. Rohan Jayaratne, Clare Paton-Walsh, David W. T. Griffith, Stephen R. Wilson, Graham Kettlewell, Marcel V. van der Schoot, Paul Selleck, Fabienne Reisen, Sarah J. Lawson, Jason Ward, James Harnwell, Min Cheng, Rob W. Gillett, Suzie B. Molloy, Dean Howard, Peter F. Nelson, Anthony L. Morrison, Grant C. Edwards, Alastair G. Williams, Scott D. Chambers, Sylvester Werczynski, Leah R. Williams, V. Holly L. Winton, Brad Atkinson, Xianyu Wang, and Melita D. Keywood
Atmos. Chem. Phys., 17, 13681–13697, https://doi.org/10.5194/acp-17-13681-2017, https://doi.org/10.5194/acp-17-13681-2017, 2017
Short summary
Short summary
Fires play an important role within atmosphere. Gaseous and aerosol emissions influence Earth's temperature but these emissions can vary drastically across region and season. The SAFIRED (Savannah Fires in the Early Dry Season) campaign was undertaken at the Australian Tropical Research Station in north Australia during the 2014 early dry season. This paper presents an overview of the fires in this region, the measurements of their emissions and the implications of these fires on the atmosphere.
Rachael H. Rhodes, Xin Yang, Eric W. Wolff, Joseph R. McConnell, and Markus M. Frey
Atmos. Chem. Phys., 17, 9417–9433, https://doi.org/10.5194/acp-17-9417-2017, https://doi.org/10.5194/acp-17-9417-2017, 2017
Short summary
Short summary
Sea salt aerosol comes from the open ocean or the sea ice surface. In the polar regions, this opens up the possibility of reconstructing sea ice history using sea salt recorded in ice cores. We use a chemical transport model to demonstrate that the sea ice source of aerosol is important in the Arctic. For the first time, we simulate realistic Greenland ice core sea salt in a process-based model. The importance of the sea ice source increases from south to north across the Greenland ice sheet.
Xin Yang, Vilém Neděla, Jiří Runštuk, Gabriela Ondrušková, Ján Krausko, Ľubica Vetráková, and Dominik Heger
Atmos. Chem. Phys., 17, 6291–6303, https://doi.org/10.5194/acp-17-6291-2017, https://doi.org/10.5194/acp-17-6291-2017, 2017
Short summary
Short summary
A unique environmental electron microscope was used for monitoring the evaporation of salty frost flowers. We observe a cohesive villous brine surface layer facilitating the formation of NaCl microcrystals at temperatures below −10°C as the brine oversaturation is achieved. This finding confirms the increased surface area and thus also the enhanced heterogeneous reactivity; however, no support for the easiness of fragmentation to produce aerosols can be provided.
Alison Ming, Amanda C. Maycock, Peter Hitchcock, and Peter Haynes
Atmos. Chem. Phys., 17, 5677–5701, https://doi.org/10.5194/acp-17-5677-2017, https://doi.org/10.5194/acp-17-5677-2017, 2017
Short summary
Short summary
This work quantifies the contribution of the seasonal changes in ozone and water vapour to the temperature cycle in a region of the atmosphere about ~ 18 km up in the tropics (the lower stratosphere). This region is important because most of the air entering the stratosphere does so through this region and temperature fluctuations there influence how much water vapour enters the stratosphere and hence the properties of the stratosphere.
Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, and Xin Yang
Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, https://doi.org/10.5194/acp-17-5271-2017, 2017
Short summary
Short summary
The study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measurement data and simulation results of chemical transport models. Evaluation of the model simulations and numerical experiments against observations allows explaining spatial and temporal variations of Hg concentration in the near-surface atmospheric layer and shows possibility of multiple pathways of Hg oxidation occurring concurrently in various parts of the atmosphere.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Christian N. Gencarelli, Johannes Bieser, Francesco Carbone, Francesco De Simone, Ian M. Hedgecock, Volker Matthias, Oleg Travnikov, Xin Yang, and Nicola Pirrone
Atmos. Chem. Phys., 17, 627–643, https://doi.org/10.5194/acp-17-627-2017, https://doi.org/10.5194/acp-17-627-2017, 2017
Short summary
Short summary
Atmospheric deposition is an important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. High resolution numerical experiments has been performed in order to investigate the contributions (sensitivity) of the Hg anthtropogenic emissions, speciation and atmospherical chemical reactions on Hg depositions over Europe. The comparison of wet deposition fluxes and concentrations measured on 28 monitioring sites were used to support the analysis.
Emma C. Turner, Stafford Withington, David A. Newnham, Peter Wadhams, Anna E. Jones, and Robin Clancy
Atmos. Meas. Tech., 9, 5461–5485, https://doi.org/10.5194/amt-9-5461-2016, https://doi.org/10.5194/amt-9-5461-2016, 2016
Short summary
Short summary
Observations of the submillimetre part of the electromagnetic spectrum have previously been the domain of the astronomical community. However, new technological
advances in the superconducting detectors field are offering the atmospheric sciences unexplored opportunities to perform useful spectroscopy in this region,
exploiting existing radio telescope sites. Example simulations at six sites are presented for HBr, HOBr, HO2 and N2O showing the need for broad
high-resolution measurements.
V. Holly L. Winton, Ross Edwards, Andrew R. Bowie, Melita Keywood, Alistair G. Williams, Scott D. Chambers, Paul W. Selleck, Maximilien Desservettaz, Marc D. Mallet, and Clare Paton-Walsh
Atmos. Chem. Phys., 16, 12829–12848, https://doi.org/10.5194/acp-16-12829-2016, https://doi.org/10.5194/acp-16-12829-2016, 2016
Short summary
Short summary
The deposition of soluble aerosol iron (Fe) can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from northern Australia that reflect coincident dust and biomass burning sources of soluble Fe. Our results show that while biomass burning species are not a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust with fractional Fe solubility up to 12 % in mixed aerosols.
Josué Bock, Joël Savarino, and Ghislain Picard
Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, https://doi.org/10.5194/acp-16-12531-2016, 2016
Short summary
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Hélène Angot, Ashu Dastoor, Francesco De Simone, Katarina Gårdfeldt, Christian N. Gencarelli, Ian M. Hedgecock, Sarka Langer, Olivier Magand, Michelle N. Mastromonaco, Claus Nordstrøm, Katrine A. Pfaffhuber, Nicola Pirrone, Andrei Ryjkov, Noelle E. Selin, Henrik Skov, Shaojie Song, Francesca Sprovieri, Alexandra Steffen, Kenjiro Toyota, Oleg Travnikov, Xin Yang, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 10735–10763, https://doi.org/10.5194/acp-16-10735-2016, https://doi.org/10.5194/acp-16-10735-2016, 2016
Short summary
Short summary
This is a synthesis of the atmospheric mercury (Hg) monitoring data available in recent years (2011–2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. Based on this comparison, we discuss whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models, and identify remaining research gaps.
Michel Legrand, Susanne Preunkert, Joël Savarino, Markus M. Frey, Alexandre Kukui, Detlev Helmig, Bruno Jourdain, Anna E. Jones, Rolf Weller, Neil Brough, and Hubert Gallée
Atmos. Chem. Phys., 16, 8053–8069, https://doi.org/10.5194/acp-16-8053-2016, https://doi.org/10.5194/acp-16-8053-2016, 2016
Short summary
Short summary
Surface ozone, the most abundant atmospheric oxidant, has been measured since 2004 at the coastal East Antarctic site of Dumont d’Urville, and since 2007 at the Concordia station located on the high East Antarctic plateau. Long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites are discussed. Influences like sea ice extent and outflow from inland Antarctica are discussed.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
Holly Winton, Andrew Bowie, Melita Keywood, Pier van der Merwe, and Ross Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-12, https://doi.org/10.5194/amt-2016-12, 2016
Revised manuscript not accepted
Short summary
Short summary
Aerosols containing iron have been investigated over the remote Southern Ocean to constrain iron budgets in surface waters and related biological production. Protocols for the sampling of ambient air were used to assess the suitability of high-volume aerosol samplers for aerosol iron studies in pristine air masses. Significant evidence of airborne insect and local soil contamination was detected in exposure blank filters. Suggestions for future aerosol iron sampling in clean air are provided.
