Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-9989-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-9989-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of recent changes in Asian anthropogenic emissions of SO2 on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes
Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India
Rolf Müller
Forschungszentrum Jülich GmbH, IEK7, Jülich, Germany
Gayatry Kalita
Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India
Matthew Rowlinson
School of Earth and Environment, University of Leeds, Leeds, UK
Alexandru Rap
School of Earth and Environment, University of Leeds, Leeds, UK
Jui-Lin Frank Li
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California, USA
Blaž Gasparini
Department of Atmospheric Sciences, University of Washington, Seattle,
USA
Anton Laakso
Finnish Meteorological Institute, Kuopio, Finland
Related authors
Yasin Elshorbany, Jerald Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca Buchholz, Benjamin Gaubert, Néstor Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-720, https://doi.org/10.5194/egusphere-2024-720, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the Tropospheric Column of Ozone and its precursors, nitrogen dioxide, formaldehyde, and total column of CO as well as ozonesonde data and model simulations.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Suvarna Fadnavis, Bernd Heinold, T. P. Sabin, Anne Kubin, Katty Huang, Alexandru Rap, and Rolf Müller
Atmos. Chem. Phys., 23, 10439–10449, https://doi.org/10.5194/acp-23-10439-2023, https://doi.org/10.5194/acp-23-10439-2023, 2023
Short summary
Short summary
The influence of the COVID-19 lockdown on the Himalayas caused increases in snow cover and a decrease in runoff, ultimately leading to an enhanced snow water equivalent. Our findings highlight that, out of the two processes causing a retreat of Himalayan glaciers – (1) slow response to global climate change and (2) fast response to local air pollution – a policy action on the latter is more likely to be within the reach of possible policy action to help billions of people in southern Asia.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Suvarna Fadnavis, Chaitri Roy, Rajib Chattopadhyay, Christopher E. Sioris, Alexandru Rap, Rolf Müller, K. Ravi Kumar, and Raghavan Krishnan
Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, https://doi.org/10.5194/acp-18-11493-2018, 2018
Short summary
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Suvarna Fadnavis, Gayatry Kalita, K. Ravi Kumar, Blaž Gasparini, and Jui-Lin Frank Li
Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017, https://doi.org/10.5194/acp-17-11637-2017, 2017
Short summary
Short summary
In this study, the model simulations show that monsoon convection over the Bay of Bengal, the South China Sea and southern flanks of the Himalayas transports Asian carbonaceous aerosol into the UTLS. Carbonaceous aerosol induces enhancement in heating rate, vertical velocity and water vapor transport in the UTLS. Doubling of carbonaceous aerosols creates an anomalous warming over the TP. It generates monsoon Hadley circulation and thus increases precipitation over India and northeast China.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Suvarna Fadnavis, K. Ravi Kumar, Yogesh K. Tiwari, and Luca Pozzoli
Ann. Geophys., 34, 279–291, https://doi.org/10.5194/angeo-34-279-2016, https://doi.org/10.5194/angeo-34-279-2016, 2016
Short summary
Short summary
Analysis of 10 years (2000–2009) of Carbon Tracker (CT-2010) model CO2 fluxes gives insights into the regional variation of CO2 fluxes over the Indian land mass. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines, and other industrial and urban centres. CO2 sink regions coincide with locations of dense forests with less industrial centres. CO2 fossil fuel emissions show good agreement with two bottom-up inventories REAS v1.11 and EDGAR v4.2.
S. Fadnavis, K. Semeniuk, M. G. Schultz, M. Kiefer, A. Mahajan, L. Pozzoli, and S. Sonbawane
Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, https://doi.org/10.5194/acp-15-11477-2015, 2015
Short summary
Short summary
The model and MIPAS satellite data show that there are three regions which contribute substantial pollution to the south Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. Simulations show that westerly winds drive North American and European pollutants eastward where they can become part of the ASM and lifted to LS.
S. D. Bansod, S. Fadnavis, and S. P. Ghanekar
Ann. Geophys., 33, 1051–1058, https://doi.org/10.5194/angeo-33-1051-2015, https://doi.org/10.5194/angeo-33-1051-2015, 2015
Short summary
Short summary
In this paper inter-annual variability of tropospheric air temperature over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
S. Fadnavis, K. Semeniuk, M. G. Schultz, A. Mahajan, L. Pozzoli, S. Sonbawane, and M. Kiefer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20159-2014, https://doi.org/10.5194/acpd-14-20159-2014, 2014
Revised manuscript not accepted
S. Fadnavis, K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar
Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, https://doi.org/10.5194/acp-13-8771-2013, 2013
Aiko Voigt, Stefanie North, Blaž Gasparini, and Seung-Hee Ham
Atmos. Chem. Phys., 24, 9749–9775, https://doi.org/10.5194/acp-24-9749-2024, https://doi.org/10.5194/acp-24-9749-2024, 2024
Short summary
Short summary
Clouds shape weather and climate by interacting with photons, which changes temperatures within the atmosphere. We assess how well CMIP6 climate models capture this radiative heating by clouds within the atmosphere. While we find large differences among models, especially in cold regions of the atmosphere with abundant ice clouds, we also demonstrate that physical understanding allows us to predict the response of clouds and their radiative heating near the tropopause to climate change.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, and Alexandru Rap
EGUsphere, https://doi.org/10.5194/egusphere-2024-1573, https://doi.org/10.5194/egusphere-2024-1573, 2024
Short summary
Short summary
Contrail cirrus is the largest, but also most uncertain contribution of aviation to global warming. We evaluate for the first time the impact of the host climate model on contrail cirrus properties. Substantial differences exist between contrail cirrus formation, persistence, and radiative effects in the host climate models. Reliable contrail cirrus simulations require advanced representation of cloud optical properties and microphysics, which should be better constrained by observations.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Anton Laakso, Daniele Visioni, Ulrike Niemeier, Simone Tilmes, and Harri Kokkola
Earth Syst. Dynam., 15, 405–427, https://doi.org/10.5194/esd-15-405-2024, https://doi.org/10.5194/esd-15-405-2024, 2024
Short summary
Short summary
This study is the second in a two-part series in which we explore the dependency of the impacts of stratospheric sulfur injections on both the model employed and the strategy of injection utilized. The study uncovers uncertainties associated with these techniques to cool climate, highlighting how the simulated climate impacts are dependent on both the selected model and the magnitude of the injections. We also show that estimating precipitation impacts of aerosol injection is a complex task.
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024, https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary
Short summary
A newly developed air quality forecasting framework, Decision Support System (DSS), for air quality management in Delhi, India, provides source attribution with numerous emission reduction scenarios besides forecasts. DSS shows that during post-monsoon and winter seasons, Delhi and its neighboring districts contribute to 30 %–40 % each to pollution in Delhi. On average, a 40 % reduction in the emissions in Delhi and the surrounding districts would result in a 24 % reduction in Delhi's pollution.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Yasin Elshorbany, Jerald Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca Buchholz, Benjamin Gaubert, Néstor Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-720, https://doi.org/10.5194/egusphere-2024-720, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the Tropospheric Column of Ozone and its precursors, nitrogen dioxide, formaldehyde, and total column of CO as well as ozonesonde data and model simulations.
Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-671, https://doi.org/10.5194/egusphere-2024-671, 2024
Short summary
Short summary
HCl null cycles in Antarctica are important for maintaining high values of ozone destroying chlorine in Antarctic spring. These HCl null cycles are not affected by (1) using the most recent recommendations of chemical kinetics (compared to older recommendations) (2) taking into account dehydration in the Antarctic winter vortex and (3) considering the observed (but unexplained) depletion of HCl in mid-winter in the Antartic vortex. throughout Antarctic winter.
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-547, https://doi.org/10.5194/egusphere-2024-547, 2024
Short summary
Short summary
This study quantified the correlation between orographic waves with ice PSCs above frost point (Tice) based on the Lagrangian model by using MIPAS observations and ERA5 reanalysis. We found that ice PSCs above Tice with temperature fluctuations along the backward trajectory are 33 % in the Arctic and 9 % in the Antarctic. This quantitative assessment enhances our understanding of ice PSCs, and the observational statistics can be utilized for comparison with chemistry-climate simulations.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Reinhold Spang, Rolf Müller, and Alexandru Rap
Atmos. Chem. Phys., 24, 1213–1230, https://doi.org/10.5194/acp-24-1213-2024, https://doi.org/10.5194/acp-24-1213-2024, 2024
Short summary
Short summary
Cirrus clouds play an important role in the radiation budget of the Earth. Despite recent progress in their observation, the radiative impact of ultra-thin cirrus clouds (UTC) in the tropopause region and in the lowermost stratosphere remains poorly constrained. Sensitivity model simulations with different ice parameters provide an uncertainty range for the radiative effect of UTCs. There is a need for better observed UTCs to enable the simulation of their potentially large effect on climate.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023, https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
Short summary
Tropical cirrus clouds are essential for climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this opinion paper, we review recent advances in the study of tropical cirrus clouds, point out remaining open questions, and suggest ways to resolve them.
