Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 14821–14845, 2020
https://doi.org/10.5194/acp-20-14821-2020
Atmos. Chem. Phys., 20, 14821–14845, 2020
https://doi.org/10.5194/acp-20-14821-2020
Research article
02 Dec 2020
Research article | 02 Dec 2020

Characterisation of African biomass burning plumes and impacts on the atmospheric composition over the south-west Indian Ocean

Bert Verreyken et al.

Related authors

Origin of water-soluble organic aerosols at the Maïdo high-altitude observatory, Réunion Island, in the tropical Indian Ocean
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021,https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Measurement report: Source apportionment of volatile organic compounds at the remote high-altitude Maïdo observatory
Bert Verreyken, Crist Amelynck, Niels Schoon, Jean-François Müller, Jérôme Brioude, Nicolas Kumps, Christian Hermans, Jean-Marc Metzger, Aurélie Colomb, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 12965–12988, https://doi.org/10.5194/acp-21-12965-2021,https://doi.org/10.5194/acp-21-12965-2021, 2021
Short summary
Development of turbulent scheme in the FLEXPART-AROME v1.2.1 Lagrangian particle dispersion model
Bert Verreyken, Jérome Brioude, and Stéphanie Evan
Geosci. Model Dev., 12, 4245–4259, https://doi.org/10.5194/gmd-12-4245-2019,https://doi.org/10.5194/gmd-12-4245-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Variations in surface SO2 and NOx mixing ratios from 2004 to 2016 at a background site in the North China Plain
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022,https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary
Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 7051–7069, https://doi.org/10.5194/acp-22-7051-2022,https://doi.org/10.5194/acp-22-7051-2022, 2022
Short summary
Spatiotemporal variations of the δ(O2 ∕ N2), CO2 and δ(APO) in the troposphere over the western North Pacific
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys., 22, 6953–6970, https://doi.org/10.5194/acp-22-6953-2022,https://doi.org/10.5194/acp-22-6953-2022, 2022
Short summary
OH and HO2 radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022,https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Towards reconstructing the Arctic atmospheric methane history over the 20th century: measurement and modelling results for the North Greenland Ice Core Project firn
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022,https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a
Akagi, S. K., Burling, I. R., Mendoza, A., Johnson, T. J., Cameron, M., Griffith, D. W. T., Paton-Walsh, C., Weise, D. R., Reardon, J., and Yokelson, R. J.: Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-pa th FTIR system, Atmos. Chem. Phys., 14, 199–215, https://doi.org/10.5194/acp-14-199-2014, 2014. a
Amelynck, C., Schoon, N., and Verreyken, B.: Supplement to “Characterisation of African biomass burning plumes and impacts on the atmospheric composition over the South-West Indian Ocean” by Bert Verreyken et al., Atmospheric Chemistry and Physics, in review (2020) [Data set], Royal Belgian Institute for Space Aeronomy, https://doi.org/10.18758/71021059, 2020. a
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. a, b, c, d, e, f, g, h
Arnold, S. R., Chipperfield, M. P., and Blitz, M. A.: A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis, J. Geophys. Res.-Atmos., 110, D22305, https://doi.org/10.1029/2005JD005998, 2005. a
Download
Short summary
Biomass burning (BB) plumes arriving at the Maïdo observatory located in the south-west Indian Ocean during August 2018 and August 2019 are studied using trace gas measurements, Lagrangian transport models and the CAMS near-real-time atmospheric composition service. We investigate (i) secondary production of volatile organic compounds during transport, (ii) efficacy of the CAMS model to reproduce the chemical makeup of BB plumes and (iii) the impact of BB on the remote marine boundary layer.
Altmetrics
Final-revised paper
Preprint