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
E. Gautier, J. Savarino, J. Erbland, A. Lanciki, and P. Possenti
Clim. Past, 12, 103–113, https://doi.org/10.5194/cp-12-103-2016, https://doi.org/10.5194/cp-12-103-2016, 2016
Short summary
Short summary
We evaluate the local-scale variability of a sulfate profile at a low-accumulation site (Dome C, Antarctica) to assess the representativeness of one ice core for volcanic reconstructions. Peak statistical occurrence, depth and flux variability are evaluated from five cores. Due to local-scale variability, 64 volcanic peaks can be identified by a five-cores analysis, while only half of them can be assessed from two cores. Using five cores, the uncertainty of the mean flux is reduced to 29 %.
S. Tegtmeier, F. Ziska, I. Pisso, B. Quack, G. J. M. Velders, X. Yang, and K. Krüger
Atmos. Chem. Phys., 15, 13647–13663, https://doi.org/10.5194/acp-15-13647-2015, https://doi.org/10.5194/acp-15-13647-2015, 2015
Short summary
Short summary
At present, man-made halogens and natural oceanic substances both contribute to the observed ozone depletion. Emissions of the anthropogenic halogens have been reduced, whereas emissions of the natural substances are expected to increase in future climate due to anthropogenic activities affecting oceanic processes. We assess the impact of these oceanic substances on ozone by weighting their emissions with their potential to destroy ozone for current conditions and future projections.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
M. M. Frey, H. K. Roscoe, A. Kukui, J. Savarino, J. L. France, M. D. King, M. Legrand, and S. Preunkert
Atmos. Chem. Phys., 15, 7859–7875, https://doi.org/10.5194/acp-15-7859-2015, https://doi.org/10.5194/acp-15-7859-2015, 2015
Short summary
Short summary
Surprisingly large concentrations and flux of atmospheric nitrogen oxides were measured at Dome C, East Antarctica. It was found that the surface snow holds a significant reservoir of photochemically produced NOx and is a sink of gas-phase ozone. Main drivers of NOx snow emissions were large snow nitrate concentrations, with contributions of increased UV from decreases in stratospheric ozone. Observed halogen and hydroxyl radical concentrations were too low to explain large NO2:NO ratios.
H. G. Chan, M. D. King, and M. M. Frey
Atmos. Chem. Phys., 15, 7913–7927, https://doi.org/10.5194/acp-15-7913-2015, https://doi.org/10.5194/acp-15-7913-2015, 2015
S. Preunkert, M. Legrand, M. M. Frey, A. Kukui, J. Savarino, H. Gallée, M. King, B. Jourdain, W. Vicars, and D. Helmig
Atmos. Chem. Phys., 15, 6689–6705, https://doi.org/10.5194/acp-15-6689-2015, https://doi.org/10.5194/acp-15-6689-2015, 2015
Short summary
Short summary
During two austral summers HCHO was investigated in air, snow, and interstitial air at the Concordia site located on the East Antarctic Plateau. Snow emission fluxes were estimated to be around 1 to 2 and 3 to 5 x 10^12 molecules m-2 s-1 at night and at noon, respectively. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible. The mean HCHO level of 130pptv observed at 1m above the surface is quite well reproduced by 1-D simulations.
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014, https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary
Short summary
Examinations on snowpit and firn core results from Summit, Greenland suggest that there are two mechanisms leading to the observed double nitrate peaks in some years in the industrial era: 1) long-rang transport of nitrate and 2) enhanced local photochemical production of nitrate. Both of these mechanisms are related to pollution transport, as the additional nitrate from either direct transport or enhanced local photochemistry requires enhanced nitrogen sources from anthropogenic emissions.
A. Kukui, M. Legrand, S. Preunkert, M. M. Frey, R. Loisil, J. Gil Roca, B. Jourdain, M. D. King, J. L. France, and G. Ancellet
Atmos. Chem. Phys., 14, 12373–12392, https://doi.org/10.5194/acp-14-12373-2014, https://doi.org/10.5194/acp-14-12373-2014, 2014
Short summary
Short summary
Concentrations of OH radicals and the sum of peroxy radicals, RO2, were measured in the boundary layer for the first time on the East Antarctic Plateau at the Concordia Station during the austral summer 2011/2012. The concentrations of radicals were comparable to those observed at the South Pole, confirming that the elevated oxidative capacity of the Antarctic atmospheric boundary layer found at the South Pole is not restricted to the South Pole but common over the high Antarctic plateau.
A. E. Jones, N. Brough, P. S. Anderson, and E. W. Wolff
Atmos. Chem. Phys., 14, 11843–11851, https://doi.org/10.5194/acp-14-11843-2014, https://doi.org/10.5194/acp-14-11843-2014, 2014
Short summary
Short summary
We report observations of nitric acid and peroxynitric acid, in coastal Antarctica during winter. During winter, it is dark 24h per day, so there is no influence of sunlight on atmospheric composition. We show that observed variability in concentrations is highly correlated with changes in temperature. We derive enthalpies of adsorption and show they are consistent with those derived in laboratory studies. The Antarctic, during winter, is an ideal natural laboratory to study air-snow exchange.
X. Yang, N. L. Abraham, A. T. Archibald, P. Braesicke, J. Keeble, P. J. Telford, N. J. Warwick, and J. A. Pyle
Atmos. Chem. Phys., 14, 10431–10438, https://doi.org/10.5194/acp-14-10431-2014, https://doi.org/10.5194/acp-14-10431-2014, 2014
M. Legrand, S. Preunkert, M. Frey, Th. Bartels-Rausch, A. Kukui, M. D. King, J. Savarino, M. Kerbrat, and B. Jourdain
Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, https://doi.org/10.5194/acp-14-9963-2014, 2014
A. Banerjee, A. T. Archibald, A. C. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, and J. A. Pyle
Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, https://doi.org/10.5194/acp-14-9871-2014, 2014
J.-C. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun
The Cryosphere, 8, 1205–1215, https://doi.org/10.5194/tc-8-1205-2014, https://doi.org/10.5194/tc-8-1205-2014, 2014
S. Masclin, M. M. Frey, W. F. Rogge, and R. C. Bales
Atmos. Chem. Phys., 13, 8857–8877, https://doi.org/10.5194/acp-13-8857-2013, https://doi.org/10.5194/acp-13-8857-2013, 2013
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
M. M. Frey, N. Brough, J. L. France, P. S. Anderson, O. Traulle, M. D. King, A. E. Jones, E. W. Wolff, and J. Savarino
Atmos. Chem. Phys., 13, 3045–3062, https://doi.org/10.5194/acp-13-3045-2013, https://doi.org/10.5194/acp-13-3045-2013, 2013
A. E. Jones, E. W. Wolff, N. Brough, S. J.-B. Bauguitte, R. Weller, M. Yela, M. Navarro-Comas, H. A. Ochoa, and N. Theys
Atmos. Chem. Phys., 13, 1457–1467, https://doi.org/10.5194/acp-13-1457-2013, https://doi.org/10.5194/acp-13-1457-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A seasonal analysis of aerosol NO3− sources and NOx oxidation pathways in the Southern Ocean marine boundary layer
Nitrate chemistry in the northeast US – Part 1: Nitrogen isotope seasonality tracks nitrate formation chemistry
Nitrate chemistry in the northeast US – Part 2: Oxygen isotopes reveal differences in particulate and gas-phase formation
Photolytic modification of seasonal nitrate isotope cycles in East Antarctica
Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions
Methane (CH4) sources in Krakow, Poland: insights from isotope analysis
Isotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia
Measurement report: Nitrogen isotopes (δ15N) and first quantification of oxygen isotope anomalies (Δ17O, δ18O) in atmospheric nitrogen dioxide
Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales
Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes
The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland
Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?
Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015
An improved estimate for the δ13C and δ18O signatures of carbon monoxide produced from atmospheric oxidation of volatile organic compounds
Seasonality in the Δ33S measured in urban aerosols highlights an additional oxidation pathway for atmospheric SO2
The Δ17O and δ18O values of atmospheric nitrates simultaneously collected downwind of anthropogenic sources – implications for polluted air masses
A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane
Detection and variability of combustion-derived vapor in an urban basin
Stable sulfur isotope measurements to trace the fate of SO2 in the Athabasca oil sands region
Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition
Isotopic constraints on heterogeneous sulfate production in Beijing haze
Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland
Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica
Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration
Isotopic composition for source identification of mercury in atmospheric fine particles
Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer
In situ observations of the isotopic composition of methane at the Cabauw tall tower site
Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign
Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica
Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto
WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere
Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere
Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning
Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?
Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer
Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods
Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis
Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations
Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events
Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China
Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/lower stratosphere mixing and the global carbon cycle
Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in Eastern Asia using Δ17O
Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling
Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022, https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary
Short summary
This study explores using the composition of methane of in-flight atmospheric air samples for greenhouse gas inventory verification. The air samples were collected above one of the largest coal seam gas production regions in the world. Adjacent to these gas fields are coal mines, Australia's largest cattle feedlot, and over 1 million grazing cattle. The results are also used to identify methane mitigation opportunities.
Malika Menoud, Carina van der Veen, Jaroslaw Necki, Jakub Bartyzel, Barbara Szénási, Mila Stanisavljević, Isabelle Pison, Philippe Bousquet, and Thomas Röckmann
Atmos. Chem. Phys., 21, 13167–13185, https://doi.org/10.5194/acp-21-13167-2021, https://doi.org/10.5194/acp-21-13167-2021, 2021
Short summary
Short summary
Using measurements of methane isotopes in ambient air and a 3D atmospheric transport model, in Krakow, Poland, we mainly detected fossil-fuel-related sources, coming from coal mining in Silesia and from the use of natural gas in the city. Emission inventories report large emissions from coal mine activity in Silesia, which is in agreement with our measurements. However, methane sources in the urban area of Krakow related to the use of fossil fuels might be underestimated in the inventories.
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Short summary
Many coal seam gas (CSG) facilities in the Surat Basin, Australia, are adjacent to other sources of methane, including agricultural, urban, and natural seeps. This makes it challenging to estimate the amount of methane being emitted into the atmosphere from CSG facilities. This research demonstrates that measurements of the carbon and hydrogen stable isotopic composition of methane can distinguish between and apportion methane emissions from CSG facilities, cattle, and many other sources.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021, https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Short summary
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and decipher the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by conditions of high cloud water pH.
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955, https://doi.org/10.5194/acp-20-13929-2020, https://doi.org/10.5194/acp-20-13929-2020, 2020
Short summary
Short summary
Water vapor isotopes recorded for 2 years in coastal northern Greenland largely reflect changes in sea ice cover, with distinct values when Baffin Bay is ice covered in winter vs. open in summer. Resulting changes in moisture transport, surface winds, and air temperature also modify the isotopes. Local glacial ice may thus preserve past changes in the Baffin Bay sea ice extent, and this will help us better understand how the Arctic environment and water cycle responds to global climate change.
Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang
Atmos. Chem. Phys., 20, 9713–9723, https://doi.org/10.5194/acp-20-9713-2020, https://doi.org/10.5194/acp-20-9713-2020, 2020
Short summary
Short summary
We found that Br atoms in the marine boundary layer are the most probable oxidizer that transform gaseous elemental mercury into gaseous oxidized mercury, according to the mercury isotopes in the total gaseous mercury. On the other hand, Br or Cl atoms are not the primary oxidizers that produced oxidized mercury on particles. This study showed that mercury isotopes can provide new evidence that help us to fully understand the transformations of atmospheric mercury.
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020, https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Short summary
We observed the isotopic composition of nitrous oxide in the unpolluted air at Jungfraujoch for 5 years. Our results indicate a clear seasonal pattern in the isotopic composition, corresponding with that in atmospheric nitrous oxide levels. This is most likely due to temporal variations in both emission processes and air mass sources for Jungfraujoch. Our findings are of importance to global nitrous oxide modelling and to better understanding of long-term trends in atmospheric nitrous oxide.
Isabelle Genot, David Au Yang, Erwan Martin, Pierre Cartigny, Erwann Legendre, and Marc De Rafelis
Atmos. Chem. Phys., 20, 4255–4273, https://doi.org/10.5194/acp-20-4255-2020, https://doi.org/10.5194/acp-20-4255-2020, 2020
Short summary
Short summary
Given their critical impact on radiative forcing, sulfate aerosols have been extensively studied using their isotope signatures (δ34S, ∆33S, ∆36S, δ18O, and ∆17O). A striking observation is that ∆33S > 0 ‰, implying a missing reservoir in the sulfur cycle. Here, we measured ∆33S < 0 ‰ in black crust sulfates (i.e., formed on carbonate walls) that must therefore result from distinct chemical pathway(s) compared to sulfate aerosols, and they may well represent this complementary reservoir.
Angelina Wenger, Katherine Pugsley, Simon O'Doherty, Matt Rigby, Alistair J. Manning, Mark F. Lunt, and Emily D. White
Atmos. Chem. Phys., 19, 14057–14070, https://doi.org/10.5194/acp-19-14057-2019, https://doi.org/10.5194/acp-19-14057-2019, 2019
Short summary
Short summary
We present 14CO2 observations at a background site in Ireland and a tall tower site in the UK. These data have been used to calculate the contribution of fossil fuel sources to atmospheric CO2 mole fractions from the UK and Ireland. 14CO2 emissions from nuclear industry sites in the UK cause a higher uncertainty in the results compared to observations in other locations. The observed ffCO2 at the site was not significantly different from simulated values based on the bottom-up inventory.
Isaac J. Vimont, Jocelyn C. Turnbull, Vasilii V. Petrenko, Philip F. Place, Colm Sweeney, Natasha Miles, Scott Richardson, Bruce H. Vaughn, and James W. C. White
Atmos. Chem. Phys., 19, 8547–8562, https://doi.org/10.5194/acp-19-8547-2019, https://doi.org/10.5194/acp-19-8547-2019, 2019
Short summary
Short summary
Stable isotopes of Carbon Monoxide (CO) and radiocarbon carbon dioxide were measured over three summers at Indianapolis, Indiana, US, and for 1 year at a site thought to be strongly influenced by CO from oxidized volatile organic compounds (VOCs) in South Carolina, US. The Indianapolis results were used to provide an estimate of the carbon and oxygen isotopic signatures of CO produced from oxidized VOCs. This updated estimate agrees well with the data from South Carolina during the summer.