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023, https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary
Short summary
Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come.
Suvarna Fadnavis, Bernd Heinold, T. P. Sabin, Anne Kubin, Katty Huang, Alexandru Rap, and Rolf Müller
Atmos. Chem. Phys., 23, 10439–10449, https://doi.org/10.5194/acp-23-10439-2023, https://doi.org/10.5194/acp-23-10439-2023, 2023
Short summary
Short summary
The influence of the COVID-19 lockdown on the Himalayas caused increases in snow cover and a decrease in runoff, ultimately leading to an enhanced snow water equivalent. Our findings highlight that, out of the two processes causing a retreat of Himalayan glaciers – (1) slow response to global climate change and (2) fast response to local air pollution – a policy action on the latter is more likely to be within the reach of possible policy action to help billions of people in southern Asia.
Adedayo R. Adedeji, Stephen J. Andrews, Matthew J. Rowlinson, Mathew J. Evans, Alastair C. Lewis, Shigeru Hashimoto, Hitoshi Mukai, Hiroshi Tanimoto, Yasunori Tohjima, and Takuya Saito
Atmos. Chem. Phys., 23, 9229–9244, https://doi.org/10.5194/acp-23-9229-2023, https://doi.org/10.5194/acp-23-9229-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to interpret observations of CO, C2H6, C3H8, NOx, NOy and O3 made from Hateruma Island in 2018. The model captures many synoptic-scale events and the seasonality of most pollutants at the site but underestimates C2H6 and C3H8 during the winter. These underestimates are unlikely to be reconciled by increases in biomass burning emissions but could be reconciled by increasing the Asian anthropogenic source of C2H6 and C3H8 by factors of around 2 and 3, respectively.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola
Atmos. Chem. Phys., 22, 93–118, https://doi.org/10.5194/acp-22-93-2022, https://doi.org/10.5194/acp-22-93-2022, 2022
Short summary
Short summary
The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Simone T. Andersen, Lucy J. Carpenter, Beth S. Nelson, Luis Neves, Katie A. Read, Chris Reed, Martyn Ward, Matthew J. Rowlinson, and James D. Lee
Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021, https://doi.org/10.5194/amt-14-3071-2021, 2021
Short summary
Short summary
NOx has been measured in remote marine air via chemiluminescence detection using two different methods for NO2 to NO photolytic conversion: (a) internal diodes and a reaction chamber made of Teflon-like barium-doped material, which causes a NO2 artefact, and (b) external diodes and a quartz photolysis cell. Once corrections are made for the artefact of (a), the two converters are shown to give comparable NO2 mixing ratios, giving confidence in the quantitative measurement of NOx at low levels.
Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller
Atmos. Chem. Phys., 21, 2427–2455, https://doi.org/10.5194/acp-21-2427-2021, https://doi.org/10.5194/acp-21-2427-2021, 2021
Short summary
Short summary
Column ozone protects life on Earth from radiation damage. Stratospheric chlorine compounds cause immense ozone loss in polar winter. Whether similar loss processes can occur in the lower stratosphere above North America today or in future is a matter of debate. We show that these ozone loss processes are very unlikely today or in future independently of whether sulfate geoengineering is applied and that less than 0.1 % of column ozone would be destroyed by this process in any future scenario.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Eemeli Holopainen, Harri Kokkola, Anton Laakso, and Thomas Kühn
Geosci. Model Dev., 13, 6215–6235, https://doi.org/10.5194/gmd-13-6215-2020, https://doi.org/10.5194/gmd-13-6215-2020, 2020
Short summary
Short summary
This paper introduces an in-cloud wet deposition scheme for liquid and ice phase clouds for global aerosol–climate models. With the default setup, our wet deposition scheme behaves spuriously and better representation can be achieved with this scheme when black carbon is mixed with soluble compounds at emission time. This work is done as many of the global models fail to reproduce the transport of black carbon to the Arctic, which may be due to the poor representation of wet removal in models.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Joram J. D. Hooghiem, Maria Elena Popa, Thomas Röckmann, Jens-Uwe Grooß, Ines Tritscher, Rolf Müller, Rigel Kivi, and Huilin Chen
Atmos. Chem. Phys., 20, 13985–14003, https://doi.org/10.5194/acp-20-13985-2020, https://doi.org/10.5194/acp-20-13985-2020, 2020
Short summary
Short summary
Wildfires release a large quantity of pollutants that can reach the stratosphere through pyro-convection events. In September 2017, a stratospheric plume was accidentally sampled during balloon soundings in northern Finland. The source of the plume was identified to be wildfire smoke based on in situ measurements of carbon monoxide (CO) and stable isotope analysis of CO. Furthermore, the age of the plume was estimated using backwards transport modelling to be ~24 d, with its origin in Canada.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Anton Laakso, Peter K. Snyder, Stefan Liess, Antti-Ilari Partanen, and Dylan B. Millet
Earth Syst. Dynam., 11, 415–434, https://doi.org/10.5194/esd-11-415-2020, https://doi.org/10.5194/esd-11-415-2020, 2020
Short summary
Short summary
Geoengineering techniques have been proposed to prevent climate warming in the event of insufficient greenhouse gas emission reductions. Simultaneously, these techniques have an impact on precipitation, which depends on the techniques used, geoengineering magnitude, and background circumstances. We separated the independent and dependent components of precipitation responses to temperature, which were then used to explain the precipitation changes in the studied climate model simulations.
Thomas Kühn, Kaarle Kupiainen, Tuuli Miinalainen, Harri Kokkola, Ville-Veikko Paunu, Anton Laakso, Juha Tonttila, Rita Van Dingenen, Kati Kulovesi, Niko Karvosenoja, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 20, 5527–5546, https://doi.org/10.5194/acp-20-5527-2020, https://doi.org/10.5194/acp-20-5527-2020, 2020
Short summary
Short summary
We investigate the effects of black carbon (BC) mitigation on Arctic climate and human health, accounting for the concurrent reduction of other aerosol species. While BC is attributed a net warming effect on climate, most other aerosol species cool the planet. We find that the direct radiative effect of mitigating BC induces cooling, while aerosol–cloud effects offset this cooling and introduce large uncertainties. Furthermore, the reduced aerosol emissions reduce human mortality considerably.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Matthew J. Rowlinson, Alexandru Rap, Stephen R. Arnold, Richard J. Pope, Martyn P. Chipperfield, Joe McNorton, Piers Forster, Hamish Gordon, Kirsty J. Pringle, Wuhu Feng, Brian J. Kerridge, Barry L. Latter, and Richard Siddans
Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp-19-8669-2019, https://doi.org/10.5194/acp-19-8669-2019, 2019
Short summary
Short summary
Wildfires and meteorology have a substantial effect on atmospheric concentrations of greenhouse gases such as methane and ozone. During the 1997 El Niño event, unusually large fire emissions indirectly increased global methane through carbon monoxide emission, which decreased the oxidation capacity of the atmosphere. There were also large regional changes to tropospheric ozone concentrations, but contrasting effects of fire and meteorology resulted in a small change to global radiative forcing.
Bärbel Vogel, Rolf Müller, Gebhard Günther, Reinhold Spang, Sreeharsha Hanumanthu, Dan Li, Martin Riese, and Gabriele P. Stiller
Atmos. Chem. Phys., 19, 6007–6034, https://doi.org/10.5194/acp-19-6007-2019, https://doi.org/10.5194/acp-19-6007-2019, 2019
Short summary
Short summary
We identified the transport pathways of air masses from the region of the Asian monsoon (e.g. pollution and greenhouse gases caused by increasing population and growing industries in Asia) into the lower stratosphere. Even small changes of the chemical composition of the lower stratosphere have an impact on surface climate (e.g. surface temperatures). Therefore, it is important to identify transport pathways to the stratosphere to allow potential environmental risks to be assessed.
