Articles | Volume 20, issue 6
Atmos. Chem. Phys., 20, 3859–3877, 2020
https://doi.org/10.5194/acp-20-3859-2020
Atmos. Chem. Phys., 20, 3859–3877, 2020
https://doi.org/10.5194/acp-20-3859-2020

Research article 31 Mar 2020

Research article | 31 Mar 2020

Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations

Becky Alexander et al.

Related authors

Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-441,https://doi.org/10.5194/acp-2021-441, 2021
Preprint under review for ACP
Short summary
Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021,https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Impacts of the photo-driven post-depositional processing on snow nitrate and its isotopes at Summit, Greenland: a model-based study
Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, and Lei Geng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-92,https://doi.org/10.5194/tc-2021-92, 2021
Revised manuscript under review for TC
Short summary
Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-58,https://doi.org/10.5194/acp-2021-58, 2021
Revised manuscript accepted for ACP
Short summary
Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3 in the Arctic
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020,https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary

Related subject area

Subject: Isotopes | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020,https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic
Antoine Berchet, Isabelle Pison, Patrick M. Crill, Brett Thornton, Philippe Bousquet, Thibaud Thonat, Thomas Hocking, Joël Thanwerdas, Jean-Daniel Paris, and Marielle Saunois
Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020,https://doi.org/10.5194/acp-20-3987-2020, 2020
Short summary
Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor
Xiahong Feng, Eric S. Posmentier, Leslie J. Sonder, and Naixin Fan
Atmos. Chem. Phys., 19, 4005–4024, https://doi.org/10.5194/acp-19-4005-2019,https://doi.org/10.5194/acp-19-4005-2019, 2019
Short summary
Photochemical box modelling of volcanic SO2 oxidation: isotopic constraints
Tommaso Galeazzo, Slimane Bekki, Erwan Martin, Joël Savarino, and Stephen R. Arnold
Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018,https://doi.org/10.5194/acp-18-17909-2018, 2018
Short summary
Uncertainties of fluxes and 13C  ∕ 12C ratios of atmospheric reactive-gas emissions
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017,https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary

Cited articles

Abbatt, J. P. D. and Waschewsky, G. C. G.: Heterogeneous interactions of OHBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature, J. Phys. Chem. A, 102, 3719–3725, 1998. 
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004. 
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000. 
Berhanu, T. A., Savarino, J., Bhattacharya, S. K., and Vicars, W. C.: 17O excess transfer during the NO2+O3>NO3+O2 reaction, J. Chem. Phys., 136, 044311, https://doi.org/10.1063/1.3666852, 2012. 
Download
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Altmetrics
Final-revised paper
Preprint