David Au Yang, Pierre Cartigny, Karine Desboeufs, and David Widory
Atmos. Chem. Phys., 19, 3779–3796, https://doi.org/10.5194/acp-19-3779-2019, https://doi.org/10.5194/acp-19-3779-2019, 2019
Short summary
Short summary
Sulfates present in urban aerosols collected worldwide usually exhibit 33S-anomalies whose origin remains unclear. Besides, the sulfate concentration is not very well modelled nowadays, which, coupled with the isotopic composition anomaly on the 33S, would highlight the presence of at least an additional oxidation pathway, different from O2+TMI, O3, OH, H2O2 and NO2. We suggest here the implication of two other possible oxidation pathways.
Martine M. Savard, Amanda S. Cole, Robert Vet, and Anna Smirnoff
Atmos. Chem. Phys., 18, 10373–10389, https://doi.org/10.5194/acp-18-10373-2018, https://doi.org/10.5194/acp-18-10373-2018, 2018
Short summary
Short summary
Improving air quality requires understanding of the atmospheric processes transforming nitrous oxides emitted by human activities into nitrates, an N form that may degrade natural ecosystems. Isotopes (∆17O, δ18O) are characterized in separate wet, particulate and gaseous nitrates for the first time. The gas ranges are distinct from those of the other nitrates, and the plume dynamics emerge as crucial in interpreting the results, which unravel key processes behind the distribution of nitrates.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018, https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
Short summary
Using the observational data on 13C (CO) and 13C (CH4) from the extra-tropical Southern Hemisphere (ETSH) and EMAC model we (1) provide an independent, observation-based evaluation of Cl atom concentration variations in the ETSH throughout 1994–2000, (2) show that the role of tropospheric Cl as a sink of CH4 is seriously overestimated in the literature, (3) demonstrate that the 13C/12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Neda Amiri, Roya Ghahreman, Ofelia Rempillo, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, and Ann-Lise Norman
Atmos. Chem. Phys., 18, 7757–7780, https://doi.org/10.5194/acp-18-7757-2018, https://doi.org/10.5194/acp-18-7757-2018, 2018
David M. Nelson, Urumu Tsunogai, Dong Ding, Takuya Ohyama, Daisuke D. Komatsu, Fumiko Nakagawa, Izumi Noguchi, and Takashi Yamaguchi
Atmos. Chem. Phys., 18, 6381–6392, https://doi.org/10.5194/acp-18-6381-2018, https://doi.org/10.5194/acp-18-6381-2018, 2018
Short summary
Short summary
Atmospheric nitrate may be produced locally and/or come from upwind regions. To address this issue we measured oxygen and nitrogen isotopes of wet and dry nitrate deposition at nearby urban and rural sites. Our results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments results from local NOx emissions more so than wet deposition, which is transported longer distances.
Pengzhen He, Becky Alexander, Lei Geng, Xiyuan Chi, Shidong Fan, Haicong Zhan, Hui Kang, Guangjie Zheng, Yafang Cheng, Hang Su, Cheng Liu, and Zhouqing Xie
Atmos. Chem. Phys., 18, 5515–5528, https://doi.org/10.5194/acp-18-5515-2018, https://doi.org/10.5194/acp-18-5515-2018, 2018
Short summary
Short summary
We use observations of the oxygen isotopic composition of sulfate aerosol as a fingerprint to quantify various sulfate formation mechanisms during pollution events in Beijing, China. We found that heterogeneous reactions on aerosols dominated sulfate production in general; however, in-cloud reactions would dominate haze sulfate production when cloud liquid water content was high. The findings also suggest the heterogeneity of aerosol acidity should be parameterized in models.
Tesfaye A. Berhanu, Sönke Szidat, Dominik Brunner, Ece Satar, Rüdiger Schanda, Peter Nyfeler, Michael Battaglia, Martin Steinbacher, Samuel Hammer, and Markus Leuenberger
Atmos. Chem. Phys., 17, 10753–10766, https://doi.org/10.5194/acp-17-10753-2017, https://doi.org/10.5194/acp-17-10753-2017, 2017
Short summary
Short summary
Fossil fuel CO2 is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Such accurate quantification can be conducted based on radiocarbon measurements. In this study, we present radiocarbon measurements from a tall tower site in Switzerland. From these measurements, we have observed seasonally varying fossil fuel CO2 contributions and a biospheric CO2 component that varies diurnally and seasonally.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Giulia Zazzeri, Dave Lowry, Rebecca E. Fisher, James L. France, Mathias Lanoisellé, Bryce F. J. Kelly, Jaroslaw M. Necki, Charlotte P. Iverach, Elisa Ginty, Miroslaw Zimnoch, Alina Jasek, and Euan G. Nisbet
Atmos. Chem. Phys., 16, 13669–13680, https://doi.org/10.5194/acp-16-13669-2016, https://doi.org/10.5194/acp-16-13669-2016, 2016
Short summary
Short summary
Methane emissions estimates from the coal sector are highly uncertain. Precise δ13C isotopic signatures of methane sources can be used in atmospheric models for a methane budget assessment. Emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised using high-precision measurements of δ13C values. Representative isotopic signatures were provided, taking into account specific ranks of coal and mine type.
Qiang Huang, Jiubin Chen, Weilin Huang, Pingqing Fu, Benjamin Guinot, Xinbin Feng, Lihai Shang, Zhuhong Wang, Zhongwei Wang, Shengliu Yuan, Hongming Cai, Lianfang Wei, and Ben Yu
Atmos. Chem. Phys., 16, 11773–11786, https://doi.org/10.5194/acp-16-11773-2016, https://doi.org/10.5194/acp-16-11773-2016, 2016
Short summary
Short summary
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its vectors might have adverse effects on human beings. In this study, we attempted to identify the sources of PM2.5-Hg in Beijing, China, using Hg isotopic composition. Large range and seasonal variations in both mass-dependent and mass-independent fractionations of Hg isotopes in haze particles demonstrate the usefulness of Hg isotopes for directly tracing the sources and its vectors in the atmosphere.
Qianjie Chen, Lei Geng, Johan A. Schmidt, Zhouqing Xie, Hui Kang, Jordi Dachs, Jihong Cole-Dai, Andrew J. Schauer, Madeline G. Camp, and Becky Alexander
Atmos. Chem. Phys., 16, 11433–11450, https://doi.org/10.5194/acp-16-11433-2016, https://doi.org/10.5194/acp-16-11433-2016, 2016
Short summary
Short summary
The formation mechanisms of sulfate in the marine boundary layer are not well understood, which could result in large uncertainties in aerosol radiative forcing. We measure the oxygen isotopic composition (Δ17O) of sulfate collected in the MBL and analyze with a global transport model. Our results suggest that 33–50 % of MBL sulfate is formed via oxidation of S(IV) by hypohalous acids HOBr / HOCl in the aqueous phase, and the daily-mean HOBr/HOCl concentrations are on the order of 0.01–0.1 ppt.
Thomas Röckmann, Simon Eyer, Carina van der Veen, Maria E. Popa, Béla Tuzson, Guillaume Monteil, Sander Houweling, Eliza Harris, Dominik Brunner, Hubertus Fischer, Giulia Zazzeri, David Lowry, Euan G. Nisbet, Willi A. Brand, Jaroslav M. Necki, Lukas Emmenegger, and Joachim Mohn
Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, https://doi.org/10.5194/acp-16-10469-2016, 2016
Short summary
Short summary
A dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months, yielding a combined dataset with more than 2500 measurements of both δ13C and δD.