Sabine Robrecht, Bärbel Vogel, Jens-Uwe Grooß, Karen Rosenlof, Troy Thornberry, Andrew Rollins, Martina Krämer, Lance Christensen, and Rolf Müller
Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019, https://doi.org/10.5194/acp-19-5805-2019, 2019
Short summary
Short summary
The potential destruction of stratospheric ozone in the mid-latitudes has been discussed recently. We analysed this ozone loss mechanism and its sensitivities. In a certain temperature range, we found a threshold in water vapour, which has to be exceeded for ozone loss to occur. We show the dependence of this water vapour threshold on temperature, sulfate content and air composition. This study provides a basis to estimate the impact of potential sulphate geoengineering on stratospheric ozone.
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019, https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Short summary
Observed summer Arctic sea ice retreat has been faster than simulated by the average CMIP5 models, most of which exclude falling ice particles from their radiative calculations.
We use controlled CESM1-CAM5 simulations to show for the first time that snowflakes' radiative effects can accelerate sea ice retreat. September retreat rates are doubled above current CO2 levels, highlighting falling ice radiative effects as a high priority for inclusion in future modelling of the Arctic.
Lars Hoffmann, Gebhard Günther, Dan Li, Olaf Stein, Xue Wu, Sabine Griessbach, Yi Heng, Paul Konopka, Rolf Müller, Bärbel Vogel, and Jonathon S. Wright
Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, https://doi.org/10.5194/acp-19-3097-2019, 2019
Short summary
Short summary
ECMWF's new ERA5 reanalysis provides higher spatiotemporal resolution, yielding an improved representation of meso- and synoptic-scale features of the atmosphere. We assessed the impact of this challenging new data set on Lagrangian trajectory calculations for the free troposphere and stratosphere. Key findings are considerable transport deviations between the ERA5 and ERA-Interim simulations as well as significantly improved conservation of potential temperature in the stratosphere for ERA5.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, https://doi.org/10.5194/gmd-11-3833-2018, 2018
Short summary
Short summary
In this paper we present a global aerosol–chemistry–climate model with the focus on its representation for atmospheric aerosol particles. In the model, aerosols are simulated using the aerosol module SALSA2.0, which in this paper is compared to satellite, ground, and aircraft-based observations of the properties of atmospheric aerosol. Based on this study, the model simulated aerosol properties compare well with the observations.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Suvarna Fadnavis, Chaitri Roy, Rajib Chattopadhyay, Christopher E. Sioris, Alexandru Rap, Rolf Müller, K. Ravi Kumar, and Raghavan Krishnan
Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, https://doi.org/10.5194/acp-18-11493-2018, 2018
Short summary
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Jens-Uwe Grooß, Rolf Müller, Reinhold Spang, Ines Tritscher, Tobias Wegner, Martyn P. Chipperfield, Wuhu Feng, Douglas E. Kinnison, and Sasha Madronich
Atmos. Chem. Phys., 18, 8647–8666, https://doi.org/10.5194/acp-18-8647-2018, https://doi.org/10.5194/acp-18-8647-2018, 2018
Short summary
Short summary
We investigate a discrepancy between model simulations and observations of HCl in the dark polar stratosphere. In early winter, the less-well-studied period of the onset of chlorine activation, observations show a much faster depletion of HCl than simulations of three models. This points to some unknown process that is currently not represented in the models. Various hypotheses for potential causes are investigated that partly reduce the discrepancy. The impact on polar ozone depletion is low.
Liubov Poshyvailo, Rolf Müller, Paul Konopka, Gebhard Günther, Martin Riese, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 18, 8505–8527, https://doi.org/10.5194/acp-18-8505-2018, https://doi.org/10.5194/acp-18-8505-2018, 2018
Short summary
Short summary
Water vapour (H2O) in the UTLS is a key player for global radiation, which is critical for predictions of future climate change. We investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O, using the Chemical Lagrangian Model of the Stratosphere. Our sensitivity studies provide new insights into the leading processes controlling stratospheric H2O, important for assessing and improving climate model projections.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary
Short summary
This study explores future ozone radiative forcing (RF) and the relative contribution due to different drivers. Climate-induced ozone RF is largely the result of the interplay between lightning-produced ozone and enhanced ozone destruction in a warmer and wetter atmosphere. These results demonstrate the importance of stratospheric–tropospheric interactions and the stratosphere as a key region controlling a large fraction of the tropospheric ozone RF.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Rolf Müller, Jens-Uwe Grooß, Abdul Mannan Zafar, Sabine Robrecht, and Ralph Lehmann
Atmos. Chem. Phys., 18, 2985–2997, https://doi.org/10.5194/acp-18-2985-2018, https://doi.org/10.5194/acp-18-2985-2018, 2018
Short summary
Short summary
This paper revisits the chemistry leading to strong ozone depletion in the Antarctic. We focus on the heart of the ozone layer in the lowermost stratosphere in the core of the vortex. We argue that chemical cycles (referred to as HCl null cycles) that have hitherto been largely neglected counteract the deactivation of chlorine and are therefore key to ozone depletion in the core of the Antarctic vortex. The key process to full activation of chlorine is the photolysis of formaldehyde.
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Lukas Pichelstorfer, Dominik Stolzenburg, John Ortega, Thomas Karl, Harri Kokkola, Anton Laakso, Kari E. J. Lehtinen, James N. Smith, Peter H. McMurry, and Paul M. Winkler
Atmos. Chem. Phys., 18, 1307–1323, https://doi.org/10.5194/acp-18-1307-2018, https://doi.org/10.5194/acp-18-1307-2018, 2018
Short summary
Short summary
Quantification of new particle formation as a source of atmospheric aerosol is clearly of importance for climate and health aspects. In our new study we developed two analysis methods that allow retrieval of nanoparticle growth dynamics at much higher precision than it was possible so far. Our results clearly demonstrate that growth rates show much more variation than is currently known and suggest that the Kelvin effect governs growth in the sub-10 nm size range.
Suvarna Fadnavis, Gayatry Kalita, K. Ravi Kumar, Blaž Gasparini, and Jui-Lin Frank Li
Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017, https://doi.org/10.5194/acp-17-11637-2017, 2017
Short summary
Short summary
In this study, the model simulations show that monsoon convection over the Bay of Bengal, the South China Sea and southern flanks of the Himalayas transports Asian carbonaceous aerosol into the UTLS. Carbonaceous aerosol induces enhancement in heating rate, vertical velocity and water vapor transport in the UTLS. Doubling of carbonaceous aerosols creates an anomalous warming over the TP. It generates monsoon Hadley circulation and thus increases precipitation over India and northeast China.
Anton Laakso, Hannele Korhonen, Sami Romakkaniemi, and Harri Kokkola
Atmos. Chem. Phys., 17, 6957–6974, https://doi.org/10.5194/acp-17-6957-2017, https://doi.org/10.5194/acp-17-6957-2017, 2017
Short summary
Short summary
Based on simulations, equatorial stratospheric sulfur injections have shown to be an efficient strategy to counteract ongoing global warming. However, equatorial injections would result in relatively larger cooling in low latitudes than in high latitudes. This together with greenhouse-gas-induced warming would lead to cooling in the Equator and warming in the high latitudes. Results of this study show that a more optimal cooling effect is achieved by varying the injection area seasonally.
Blaž Gasparini, Steffen Münch, Laure Poncet, Monika Feldmann, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 4871–4885, https://doi.org/10.5194/acp-17-4871-2017, https://doi.org/10.5194/acp-17-4871-2017, 2017
Short summary
Short summary
Cirrus clouds have, unlike other cloud types, a warming impact on climate. Decreasing their frequency therefore leads to a cooling effect. Cirrus ice crystals grow larger when formed on solid aerosols, inducing a shorter cloud lifetime.
We compare simplified simulations of stripping cirrus out of the sky with simulations of seeding by aerosol injections. While we find the surface climate responses to be similar, the changes in clouds and cloud properties differ significantly.