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
M. Saccon, A. Kornilova, L. Huang, S. Moukhtar, and J. Rudolph
Atmos. Chem. Phys., 15, 10825–10838, https://doi.org/10.5194/acp-15-10825-2015, https://doi.org/10.5194/acp-15-10825-2015, 2015
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
J. Wintel, E. Hösen, R. Koppmann, M. Krebsbach, A. Hofzumahaus, and F. Rohrer
Atmos. Chem. Phys., 13, 11059–11071, https://doi.org/10.5194/acp-13-11059-2013, https://doi.org/10.5194/acp-13-11059-2013, 2013
F. A. Haumann, A. M. Batenburg, G. Pieterse, C. Gerbig, M. C. Krol, and T. Röckmann
Atmos. Chem. Phys., 13, 9401–9413, https://doi.org/10.5194/acp-13-9401-2013, https://doi.org/10.5194/acp-13-9401-2013, 2013
C. J. Sapart, P. Martinerie, E. Witrant, J. Chappellaz, R. S. W. van de Wal, P. Sperlich, C. van der Veen, S. Bernard, W. T. Sturges, T. Blunier, J. Schwander, D. Etheridge, and T. Röckmann
Atmos. Chem. Phys., 13, 6993–7005, https://doi.org/10.5194/acp-13-6993-2013, https://doi.org/10.5194/acp-13-6993-2013, 2013
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
A. Guillon, K. Le Ménach, P.-M. Flaud, N. Marchand, H. Budzinski, and E. Villenave
Atmos. Chem. Phys., 13, 2703–2719, https://doi.org/10.5194/acp-13-2703-2013, https://doi.org/10.5194/acp-13-2703-2013, 2013
D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni, N. Perron, L. Wacker, S. Leinert, V. Remeikis, M. C. Facchini, A. S. H. Prevot, S. G. Jennings, M. Ramonet, and C. D. O'Dowd
Atmos. Chem. Phys., 11, 8593–8606, https://doi.org/10.5194/acp-11-8593-2011, https://doi.org/10.5194/acp-11-8593-2011, 2011
A. M. Batenburg, S. Walter, G. Pieterse, I. Levin, M. Schmidt, A. Jordan, S. Hammer, C. Yver, and T. Röckmann
Atmos. Chem. Phys., 11, 6985–6999, https://doi.org/10.5194/acp-11-6985-2011, https://doi.org/10.5194/acp-11-6985-2011, 2011
B. Tuzson, S. Henne, D. Brunner, M. Steinbacher, J. Mohn, B. Buchmann, and L. Emmenegger
Atmos. Chem. Phys., 11, 1685–1696, https://doi.org/10.5194/acp-11-1685-2011, https://doi.org/10.5194/acp-11-1685-2011, 2011
Y. T. Fang, K. Koba, X. M. Wang, D. Z. Wen, J. Li, Y. Takebayashi, X. Y. Liu, and M. Yoh
Atmos. Chem. Phys., 11, 1313–1325, https://doi.org/10.5194/acp-11-1313-2011, https://doi.org/10.5194/acp-11-1313-2011, 2011
S. S. Assonov, C. A. M. Brenninkmeijer, T. J. Schuck, and P. Taylor
Atmos. Chem. Phys., 10, 8575–8599, https://doi.org/10.5194/acp-10-8575-2010, https://doi.org/10.5194/acp-10-8575-2010, 2010
U. Tsunogai, D. D. Komatsu, S. Daita, G. A. Kazemi, F. Nakagawa, I. Noguchi, and J. Zhang
Atmos. Chem. Phys., 10, 1809–1820, https://doi.org/10.5194/acp-10-1809-2010, https://doi.org/10.5194/acp-10-1809-2010, 2010
M. M. Frey, J. Savarino, S. Morin, J. Erbland, and J. M. F. Martins
Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, https://doi.org/10.5194/acp-9-8681-2009, 2009
S. A. Vay, S. C. Tyler, Y. Choi, D. R. Blake, N. J. Blake, G. W. Sachse, G. S. Diskin, and H. B. Singh
Atmos. Chem. Phys., 9, 4973–4985, https://doi.org/10.5194/acp-9-4973-2009, https://doi.org/10.5194/acp-9-4973-2009, 2009
Cited articles
Abbatt, J. P.: Interaction of HNO3 with water-ice surfaces at temperatures
of the free troposphere, Geophys. Res. Lett., 24, 1479–1482, 1997.
Berhanu, T. A., Meusinger, C., Erbland, J., Jost, R., Bhattacharya, S.,
Johnson, M. S., and Savarino, J.: Laboratory study of nitrate photolysis in
Antarctic snow. II. Isotopic effects and wavelength dependence, J.
Chem. Phys., 140, 244306, https://doi.org/10.1063/1.4882899, 2014.
Beyersdorf, A. J., Blake, D. R., Swanson, A., Meinardi, S., Rowland, F., and
Davis, D.: Abundances and variability of tropospheric volatile organic
compounds at the South Pole and other Antarctic locations, Atmos.
Environ., 44, 4565–4574, 2010.
Bohlke, J. K., Gwinn, C. J., and Coplen, T. B.: New reference materials for nitrogen‐isotope‐ratio measurements, Geostandards Newsletter, 17, 159–164, 1993.
Böhlke, J. K., Mroczkowski, S. J. and Coplen, T. B.: Oxygen isotopes in nitrate: New reference materials for 18O: 17O: 16O measurements and observations on nitrate‐water equilibration, Rapid Commun. Mass Sp., 17, 1835–1846, 2003.
Blunier, T., Floch, G. L., Jacobi, H. W., and Quansah, E.: Isotopic view on
nitrate loss in Antarctic surface snow, Geophys. Res. Lett., 32, L13501, https://doi.org/10.1029/2005GL023011,
2005.
Bock, J., Savarino, J., and Picard, G.: Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica, Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, 2016.
Brucker, L., Picard, G., and Fily, M.: Snow grain-size profiles deduced from
microwave snow emissivities in Antarctica, J. Glaciol., 56,
514–526, 2010.
Chan, H. G., King, M. D., and Frey, M. M.: The impact of parameterising light penetration into snow on the photochemical production of NOx and OH radicals in snow, Atmos. Chem. Phys., 15, 7913–7927, https://doi.org/10.5194/acp-15-7913-2015, 2015.
Chan, H. G., Frey, M. M., and King, M. D.: Modelling the physical multiphase interactions of HNO3 between snow and air on the Antarctic Plateau (Dome C) and coast (Halley), Atmos. Chem. Phys., 18, 1507–1534, https://doi.org/10.5194/acp-18-1507-2018, 2018.
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference
spectrum for earth's atmosphere measurements in the ultraviolet, visible,
and near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295, 2010.
Chu, L. and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen
dioxide from the photolysis of nitrate on ice, J. Phys.
Chem. A, 107, 9594–9602, 2003.
Davis, D., Chen, G., Buhr, M., Crawford, J., Lenschow, D., Lefer, B.,
Shetter, R., Eisele, F., Mauldin, L., and Hogan, A.: South Pole NOx
chemistry: an assessment of factors controlling variability and absolute
levels, Atmos. Environ., 38, 5375–5388, 2004a.
Davis, D., Eisele, F., Chen, G., Crawford, J., Huey, G., Tanner, D.,
Slusher, D., Mauldin, L., Oncley, S., and Lenschow, D.: An overview of ISCAT
2000, Atmos. Environ., 38, 5363–5373, 2004b.
Davis, D. D., Seelig, J., Huey, G., Crawford, J., Chen, G., Wang, Y., Buhr,
M., Helmig, D., Neff, W., and Blake, D.: A reassessment of Antarctic plateau
reactive nitrogen based on ANTCI 2003 airborne and ground based
measurements, Atmos. Environ., 42, 2831–2848, 2008.
Delmonte, B., Winton, H., Baroni, M., Baccolo, G., Hansson, M., Andersson,
P., Baroni, C., Salvatore, M. C., Lanci, L., and Maggi, V.: Holocene dust in
East Antarctica: Provenance and variability in time and space, Holocene, 30, 546–558, https://doi.org/10.1177/0959683619875188,
2019.
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, https://doi.org/10.5194/acp-8-171-2008, 2008.
Dubowski, Y., Colussi, A., and Hoffmann, M.: Nitrogen dioxide release in the
302 nm band photolysis of spray-frozen aqueous nitrate solutions.
Atmospheric implications, J. Phys. Chem. A, 105,
4928–4932, 2001.
Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P.,
Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M.,
Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H.,
Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S.,
Wollast, R., and Zhou, M.: The atmospheric input of trace species to the
world ocean, Global Biogeochem. Cy., 5, 193–259, https://doi.org/10.1029/91gb01778, 1991.
Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini, D., Vince, E., and Martins, J. M. F.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, 2013.
Erbland, J., Savarino, J., Morin, S., France, J. L., Frey, M. M., and King, M. D.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records, Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, 2015.
France, J. and King, M.: The effect of measurement geometry on recording
solar radiation attenuation in snowpack (e-folding depth) using fibre-optic
probes, J. Glaciol., 58, 417–418, 2012.
France, J. L., King, M. D., Frey, M. M., Erbland, J., Picard, G., Preunkert, S., MacArthur, A., and Savarino, J.: Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen, Atmos. Chem. Phys., 11, 9787–9801, https://doi.org/10.5194/acp-11-9787-2011, 2011.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.: Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009.
Frey, M. M., Brough, N., France, J. L., Anderson, P. S., Traulle, O., King, M. D., Jones, A. E., Wolff, E. W., and Savarino, J.: The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions, Atmos. Chem. Phys., 13, 3045–3062, https://doi.org/10.5194/acp-13-3045-2013, 2013.
Frey, M. M., Roscoe, H. K., Kukui, A., Savarino, J., France, J. L., King, M. D., Legrand, M., and Preunkert, S.: Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign, Atmos. Chem. Phys., 15, 7859–7875, https://doi.org/10.5194/acp-15-7859-2015, 2015.
Freyer, H.: Seasonal variation of 15N∕14N ratios in atmospheric nitrate
species, Tellus B, 43, 30–44, 1991.
Geng, L., Zatko, M. C., Alexander, B., Fudge, T., Schauer, A. J., Murray, L.
T., and Mickley, L. J.: Effects of postdepositional processing on nitrogen
isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core,
Geophys. Res. Lett., 42, 5346–5354, 2015.
Geng, L., Murray, L. T., Mickley, L. J., Lin, P., Fu, Q., Schauer, A. J.,
and Alexander, B.: Isotopic evidence of multiple controls on atmospheric
oxidants over climate transitions, Nature, 546, 133–136, https://doi.org/10.1038/nature22340, 2017.
Göktas, F., Fischer, H., Oerter, H., Weller, R., Sommer, S., and Miller,
H.: A glacio-chemical characterization of the new EPICA deep-drilling site
on Amundsenisen, Dronning Maud Land, Antarctica, Ann. Glaciol., 35,
347–354, 2002.
Hastings, M., Jarvis, J., and Steig, E.: Anthropogenic impacts on nitrogen
isotopes of ice-core nitrate, Science, 324, 1288–1288, 2009.
Hastings, M. G., Steig, E., and Sigman, D.: Seasonal variations in N and O
isotopes of nitrate in snow at Summit, Greenland: Implications for the study
of nitrate in snow and ice cores, J. Geophys. Res.-Atmos., 109, D20306, https://doi.org/10.1029/2004JD004991, 2004.
Hastings, M. G., Casciotti, K. L., and Elliott, E. M.: Stable isotopes as
tracers of anthropogenic nitrogen sources, deposition, and impacts,
Elements, 9, 339–344, 2013.
Hauglustaine, D., Granier, C., Brasseur, G., and Megie, G.: The importance
of atmospheric chemistry in the calculation of radiative forcing on the
climate system, J. Geophys. Res.-Atmos., 99, 1173–1186, 1994.
Helmig, D., Liptzin, D., Hueber, J., and Savarino, J.: Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica, The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, 2020.
Hoering, T.: The isotopic composition of the ammonia and the nitrate ion in
rain, Geochim. Cosmochim. Ac., 12, 97–102, 1957.
Hofstede, C. M., van de Wal Roderik, S., Kaspers, K. A., Van Den Broeke, M.
R., Karlöf, L., Winther, J.-G., Isaksson, E., Lappegard, G., Mulvaney,
R., and Oerter, H.: Firn accumulation records for the past 1000 years on the
basis of dielectric profiling of six cores from Dronning Maud Land,
Antarctica, J. Glaciol., 50, 279–291, 2004.
Hofzumahaus, A., Lefer, B., Monks, P., Hall, S., Kylling, A., Mayer, B.,
Shetter, R., Junkermann, W., Bais, A., and Calvert, J.: Photolysis frequency
of O3 to O(1D): Measurements and modeling during the International
Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI),
J. Geophys. Res.-Atmos., 109, D08S90, https://doi.org/10.1029/2003JD004333, 2004.
Honrath, R., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P., and
Campbell, B.: Evidence of NOx production within or upon ice particles in the
Greenland snowpack, Geophys. Res. Lett., 26, 695–698, 1999.
Huey, L. G., Tanner, D., Slusher, D., Dibb, J. E., Arimoto, R., Chen, G.,
Davis, D., Buhr, M., Nowak, J., and Mauldin Iii, R.: CIMS measurements of
HNO3 and SO2 at the South Pole during ISCAT 2000, Atmos. Environ.,
38, 5411–5421, 2004.
Jacobi, H.-W., Weller, R., Jones, A., Anderson, P., and Schrems, O.:
Peroxyacetyl nitrate (PAN) concentrations in the Antarctic troposphere
measured during the photochemical experiment at Neumayer (PEAN'99),
Atmos. Environ., 34, 5235–5247, 2000.
Jones, A., Weller, R., Minikin, A., Wolff, E., Sturges, W., McIntyre, H.,
Leonard, S., Schrems, O., and Bauguitte, S.: Oxidized nitrogen chemistry and
speciation in the Antarctic troposphere, J. Geophys. Res.-Atmos., 104, 21355–21366, 1999.
Jones, A., Weller, R., Wolff, E., and Jacobi, H. W.: Speciation and rate of
photochemical NO and NO2 production in Antarctic snow, Geophys. Res.
Lett., 27, 345–348, 2000.
Jones, A., Weller, R., Anderson, P., Jacobi, H. W., Wolff, E., Schrems, O.,
and Miller, H.: Measurements of NOx emissions from the Antarctic snowpack,
Geophys. Res. Lett., 28, 1499–1502, 2001.
Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T., and Worton, D. R.: The multi-seasonal NOy budget in coastalAntarctica and its link with surface snowand ice core nitrate: results from theCHABLIS campaign, Atmos. Chem. Phys. Discuss., 7, 4127–4163, 2007.
Jones, A. E., Brough, N., Anderson, P. S., and Wolff, E. W.: HO2NO2 and HNO3 in the coastal Antarctic winter night: a “lab-in-the-field” experiment, Atmos. Chem. Phys., 14, 11843–11851, https://doi.org/10.5194/acp-14-11843-2014, 2014.