Dan Li, Bärbel Vogel, Jianchun Bian, Rolf Müller, Laura L. Pan, Gebhard Günther, Zhixuan Bai, Qian Li, Jinqiang Zhang, Qiujun Fan, and Holger Vömel
Atmos. Chem. Phys., 17, 4657–4672, https://doi.org/10.5194/acp-17-4657-2017, https://doi.org/10.5194/acp-17-4657-2017, 2017
Short summary
Short summary
High-resolution ozone and water vapour profiles over Lhasa, China, were measured in August 2013. The correlations between ozone and water vapour profiles show a strong variability in the upper troposphere. These relationships were investigated using CLaMS trajectory calculations. The model results demonstrate that three tropical cyclones (Jebi, Utor, and Trami), occurring over the western Pacific, had a strong impact on the vertical structure of ozone and water vapour profiles.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Marc von Hobe, Rolf Müller, and Martin Riese
Atmos. Meas. Tech., 9, 4399–4423, https://doi.org/10.5194/amt-9-4399-2016, https://doi.org/10.5194/amt-9-4399-2016, 2016
Short summary
Short summary
A new method for detecting aerosol in the UTLS based on infrared limb emission measurements is presented. The method was developed using radiative transfer simulations (including scattering) and Envisat MIPAS measurements. Results are presented for volcanic ash and sulfate aerosol originating from the Grimsvötn (Iceland), Puyehue–Cordon Caulle (Chile), and Nabro (Eritrea) eruptions in 2011 and compared with AIRS volcanic ash and SO2 measurements.
Zarashpe Z. Kapadia, Dominick V. Spracklen, Steve R. Arnold, Duncan J. Borman, Graham W. Mann, Kirsty J. Pringle, Sarah A. Monks, Carly L. Reddington, François Benduhn, Alexandru Rap, Catherine E. Scott, Edward W. Butt, and Masaru Yoshioka
Atmos. Chem. Phys., 16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, https://doi.org/10.5194/acp-16-10521-2016, 2016
Short summary
Short summary
Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Charlotte Marinke Hoppe, Felix Ploeger, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 16, 6223–6239, https://doi.org/10.5194/acp-16-6223-2016, https://doi.org/10.5194/acp-16-6223-2016, 2016
Suvarna Fadnavis, K. Ravi Kumar, Yogesh K. Tiwari, and Luca Pozzoli
Ann. Geophys., 34, 279–291, https://doi.org/10.5194/angeo-34-279-2016, https://doi.org/10.5194/angeo-34-279-2016, 2016
Short summary
Short summary
Analysis of 10 years (2000–2009) of Carbon Tracker (CT-2010) model CO2 fluxes gives insights into the regional variation of CO2 fluxes over the Indian land mass. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines, and other industrial and urban centres. CO2 sink regions coincide with locations of dense forests with less industrial centres. CO2 fossil fuel emissions show good agreement with two bottom-up inventories REAS v1.11 and EDGAR v4.2.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, and M. Riese
Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, https://doi.org/10.5194/acp-15-13699-2015, 2015
Short summary
Short summary
The Asian summer monsoon circulation is an important global circulation system associated with strong upward transport of tropospheric source gases. We show that the contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intra-seasonal variability and that emissions from Asia have a significant impact on the chemical compositions of the lowermost stratosphere of the Northern Hemisphere at the end of the monsoon season in Sep./Oct. 2012.
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
S. Fadnavis, K. Semeniuk, M. G. Schultz, M. Kiefer, A. Mahajan, L. Pozzoli, and S. Sonbawane
Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, https://doi.org/10.5194/acp-15-11477-2015, 2015
Short summary
Short summary
The model and MIPAS satellite data show that there are three regions which contribute substantial pollution to the south Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. Simulations show that westerly winds drive North American and European pollutants eastward where they can become part of the ASM and lifted to LS.
S. D. Bansod, S. Fadnavis, and S. P. Ghanekar
Ann. Geophys., 33, 1051–1058, https://doi.org/10.5194/angeo-33-1051-2015, https://doi.org/10.5194/angeo-33-1051-2015, 2015
Short summary
Short summary
In this paper inter-annual variability of tropospheric air temperature over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region.
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
S. D. D'Andrea, J. C. Acosta Navarro, S. C. Farina, C. E. Scott, A. Rap, D. K. Farmer, D. V. Spracklen, I. Riipinen, and J. R. Pierce
Atmos. Chem. Phys., 15, 2247–2268, https://doi.org/10.5194/acp-15-2247-2015, https://doi.org/10.5194/acp-15-2247-2015, 2015
Short summary
Short summary
We use modeled estimates of BVOCs from the years 1000 to 2000 to test the effect of anthropogenic BVOC emission changes on SOA formation, aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS model. Changes of >25% in the number of particles with diameters >80nm are predicted regionally due to extensive land-use changes, leading to increases in combined radiative effect of >0.5 Wm-2. This change in radiative forcing could be an overlooked anthropogenic effect on climate.
O. Kirner, R. Müller, R. Ruhnke, and H. Fischer
Atmos. Chem. Phys., 15, 2019–2030, https://doi.org/10.5194/acp-15-2019-2015, https://doi.org/10.5194/acp-15-2019-2015, 2015
Short summary
Short summary
We use multi-year simulations of the chemistry--climate model EMAC to investigate
the impact that the various types of PSCs have on Antarctic chlorine activation and ozone loss. Heterogeneous chemistry on liquid particles is responsible for more than 90% of the ozone depletion in Antarctic spring in the model simulations. In high southern latitudes, heterogeneous chemistry on ice particles causes only up to 5 DU of additional ozone depletion and chemistry on NAT particles less than 0.5 DU.
R. Spang, G. Günther, M. Riese, L. Hoffmann, R. Müller, and S. Griessbach
Atmos. Chem. Phys., 15, 927–950, https://doi.org/10.5194/acp-15-927-2015, https://doi.org/10.5194/acp-15-927-2015, 2015
Short summary
Short summary
Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS) region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS), resulting in the occurrence of high-altitude optically thin cirrus clouds in the LMS.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
L. Hoffmann, C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones, C. I. Meyer, R. Spang, C. M. Volk, and K. A. Walker
Atmos. Chem. Phys., 14, 12479–12497, https://doi.org/10.5194/acp-14-12479-2014, https://doi.org/10.5194/acp-14-12479-2014, 2014
Short summary
Short summary
Stratospheric lifetimes determine the global warming and ozone depletion potentials of chlorofluorocarbons. We present new estimates of the CFC-11/CFC-12 lifetime ratio from satellite and model data (ACE-FTS, HIRDLS, MIPAS, and EMAC/CLaMS). Our estimates of 0.46+/-0.04 (satellites) and 0.48+/-0.07 (model) are in excellent agreement with the recent SPARC reassessment. Having smaller uncertainties than other studies, our results can help to better constrain future CFC lifetime recommendations.
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
A.-I. Partanen, E. M. Dunne, T. Bergman, A. Laakso, H. Kokkola, J. Ovadnevaite, L. Sogacheva, D. Baisnée, J. Sciare, A. Manders, C. O'Dowd, G. de Leeuw, and H. Korhonen
Atmos. Chem. Phys., 14, 11731–11752, https://doi.org/10.5194/acp-14-11731-2014, https://doi.org/10.5194/acp-14-11731-2014, 2014
Short summary
Short summary
New parameterizations for the sea spray aerosol source flux and its organic fraction were incorporated into a global aerosol-climate model. The emissions of sea salt were considerably less than previous estimates. This study demonstrates that sea spray aerosol may actually decrease the number of cloud droplets, which has a warming effect on climate. Overall, sea spray aerosol was predicted to have a global cooling effect due to the scattering of solar radiation from sea spray aerosol particles.
A. Kunz, N. Spelten, P. Konopka, R. Müller, R. M. Forbes, and H. Wernli
Atmos. Chem. Phys., 14, 10803–10822, https://doi.org/10.5194/acp-14-10803-2014, https://doi.org/10.5194/acp-14-10803-2014, 2014
S. Molleker, S. Borrmann, H. Schlager, B. Luo, W. Frey, M. Klingebiel, R. Weigel, M. Ebert, V. Mitev, R. Matthey, W. Woiwode, H. Oelhaf, A. Dörnbrack, G. Stratmann, J.-U. Grooß, G. Günther, B. Vogel, R. Müller, M. Krämer, J. Meyer, and F. Cairo
Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, https://doi.org/10.5194/acp-14-10785-2014, 2014
S. Fadnavis, K. Semeniuk, M. G. Schultz, A. Mahajan, L. Pozzoli, S. Sonbawane, and M. Kiefer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20159-2014, https://doi.org/10.5194/acpd-14-20159-2014, 2014
Revised manuscript not accepted
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
C. E. Scott, A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen, and P. Tunved
Atmos. Chem. Phys., 14, 447–470, https://doi.org/10.5194/acp-14-447-2014, https://doi.org/10.5194/acp-14-447-2014, 2014
A. I. Partanen, A. Laakso, A. Schmidt, H. Kokkola, T. Kuokkanen, J.-P. Pietikäinen, V.-M. Kerminen, K. E. J. Lehtinen, L. Laakso, and H. Korhonen
Atmos. Chem. Phys., 13, 12059–12071, https://doi.org/10.5194/acp-13-12059-2013, https://doi.org/10.5194/acp-13-12059-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
S. Fadnavis, K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar
Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, https://doi.org/10.5194/acp-13-8771-2013, 2013
K. Minschwaner, L. Hoffmann, A. Brown, M. Riese, R. Müller, and P. F. Bernath
Atmos. Chem. Phys., 13, 4253–4263, https://doi.org/10.5194/acp-13-4253-2013, https://doi.org/10.5194/acp-13-4253-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
N. A. D. Richards, S. R. Arnold, M. P. Chipperfield, G. Miles, A. Rap, R. Siddans, S. A. Monks, and M. J. Hollaway
Atmos. Chem. Phys., 13, 2331–2345, https://doi.org/10.5194/acp-13-2331-2013, https://doi.org/10.5194/acp-13-2331-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Analysis of the global atmospheric background sulfur budget in a multi-model framework
Stratospheric ozone depletion inside the volcanic plume shortly after the 2022 Hunga Tonga eruption
Effects of denitrification on the distributions of trace gas abundances in the polar regions: a comparison of WACCM with observations
Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model
Climate response to off-equatorial stratospheric sulfur injections in three Earth system models – Part 1: Experimental protocols and surface changes
Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
The outflow of Asian biomass burning carbonaceous aerosol into the upper troposphere and lower stratosphere in spring: radiative effects seen in a global model
Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing
Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering
Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds
Mechanism of ozone loss under enhanced water vapour conditions in the mid-latitude lower stratosphere in summer
Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora
Impacts of Mt Pinatubo volcanic aerosol on the tropical stratosphere in chemistry–climate model simulations using CCMI and CMIP6 stratospheric aerosol data
Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation
Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of 2009/10
Solar geoengineering using solid aerosol in the stratosphere
Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study
Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model
Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations
Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering
The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Yunqian Zhu, Robert W. Portmann, Douglas Kinnison, Owen Brian Toon, Luis Millán, Jun Zhang, Holger Vömel, Simone Tilmes, Charles G. Bardeen, Xinyue Wang, Stephanie Evan, William J. Randel, and Karen H. Rosenlof
Atmos. Chem. Phys., 23, 13355–13367, https://doi.org/10.5194/acp-23-13355-2023, https://doi.org/10.5194/acp-23-13355-2023, 2023
Short summary
Short summary
The 2022 Hunga Tonga eruption injected a large amount of water into the stratosphere. Ozone depletion was observed inside the volcanic plume. Chlorine and water vapor injected by this eruption exceeded the normal range, which made the ozone chemistry during this event occur at a higher temperature than polar ozone depletion. Unlike polar ozone chemistry where chlorine nitrate is more important, hypochlorous acid plays a large role in the in-plume chlorine balance and heterogeneous processes.
Michael Weimer, Douglas E. Kinnison, Catherine Wilka, and Susan Solomon
Atmos. Chem. Phys., 23, 6849–6861, https://doi.org/10.5194/acp-23-6849-2023, https://doi.org/10.5194/acp-23-6849-2023, 2023
Short summary
Short summary
We investigate the influence of the number density of nitric acid trihydrate (NAT) particles on associated trace gases in the lower stratosphere using data from a satellite, ozonesondes and simulations by a community chemistry climate model. By comparing probability density functions between observations and the model, we find that the standard NAT number density should be reduced for future simulations with the model.
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023, https://doi.org/10.5194/acp-23-1169-2023, 2023
Short summary
Short summary
We characterized the influence of volcanic aerosols for the period 1990–2019 and established a volcanic SO2 emission inventory that includes more than 500 eruptions. From limb-based satellite observations of SO2 and extinction, we derive 3D plumes of SO2 perturbations and injected mass by a novel method. We calculate instantaneous radiative forcing with a comprehensive chemisty climate model. Our results show that smaller eruptions can also contribute to the stratospheric aerosol forcing.
Daniele Visioni, Ewa M. Bednarz, Walker R. Lee, Ben Kravitz, Andy Jones, Jim M. Haywood, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 663–685, https://doi.org/10.5194/acp-23-663-2023, https://doi.org/10.5194/acp-23-663-2023, 2023
Short summary
Short summary
The paper constitutes Part 1 of a study performing a first systematic inter-model comparison of the atmospheric responses to stratospheric sulfate aerosol injections (SAIs) at various latitudes as simulated by three state-of-the-art Earth system models. We identify similarities and differences in the modeled aerosol burden, investigate the differences in the aerosol approaches between the models, and ultimately show the differences produced in surface climate, temperature and precipitation.
Simone Tilmes, Daniele Visioni, Andy Jones, James Haywood, Roland Séférian, Pierre Nabat, Olivier Boucher, Ewa Monica Bednarz, and Ulrike Niemeier
Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, https://doi.org/10.5194/acp-22-4557-2022, 2022
Short summary
Short summary
This study assesses the impacts of climate interventions, using stratospheric sulfate aerosol and solar dimming on stratospheric ozone, based on three Earth system models with interactive stratospheric chemistry. The climate interventions have been applied to a high emission (baseline) scenario in order to reach global surface temperatures of a medium emission scenario. We find significant increases and decreases in total column ozone, depending on regions and seasons.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys., 21, 9515–9543, https://doi.org/10.5194/acp-21-9515-2021, https://doi.org/10.5194/acp-21-9515-2021, 2021
Short summary
Short summary
We show that we are able to directly simulate polar stratospheric clouds formed locally in a mountain wave and represent their effect on the ozone chemistry with the global atmospheric chemistry model ICON-ART. Thus, we show the first simulations that close the gap between directly resolved mountain-wave-induced polar stratospheric clouds and their representation at coarse global resolutions.
John Staunton-Sykes, Thomas J. Aubry, Youngsub M. Shin, James Weber, Lauren R. Marshall, Nathan Luke Abraham, Alex Archibald, and Anja Schmidt
Atmos. Chem. Phys., 21, 9009–9029, https://doi.org/10.5194/acp-21-9009-2021, https://doi.org/10.5194/acp-21-9009-2021, 2021
Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller
Atmos. Chem. Phys., 21, 2427–2455, https://doi.org/10.5194/acp-21-2427-2021, https://doi.org/10.5194/acp-21-2427-2021, 2021
Short summary
Short summary
Column ozone protects life on Earth from radiation damage. Stratospheric chlorine compounds cause immense ozone loss in polar winter. Whether similar loss processes can occur in the lower stratosphere above North America today or in future is a matter of debate. We show that these ozone loss processes are very unlikely today or in future independently of whether sulfate geoengineering is applied and that less than 0.1 % of column ozone would be destroyed by this process in any future scenario.
Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson
Atmos. Chem. Phys., 20, 13627–13654, https://doi.org/10.5194/acp-20-13627-2020, https://doi.org/10.5194/acp-20-13627-2020, 2020
Short summary
Short summary
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with aerosol microphysics models. Similar adjustment is also needed to simulate the El Chichón and Agung volcanic cloud, indicating potential missing removal or vertical redistribution process in models. Important inhomogeneities in the CMIP6 forcing datasets after Agung and El Chichón eruptions are difficult to reconcile. Quasi-biennial oscillation plays an important role in modifying stratospheric warming.
Sabine Robrecht, Bärbel Vogel, Jens-Uwe Grooß, Karen Rosenlof, Troy Thornberry, Andrew Rollins, Martina Krämer, Lance Christensen, and Rolf Müller
Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019, https://doi.org/10.5194/acp-19-5805-2019, 2019
Short summary
Short summary
The potential destruction of stratospheric ozone in the mid-latitudes has been discussed recently. We analysed this ozone loss mechanism and its sensitivities. In a certain temperature range, we found a threshold in water vapour, which has to be exceeded for ozone loss to occur. We show the dependence of this water vapour threshold on temperature, sulfate content and air composition. This study provides a basis to estimate the impact of potential sulphate geoengineering on stratospheric ozone.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Laura E. Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov, and Thomas Peter
Atmos. Chem. Phys., 17, 13139–13150, https://doi.org/10.5194/acp-17-13139-2017, https://doi.org/10.5194/acp-17-13139-2017, 2017
Short summary
Short summary
Compiling stratospheric aerosol data sets after a major volcanic eruption is difficult as the stratosphere becomes too optically opaque for satellite instruments to measure accurately. We performed ensemble chemistry–climate model simulations with two stratospheric aerosol data sets compiled for two international modelling activities and compared the simulated volcanic aerosol-induced effects from the 1991 Mt Pinatubo eruption on tropical stratospheric temperature and ozone with observations.