Keene, W. C., Pszenny, A. A., Galloway, J. N., and Hawley, M. E.: Sea-salt
corrections and interpretation of constituent ratios in marine
precipitation, J. Geophys. Res.-Atmos., 91, 6647–6658,
1986.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs
of nitrogen to ecosystems, Stable isotopes in ecology and environmental
science, 2, 375–449, 2007.
Kukui, A., Loisil, R., Kerbrat, M., Frey, M., Gil Roca, J., Jourdain, B.,
Ancellet, G., Bekki, S., Legrand, M., and Preunkert, S.: OH and RO2 radicals
at Dome C (East Antarctica): first observations and assessment of
photochemical budget, EGU General Assembly, Vienna, Austria, 2013.
Lee, H.-M., Henze, D. K., Alexander, B., and Murray, L. T.: Investigating
the sensitivity of surface-level nitrate seasonality in Antarctica to
primary sources using a global model, Atmos. Environ., 89, 757–767,
2014.
Lee-Taylor, J. and Madronich, S.: Calculation of actinic fluxes with a
coupled atmosphere–snow radiative transfer model, J. Geophys.
Res.-Atmos., 107, 4796, https://doi.org/10.1029/2002JD002084, 2002.
Legrand, M. R. and Delmas, R. J.: Soluble impurities in four Antarctic ice
cores over the last 30 000 years, Ann. Glaciol., 10, 116–120, 1988.
Le Meur, E., Magand, O., Arnaud, L., Fily, M., Frezzotti, M., Cavitte, M., Mulvaney, R., and Urbini, S.: Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis, The Cryosphere, 12, 1831–1850, https://doi.org/10.5194/tc-12-1831-2018, 2018.
Li, D. and Wang, X.: Nitrogen isotopic signature of soil-released nitric
oxide (NO) after fertilizer application, Atmos. Environ., 42,
4747–4754, https://doi.org/10.1016/j.atmosenv.2008.01.042,
2008.
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013.
Mariotti, A.: Atmospheric nitrogen is a reliable standard for natural 15N
abundance measurements, Nature, 303, 685–687, 1983.
McCabe, J. R., Thiemens, M. H., and Savarino, J.: A record of ozone
variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes,
J. Geophys. Res.-Atmos., 112, D12303, https://doi.org/10.1029/2006JD007822, 2007.
Meusinger, C., Berhanu, T. A., Erbland, J., Savarino, J., and Johnson, M.
S.: Laboratory study of nitrate photolysis in Antarctic snow. I. Observed
quantum yield, domain of photolysis, and secondary chemistry, J.
Chem. Phys., 140, 244305, https://doi.org/10.1063/1.4882898, 2014.
Miller, D. J., Wojtal, P. K., Clark, S. C., and Hastings, M. G.: Vehicle NOx
emission plume isotopic signatures: Spatial variability across the eastern
United States, J. Geophys. Res.-Atmos., 122, 4698–4717,
2017.
Miller, D. J., Chai, J., Guo, F., Dell, C. J., Karsten, H., and Hastings, M.
G.: Isotopic Composition of In Situ Soil NOx Emissions in Manure-Fertilized
Cropland, Geophys. Res. Lett., 45, 12058–12066, 2018.
Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W.,
and Martins, J. M.: Tracing the origin and fate of NOx in the Arctic
atmosphere using stable isotopes in nitrate, Science, 322, 730–732, 2008.
Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, H. W., Kaleschke,
L., and Martins, J. M.: Comprehensive isotopic composition of atmospheric
nitrate in the Atlantic Ocean boundary layer from 65 S to 79 N, J.
Geophys. Res.-Atmos., 114, D05303, https://doi.org/10.1029/2008JD010696, 2009.
Mosley-Thompson, E., Paskievitch, J. F., Gow, A. J., and Thompson, L. G.:
Late 20th century increase in South Pole snow accumulation, J.
Geophys. Res.-Atmos., 104, 3877–3886, 1999.
Mulvaney, R. and Wolff, E. W.: Evidence for winter/spring denitrification
of the stratosphere in the nitrate record of Antarctic firn cores, J.
Geophys. Res.-Atmos., 98, 5213–5220, 1993.
Mulvaney, R., Wagenbach, D., and Wolff, E.: Postdepositional change in
snowpack nitrate from observation of year-round near-surface snow in coastal
Antarctica, J. Geophys. Res.-Atmos., 103, 11021–11031,
1998.
Noro, K., Hattori, S., Uemura, R., Fukui, K., Hirabayashi, M., Kawamura, K.,
Motoyama, H., Takenaka, N., and Yoshida, N.: Spatial variation of isotopic
compositions of snowpack nitrate related to post-depositional processes in
eastern Dronning Maud Land, East Antarctica, Geochem. J., 52,
e7–e14, https://doi.org/10.2343/geochemj.2.0519, 2018.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F.,
Miller, H., Graf, W., and Sommer, S.: Accumulation rates in Dronning Maud
Land, Antarctica, as revealed by dielectric-profiling measurements of
shallow firn cores, Ann. Glaciol., 30, 27–34, 2000.
Oncley, S., Buhr, M., Lenschow, D., Davis, D., and Semmer, S.: Observations
of summertime NO fluxes and boundary-layer height at the South Pole during
ISCAT 2000 using scalar similarity, Atmos. Environ., 38, 5389–5398,
2004.
Pasteris, D., McConnell, J. R., Edwards, R., Isaksson, E., and Albert, M.
R.: Acidity decline in Antarctic ice cores during the Little Ice Age linked
to changes in atmospheric nitrate and sea salt concentrations, J.
Geophys. Res.-Atmos., 119, 5640–5652, 2014.
Reijmer, C. and Oerlemans, J.: Temporal and spatial variability of the
surface energy balance in Dronning Maud Land, East Antarctica, J.
Geophys. Res.-Atmos., 107, ACL 9-1–ACL 9-12, 2002.
Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., and
Mulvaney, R.: Factors controlling nitrate in ice cores: Evidence from the
Dome C deep ice core, J. Geophys. Res.-Atmos., 105,
20565–20572, 2000.
Röthlisberger, R., Hutterli, M. A., Wolff, E. W., Mulvaney, R., Fischer,
H., Bigler, M., Goto-Azuma, K., Hansson, M. E., Ruth, U., and
Siggaard-Andersen, M.-L.: Nitrate in Greenland and Antarctic ice cores: a
detailed description of post-depositional processes, Ann. Glaciol.,
35, 209–216, 2002.
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.: Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945, https://doi.org/10.5194/acp-7-1925-2007, 2007.
Seinfeld, J. H. and Pandis, S. N.: From air pollution to climate change,
Atmospheric Chemistry and Physics, Wiley, New York, 724–743, 1998.
Shi, G., Buffen, A. M., Hastings, M. G., Li, C., Ma, H., Li, Y., Sun, B., An, C., and Jiang, S.: Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs, Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015, 2015.
Shi, G., Buffen, A., Ma, H., Hu, Z., Sun, B., Li, C., Yu, J., Ma, T., An,
C., and Jiang, S.: Distinguishing summertime atmospheric production of
nitrate across the East Antarctic Ice Sheet, Geochim. Cosmochim.
Ac., 231, 1–14, 2018.
Shi, G., Chai, J., Zhu, Z., Hu, Z., Chen, Z., Yu, J., Ma, T., Ma, H., An,
C., and Jiang, S.: Isotope fractionation of nitrate during volatilization in
snow: a field investigation in Antarctica, Geophys. Res. Lett., 46,
3287–3297, 2019.
Silva, S., Kendall, C., Wilkison, D., Ziegler, A., Chang, C. C., and
Avanzino, R.: A new method for collection of nitrate from fresh water and
the analysis of nitrogen and oxygen isotope ratios, J. Hydrol.,
228, 22–36, 2000.