Suvarna Fadnavis, Gayatry Kalita, K. Ravi Kumar, Blaž Gasparini, and Jui-Lin Frank Li
Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017, https://doi.org/10.5194/acp-17-11637-2017, 2017
Short summary
Short summary
In this study, the model simulations show that monsoon convection over the Bay of Bengal, the South China Sea and southern flanks of the Himalayas transports Asian carbonaceous aerosol into the UTLS. Carbonaceous aerosol induces enhancement in heating rate, vertical velocity and water vapor transport in the UTLS. Doubling of carbonaceous aerosols creates an anomalous warming over the TP. It generates monsoon Hadley circulation and thus increases precipitation over India and northeast China.
Tobias Wegner, Michael C. Pitts, Lamont R. Poole, Ines Tritscher, Jens-Uwe Grooß, and Hideaki Nakajima
Atmos. Chem. Phys., 16, 4569–4577, https://doi.org/10.5194/acp-16-4569-2016, https://doi.org/10.5194/acp-16-4569-2016, 2016
Short summary
Short summary
Satellite observations are used to constrain areas with large backscatter values areas inside the polar vortex. Surface area is derived from these observations and used in heterogeneous modeling. Satellite gas species observations show a decrease in HCl downwind of areas with large surface area density indicating heterogeneous processing inside these areas. This decrease can only be simulated if a realistic surface area is assumed demonstrating the importance of polar stratospheric cloud.
D. K. Weisenstein, D. W. Keith, and J. A. Dykema
Atmos. Chem. Phys., 15, 11835–11859, https://doi.org/10.5194/acp-15-11835-2015, https://doi.org/10.5194/acp-15-11835-2015, 2015
Short summary
Short summary
We investigate stratospheric aerosol geoengineering with solid particle injection by modeling the fractal structure of alumina aerosols and their interaction with background sulfate. We analyze the efficacy (W m^-2 of radiative forcing per megaton of injection) and risks (ozone loss, s) for both alumina and diamond particles as a function of injected monomer radius, finding 240nm alumina and 160nm diamond optimal. We discuss the limitations of our 2-D model study and associated uncertainties.
L. Di Liberto, R. Lehmann, I. Tritscher, F. Fierli, J. L. Mercer, M. Snels, G. Di Donfrancesco, T. Deshler, B. P. Luo, J-U. Grooß, E. Arnone, B. M. Dinelli, and F. Cairo
Atmos. Chem. Phys., 15, 6651–6665, https://doi.org/10.5194/acp-15-6651-2015, https://doi.org/10.5194/acp-15-6651-2015, 2015
Short summary
Short summary
We investigated chemical and microphysical processes in the late winter Antarctic stratosphere, for the first time (to our knowledge) coupling a detailed microphysical box model to a chemistry model.
Model results have been compared with in situ and remote sensing measurements of particles along trajectories.
Our goal is to contribute to the most recent discussion of the relative role of PSC and liquid (background) aerosol in the ozone depletion.
S. S. Dhomse, K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, R. Hommel, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. O'Connor, O. Morgenstern, J. A. Pyle, T. Deshler, J. M. Zawodny, and L. W. Thomason
Atmos. Chem. Phys., 14, 11221–11246, https://doi.org/10.5194/acp-14-11221-2014, https://doi.org/10.5194/acp-14-11221-2014, 2014
J. Wang, S. Park, J. Zeng, C. Ge, K. Yang, S. Carn, N. Krotkov, and A. H. Omar
Atmos. Chem. Phys., 13, 1895–1912, https://doi.org/10.5194/acp-13-1895-2013, https://doi.org/10.5194/acp-13-1895-2013, 2013
J. M. English, O. B. Toon, and M. J. Mills
Atmos. Chem. Phys., 12, 4775–4793, https://doi.org/10.5194/acp-12-4775-2012, https://doi.org/10.5194/acp-12-4775-2012, 2012
C. Brühl, J. Lelieveld, P. J. Crutzen, and H. Tost
Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012, https://doi.org/10.5194/acp-12-1239-2012, 2012
Cited articles
Aas, W., Mortier, A., Bowersox, V., Ribu, C., Faluvegi, G., Fagerli, H.,
Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L.,
Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M.,
Shindell, D., Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Robert, Vet
R., and Xiaobin Xu, X.: Global and regional trends of atmospheric sulfur,
Sci. Rep., 9, 1–11, https://doi.org/10.1038/s41598-018-37304-0, 2019.
Aquila, V., Garfinkel, C. I., Newman, P. A., Oman, L. D., and Waugh, D. W.:
Modifications of the quasi-biennial oscillation by a geoengineering
perturbation of the stratospheric aerosol layer, Geophys. Res. Lett., 41,
1738–1744, https://doi.org/10.1002/2013GL058818, 2014.
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S.,
Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P.
K., and Singh, D.: Trends in aerosol optical depth over Indian region:
Potential causes and impact indicators, J. Geophys. Res., 118,
11794–11806, https://doi.org/10.1002/2013JD020507, 2013.
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.:
Aerosol forcing in the Climate Model Intercomparison Project (CMIP5)
simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys.
Res., 116, D20206, https://doi.org/10.1029/2011JD016074, 2011.
Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic:
Sensitivity to aerosol scavenging and source regions, J. Geophys. Res., 116,
D08213, https://doi.org/10.1029/2010JD015096, 2011.
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser,
D. E.: On the relationship between the QBO and tropical deep convection, J.
Clim., 16, 2552–2568, 2003.
Crueger, T. and Stevens, B.: The effect of atmospheric radiative heating by
clouds on the Madden-Julian Oscillation, J. Adv. Model. Earth Sy., 7,
854–864, https://doi.org/10.1002/2015MS000434, 2015.
Cziczo, D. J., Ladino, L., Boose, Y., Kanji, Z. A., Kupiszewski, P., Lance,
S., Mertes, S., and Wex, H.: Measurements of ice nucleating particles and
ice residuals, Meteor. Mon., 58, 8.1–8.13, 2017.
Deng, M., Mace, G. G., Wang, Z., and Lawsan, R. P.: Evaluation of Several
A-Train Ice cloud retrieval products with in situ measurements collected
during the SPARTICUS campaign, J. Appl. Meteorol. Clim., 52, 1014–1030,
2013.
Dumka, U. C., Tripathi, S. N., Misra, A., Giles, D. M., Eck, T. F., Sagar,
R., and Holben, B. N.: Latitudinal variation of aerosol properties from
Indo-Gangetic Plain to central Himalayan foothills during TIGERZ campaign,
J. Geophys. Res., 119, 4750–4769, https://doi.org/10.1002/2013JD021040, 2014.
Edwards, J. M. and Slingo, A.: Studies with a Flexible New Radiation Code,
I: Choosing a Configuration for a Large-Scale Model, Q. J. Roy. Metorol.
Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107, 1996.
Fadnavis, S. and Beig, G.: Seasonal variation of trend in temperature and
ozone over the tropical stratosphere in the Northern Hemisphere, J. Atmos.
Sol.-Terr. Phys., 68, 1952–1961, https://doi.org/10.1016/j.jastp.2006.09.003,
2006.
Fadnavis, S. and Chattopadhyay, R.: Linkages of subtropical stratospheric
intraseasonal intrusions with Indian summer monsoon deficit rainfall, J.
Clim., 30, 5083–5095, https://doi.org/10.1175/JCLI-D-16-0463.1, 2017.
Fadnavis, S., Semeniuk, K., Pozzoli, L., Schultz, M. G., Ghude, S. D., Das,
S., and Kakatkar, R.: Transport of aerosols into the UTLS and their impact
on the Asian monsoon region as seen in a global model simulation, Atmos.
Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, 2013.
Fadnavis, S., Kalita, G., Kumar, K. R., Gasparini, B., and Li, J. L.:
Potential impact of carbonaceous aerosol on the upper troposphere and lower
stratosphere (UTLS) and precipitation during Asian summer monsoon in a
global model simulation, Atmos. Chem. Phys., 17, 11637–11654,
https://doi.org/10.5194/acp-17-11637-2017, 2017a.
Fadnavis, S., Roy, C., Sabin, T. P., Ayantika, D. C., and Ashok, K.:
Potential modulations of pre-monsoon aerosols during El Niño: impact on
Indian summer monsoon, Clim. Dynam., 49, 2279–2290,
https://doi.org/10.1007/s00382-016-3451-6, 2017b.
Fadnavis, S., Roy, C., Chattopadhyay, R., Sioris, C. E., Rap, A.,
Müller, R., Kumar, R. K., and Krishnan, R.: Transport of trace gases via
eddy shedding from the Asian summer monsoon anticyclone and associated
impacts on ozone heating rates, Atmos. Chem. Phys., 18, 11493–11506,
https://doi.org/10.5194/acp-18-11493-2018, 2018.
Fisher, J. A., Jacob, D. J., Wang, Q., Bahreini, R., Carouge, C. C.,
Cubison, M. J., Dibb, J.E., Diehl, T., Jimenez, J. L., Leibensperger, E. M.,
Lu, Z., Meinders, M. B. J., Pye, H. O. T., Quinn, P. K., Sharma, S.,
Streets, D. G., Donkelaar, A. van, and Yantosca, R. M.: Sources,
distribution, and acidity of sulfate-ammonium aerosol in the Arctic in
winter-spring, Atmos. Environ., 45, 7301–7318, https://doi.org/10.1016/j.atmosenv.2011.08.030, 2011.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.
W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R.,
Raga, G., Schulz M., and Van Dorland, R.: Changes in Atmospheric
Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S.,
Qin, D., Manning, M., Chen, Z.,, Marquis, Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 129–234, 2007.
Gasparini, B. and Lohmann, U.: Why cirrus cloud seeding cannot
substantially cool the planet, J. Geophys. Res., 121, 4877–4893,
https://doi.org/10.1002/2015JD024666, 2016.
Gasparini, B., Meyer, A., Neubauer, D., Münch, S., and Lohmann, U.:
Cirrus Cloud Properties as Seen by the CALIPSO Satellite and ECHAM–HAM
Global Climate Model, J. Clim., 31, 1983–2003,
https://doi.org/10.1175/JCLI-D-16-0608.1, 2018.
Giovanni: Aerosol Optical Depth at 550 nm, available at: https://giovanni.gsfc.nasa.gov/giovanni/ last access: 5 August 2019.
Gu, Y., Liao, H., and Bian, J.: Summertime nitrate aerosol in the upper
troposphere and lower stratosphere over the Tibetan Plateau and the South
Asian summer monsoon region, Atmos. Chem. Phys., 16, 6641–6663,
https://doi.org/10.5194/acp-16-6641-2016, 2016.
Hartmann, D. L., Gasparini, B., Berry, S. E., and Blossey, P. N.: The Life
Cycle and Net Radiative Effect of Tropical Anvil Clouds, J. Adv.
Model. Earth Sy., 10, 3012–3029,
https://doi.org/10.1029/2018MS001484, 2018.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET: Federated Instrument Network and
Data Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Höpfner, M., Ungermann, J., Borrmann, S., Wagner, R., Spang, R., Riese, M., Stiller, G., Appel, O., Batenburg, A. M., Bucci, S., Cairo, F., Dragoneas, A., Friedl-Vallon, F., Hünig, A., Johansson, S., Krasauskas, L., Legras, B., Leisner, T., Mahnke, C., Möhler, O., Molleker, S., Müller, R., Neubert, T., Orphal, J., Preusse, P., Rex, M., Saathoff, H., Stroh, F., Weigel, R., and Wohltmann, I.: Ammonium nitrate particles formed in upper troposphere
from ground ammonia sources during Asian monsoons, Nat. Geosci., 12, 608–612,
https://doi.org/10.1038/s41561-019-0385-8, 2019.
Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical nucleation
theory of homogeneous freezing of water: thermodynamic and kinetic
parameters, Phys. Chem. Chem. Phys., 17, 5514–5537, https://doi.org/10.1039/C4CP04184D,
2015.
Kahn, R., Banerjee, P. D., and McDonald, D.: The sensitivity of multiangle
imaging to natural mixtures of aerosols over ocean, J. Geophys. Res., 106,
18219–18238, https://doi.org/10.1029/2000JD900497, 2001.
Kim, M. J., Yeh, S. W., and Park, R. J.: Effects of sulfate aerosol forcing
on East Asian summer monsoon for 1985–2010, Geophys. Res. Lett., 43,
1364–1372, https://doi.org/10.1002/2015GL067124, 2016.
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., and Pan, L. L.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res., 112, D20302,
https://doi.org/10.1029/2006JD007879, 2007.
Kokkola, H., Kuhn, T., Laakso, A., Bergman, T., Lehtinen, KEJ., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S., Lohmann, U., Neubauer, D., Tegen, I., Siegenthaler-Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalaski, N., and Heald, C. L.: SALSA2.0: The sectional
aerosol module of the aerosol–chemistry–climate model
ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, 3833–3863,
https://doi.org/10.5194/gmd-11-3833-2018, 2018.
Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A., Meyer, J., Zöger, M., Smith, J., Herman, R. L., Buchholz, B., Ebert, V., Baumgardner, D., Borrmann, S., Klingebiel, M., and Avallone, L.: A microphysics guide to cirrus clouds – Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, 2016.
Kremser, S., , Larry, W. T., Hobe, M. V., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J.‐P., Schlager, H., Barnes, J. E., Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric
aerosol-Observations, processes and impact on climate, Rev. Geophys., 54,
278–335, https://doi.org/10.1002/2015RG000511, 2016.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
Kuebbeler, M., Lohmann, U., and Feichter, J.: Effects of stratospheric
sulfate aerosol geo-engineering on cirrus clouds, Geophys. Res. Lett., 39,
L23803, 1–5, https://doi.org/10.1029/2012GL053797, 2012.
Lau, W. K. M., Yuan, C., and Li, Z.: Origin, Maintenance and Variability of
the Asian Tropopause Aerosol Layer (ATAL): The Roles of Monsoon Dynamics,
Sci. Rep., 8, 3960, https://doi.org/10.1038/s41598-018-22267-z, 2018.
Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H.,
Harder, H., Hofzumahaus, A., Holland, F., Marno, D., Neumaier, M., Pozzer,
A., Schlager H., Williams, J., Zahn, A., and Ziereis, H.: The South Asian
monsoon pollution pump and purifier, Science, 361, 270–273,
https://doi.org/10.1126/science.aar2501, 2018.
Levelt P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J. O. V., and Saari, H.: The Ozone Monitoring Instrument, IEEE Trans. Geosci.
Remote Sens., 44, 1093–1101, 2006.
Li, C., McLinden, C., Fioletov, V., Krotkov, Carn, S., Joiner, J., Streets,
D., He, H., Ren, X., Li, Z., and Dickerson, R. R.: India is overtaking China
as the world's largest emitter of anthropogenic sulfur dioxide, Sci. Rep.,
7, 14304, https://doi.org/10.1038/s41598-017-14639-8, 2017.
Li, J.-L.F., Waliser, D. E., Chen, W. T., Guan, B., Kubar, T., Stephens, G., Ma, H.‐Y., Deng, M., Donner, L., Seman, C., and Horowitz, L.: An observationally based
evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary
reanalyses using contemporary satellite data, J. Geophy. Res., 117, D16105,
https://doi.org/10.1029/2012JD017640, 2012.
Lohmann, U. and Ferrachat, S.: Impact of parametric uncertainties on the
present-day climate and on the anthropogenic aerosol effect, Atmos. Chem.
Phys., 10, 11373–11383, https://doi.org/10.5194/acp-10-11373-2010, 2010.
Lohmann, U. and Hoose, C.: Sensitivity studies of different aerosol indirect
effects in mixed-phase clouds, Atmos. Chem. Phys., 9, 8917–8934,
https://doi.org/10.5194/acp-9-8917-2009, 2009.
Luo,Y., Wang, H., Zhang, R., Qian, W., and Luo, Z.: Comparison of Rainfall
Characteristics and Convective Properties of Monsoon Precipitation Systems
over South China and the Yangtze and Huai River Basin, J. Clim., 26, 110–132
https://doi.org/10.1175/JCLI-D-12-00100.1,
2013.