Sofen, E. D., Alexander, B., Steig, E. J., Thiemens, M. H., Kunasek, S. A., Amos, H. M., Schauer, A. J., Hastings, M. G., Bautista, J., Jackson, T. L., Vogel, L. E., McConnell, J. R., Pasteris, D. R., and Saltzman, E. S.: WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere, Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, 2014.
Sommer, S., Appenzeller, C., Röthlisberger, R., Hutterli, M. A.,
Stauffer, B., Wagenbach, D., Oerter, H., Wilhelms, F., Miller, H., and
Mulvaney, R.: Glacio-chemical study spanning the past 2 kyr on three ice
cores from Dronning Maud Land, Antarctica: 1. Annually resolved accumulation
rates, J. Geophys. Res.-Atmos., 105, 29411–29421, https://doi.org/10.1029/2000jd900449, 2000.
Thibert, E. and Domine, F.: Thermodynamics and kinetics of the solid
solution of HNO3 in ice, J. Phys. Chem. B, 102,
4432–4439, 1998.
Thomas, E. R., van Wessem, J. M., Roberts, J., Isaksson, E., Schlosser, E., Fudge, T. J., Vallelonga, P., Medley, B., Lenaerts, J., Bertler, N., van den Broeke, M. R., Dixon, D. A., Frezzotti, M., Stenni, B., Curran, M., and Ekaykin, A. A.: Regional Antarctic snow accumulation over the past 1000 years, Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, 2017.
Traversi, R., Usoskin, I., Solanki, S., Becagli, S., Frezzotti, M., Severi,
M., Stenni, B., and Udisti, R.: Nitrate in polar ice: a new tracer of solar
variability, Sol. Phys., 280, 237–254, 2012.
Turner, J., Phillips, T., Thamban, M., Rahaman, W., Marshall, G. J., Wille,
J. D., Favier, V., Winton, H., Thomas, E., and Wang, Z.: The Dominant Role
of Extreme Precipitation Events in Antarctic Snowfall Variability,
Geophys. Res. Lett., 46, 350–3511, https://doi.org/10.1029/2018GL081517, 2019.
van de Berg, W., van Wessem, M., van de Broeke, M., Turner, J., and Phillips, T.: Antarctic daily precipitation amounts for January 1979–July 2017 from the RACMO version 3p2 limited area atmospheric model, along with flags that indicate extreme precipitation events, UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation
https://doi.org/10.5285/bbf12a6f-7d97-4951-9bd1-e4224e2abac9, 2019.
Van Meijgaard, E., Van Ulft, L., Van de Berg, W., Bosveld, F., Van den Hurk,
B., Lenderink, G., and Siebesma, A.: The KNMI regional atmospheric climate
model RACMO version 2.1, Koninklijk Nederlands Meteorologisch Instituut, 43,
2008.
Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F., and Wolff, E.:
Atmospheric near-surface nitrate at coastal Antarctic sites, J.
Geophys. Res.-Atmos., 103, 11007–11020, 1998.
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89,
1982.
Weller, R. and Wagenbach, D.: Year-round chemical aerosol records in
continental Antarctica obtained by automatic samplings, Tellus B, 59, 755–765, 2007.
Weller, R., Minikin, A., König-Langlo, G., Schrems, O., Jones, A.,
Wolff, E., and Anderson, P.: Investigating possible causes of the observed
diurnal variability in Antarctic NOy, Geophys. Res. Lett., 26,
2853–2856, 1999.
Weller, R., Traufetter, F., Fischer, H., Oerter, H., Piel, C., and Miller,
H.: Postdepositional losses of methane sulfonate, nitrate, and chloride at
the European Project for Ice Coring in Antarctica deep-drilling site in
Dronning Maud Land, Antarctica, J. Geophys. Res.-Atmos., 109, D07301, https://doi.org/10.1029/2003JD004189, 2004.
Weller, R., Legrand, M., and Preunkert, S.: Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen, Atmos. Chem. Phys., 18, 2413–2430, https://doi.org/10.5194/acp-18-2413-2018, 2018.
Wilhelms, F., Miller, H., Gerasimoff, M. D., Drücker, C., Frenzel, A.,
Fritzsche, D., Grobe, H., Hansen, S. B., Hilmarsson, S. Æ., Hoffmann,
G., Hörnby, K., Jaeschke, A., Jakobsdóttir, S. S., Juckschat, P.,
Karsten, A., Karsten, L., Kaufmann, P. R., Karlin, T., Kohlberg, E.,
Kleffel, G., Lambrecht, A., Lambrecht, A., Lawer, G., Schärmeli, I.,
Schmitt, J., Sheldon, S. G., Takata, M., Trenke, M., Twarloh, B.,
Valero-Delgado, F., and Wilhelms-Dick, D.: The EPICA Dronning Maud Land deep
drilling operation, Ann. Glaciol., 55, 355–366,
https://doi.org/10.3189/2014AoG68A189, 2017.
Winton, V. H. L. W., Caillon, N., Hauge, L., Mulvaney, R., Rix, J.,
Tuckwell, R., Savarino, J., and Frey, M.: Ice core chemistry, density,
conductivity, dust, snow accumulation rate, and stable nitrate isotopic
composition of the 120 m ISOL-ICE ice core, Dronning Maud Land, Antarctica
(Version 1.0) [Data set], UK Polar Data Centre, Natural Environment
Research Council, UK Research & Innovation,
https://doi.org/10.5285/9c972cfb-0ffa-4144-a943-da6eb82431d2, 2019a.
Winton, V. H. L. W., Frey, M., Hauge, L., Caillon, N., and Savarino, J.:
Major ion chemistry and stable nitrate isotopic composition of aerosol, skin
layer snow and snow pits at Dronning Maud Land, Antarctica (Version 1.0)
[Data set], UK Polar Data Centre, Natural Environment Research Council,
UK Research & Innovation, https://doi.org/10.5285/1467b446-54eb-45c1-8a31-f4af21e60e60,
2019b.
Wolff, E. W.: Nitrate in polar ice, in: Ice core studies of global
biogeochemical cycles, Springer, 195–224, 1995.
Wolff, E. W., Jones, A. E., Martin, T. J., and Grenfell, T. C.: Modelling
photochemical NOx production and nitrate loss in the upper snowpack of
Antarctica, Geophys. Res. Lett., 29, 5-1–5-4, 2002.
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem. Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008.
Yu, Z. and Elliott, E. M.: Novel method for nitrogen isotopic analysis of
soil-emitted nitric oxide, Environ. Sci. Technol., 51,
6268–6278, 2017.
Zatko, M., Geng, L., Alexander, B., Sofen, E., and Klein, K.: The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model, Atmos. Chem. Phys., 16, 2819–2842, https://doi.org/10.5194/acp-16-2819-2016, 2016.
Zatko, M. C., Grenfell, T. C., Alexander, B., Doherty, S. J., Thomas, J. L., and Yang, X.: The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets, Atmos. Chem. Phys., 13, 3547–3567, https://doi.org/10.5194/acp-13-3547-2013, 2013.
Short summary
The transfer of the nitrogen stable isotopic composition in nitrate between the air and snow at low accumulation sites in Antarctica leaves an UV imprint in the snow. Quantifying how nitrate isotope values change allows us to interpret longer ice core records. Based on nitrate observations and modelling at Kohnen, East Antarctica, the dominant factors controlling the nitrate isotope signature in deep snow layers are the depth of light penetration into the snowpack and the snow accumulation rate.
The transfer of the nitrogen stable isotopic composition in nitrate between the air and snow at...
Altmetrics
Final-revised paper
Preprint