Manohar, G. K., Kahdalgaonkar, S. S., and Tinmaker, M. I. R.: Thunderstorm
activity over India and the Indian southwest monsoon, J. Geophys. Res., 104,
4169–4188, https://doi.org/10.1029/98JD02592, 1999.
Martonchik, J. V, Diner, D. J., Crean, K. A., and Bull, M. A.: Regional
aerosol retrieval results from MISR, IEEE Trans. Geosci. Remote Sens., 40,
1520–1531, 2002.
Medina, S., Houze Jr., R. A., Kumar, A., and Niyogi, D.: Summer monsoon
convection in the Himalayan region: Terrain and land cover effects, Q.
J. Roy. Metorol. Soc., 136, 593–616, https://doi.org/10.1002/qj.601, 2010.
Myhre, G., Shindell, D., Bréon, F.-M., et al.: Anthropogenic and Natural
Radiative Forcing, Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 659–740,
https://doi.org/10.1017/CBO9781107415324.018, 2013.
NASA: CALIPSO and CloudSat measurements can be obtained from http://www.cloudsat.cira.colostate.edu/data-products/, last access: 7 August 2019.
Neubauer, D., Lohmann, U., Hoose, C., and Frontoso, M. G.: Impact of the
representation of marine stratocumulus clouds on the anthropogenic aerosol
effect, Atmos. Chem. Phys., 14, 11997–12022, https://doi.org/10.5194/acp-14-11997-2014,
2014.
Nie, J. and Sobel, A. H.: Responses of Tropical Deep Convection to the QBO:
Cloud-Resolving Simulations, J. Atmos. Sci., 72, 3625–3638, https://doi.org/10.1175/JAS-D-15-0035.1, 2015.
Niemeier, U. and Schmidt, H.: Changing transport processes in the
stratosphere by radiative heating of sulfate aerosols, Atmos. Chem. Phys.,
17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, 2017.
Padma Kumari, B., Londhe, A. L., Daniel, S., and Jadhav, D. B.:
Observational evidence of solar dimming: Offsetting surface warming over
India, Geophys. Res. Lett., 34, L21810,
https://doi.org/10.1029/2007GL031133, 2007.
Paul, S., Ghosh, S., Oglesby, R., Pathak, A., Chandrasekharan, A., and
Ramsankaran, R.: Weakening of Indian Summer Monsoon Rainfall due to Changes
in Land Use Land Cover, Sci. Rep., 6, 32177,
https://doi.org/10.1038/srep32177, 2016.
Pitari, G., Visioni, D., Mancini, E., Cionni, I., Genova, G. Di., and
Gandilfi, I.: Sulfate aerosols from non-explosive volcanoes: chemical
1–22, https://doi.org/10.3390/atmos7070085, 2016.
Pu, B. and Ginoux, P.: How reliable are CMIP5 models in simulating dust
optical depth?, Atmos. Chem. Phys., 18, 12491–12510,
https://doi.org/10.5194/acp-18-12491-2018, 2018.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: Impacts on South Asian climate and hydrological cycle, P. Natl.
Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102, 2005.
Randel, W. and Jensen, E.: Physical processes in the tropical tropopause
layer and their role in a changing climate, Nat. Geosci., 6, 169–176,
https://doi.org/10.1038/ngeo1733, 2013.
Rap, A., Scott, C. E., Spracklen, D.V., Bellouin, N., Forster, P. M.,
Carslaw, K. S., Schmidt, A., and Mann, G.: Natural aerosol direct and
indirect radiative effects, Geophys. Res. Lett., 40, 3297–3301,
https://doi.org/10.1002/grl.50441, 2013.
Richter, J. H., Tilmes, S., Mills, M. J., Tribbia, J., J., Kravitz, B.,
MacMartin, D. G., Vitt, F., and Jean-Francois, L.: Stratospheric dynamical
response and ozone feedbacks in the presence of SO2 injections, J.
Geophys. Res., 122, 12557–12573, https://doi.org/10.1002/2017JD026912,
2017.
Richter, J. H., Tilmes, S., Glanville, A., Kravitz, B., MacMartin, D. G.,
Mills, M. J., Simpson, I. R., Vitt, F., Tribbia, J. J., and Jean-Francois,
L.: Stratospheric response in the first geoengineering simulation meeting
multiple surface climate objectives, J. Geophys. Res., 123, 5762–5782,
https://doi.org/10.1029/2018JD028285, 2018.
Shawki, D., Voulgarakis, A., Chakraborty, A., Kasoar, M., and Srinivasan,
J.: The South Asian monsoon response to remote aerosols: Global and regional
mechanisms, J. Geophys. Res., 123, 11585–11601, https://doi.org/10.1029/2018JD028623, 2018.
Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G. A., Fiore, M., Hess, P., Koch, D. M., MacKenzie, I. A., Sanderson, M. G., Schultz, M. G., Schulz, M., Stevenson, D. S., Teich, H., Textor, C., Wild, O., Bergmann, D. J., Bey, I., Bian, H., Cuvelier, C., Duncan, B. N., Folberth, G., Horowitz, L. W., Jonson, J., Kaminski, J. W., Marmer, E., Park, R., Pringle, K. J., Schroeder, S., Szopa, S., Takemura, T., Zeng, G., Keating, T. J., and Zuber, A.: A multi-model assessment of
pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353–5372,
https://doi.org/10.5194/acp-8-5353-2008.
Spada, M., Jorba, O., Pérez García-Pando, C., Janjic, Z., and Baldasano,
J. M.: Modeling and evaluation of the global sea-salt aerosol distribution:
sensitivity to size-resolved and sea-surface temperature dependent emission
schemes, Atmos. Chem. Phys., 13, 11735–11755,
https://doi.org/10.5194/acp-13-11735-2013, 2013.
SPARC-ASAP: Assessment of Stratospheric Aerosol Properties (ASAP), WCRP-124,
WMO/TD No. 1295, SPARC Rep. 4, 348 pp., 2006.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P. C. B., and Wild, M.:
Disentangling greenhouse warming and aerosol cooling to reveal Earth's
climate sensitivity, Nat. Geosci., 9, 286–289,
https://doi.org/10.1038/NGEO2670, 2016.
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A., Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen, C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.: Assessment of Global Cloud datasets from Satellites:
Project and Database initiated by the GEWEX Radiation Panel, Bull. Am.
Meteorol. Soc., 1031–1048, https://doi.org/10.1175/BAMS-D-12-00117.1, 2013.
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature
and sea-ice concentration boundary conditions of AMIP II simulations, PCMDI
Rep., 60, 20 pp., 2000.
Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol-climate model ECHAM6.3-HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, 2019.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006, 2006.
Verma, S., Boucher, O., Reddy, M. S., Upadhyaya, H. C., Van, P. Le,
Binkowski, F. S., and Sharma, O. P.: Tropospheric distribution of sulfate
aerosols mass and number concentration during INDOEX-IFP and its transport
over the Indian Ocean: A GCM study, Atmos. Chem. Phys., 12, 6185–6196,
https://doi.org/10.5194/acp-12-6185-2012, 2012.
Vernier, J.-P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Martinsson,
B. G., Crumeyrolle S., Thomason, L. W., and Bedka, K. M.: Increase in upper
tropospheric and lower stratospheric aerosol levels and its potential
connection with Asian pollution, J. Geophys. Res., 120, 1608–1619,
https://doi.org/10.1002/2014JD022372, 2015.
Vernier, J., Fairlie, T., Deshler, T., Ratnam, M., Gadhavi, H., Kumar, S., Natarajan, M., Pandit, A., Raj, A., Kumar, H., Jayaraman, A., Singh, A., Rastogi, N., Sinha, P., Kumar, S., Tiwari, S., Wegner, T., Baker, N., Vignelles, D., Stenchikov, G., Shevchenko, I., Smith, J., Bedka, K., Kesarkar, A., Singh, V., Bhate, J., Ravikiran, V., Rao, M., Babu, R., Patel, A., Vernier, H., Wienhold, F., Liu, H., Knepp, T., Thomason, L., Crawford, J., Ziemba, L., Moore, J., Crumeyrolle, S., Williamson, M., Berthet, G., Jegou, F., and Renard, J.:
BATAL: The balloon measurement campaigns of the Asian tropopause aerosol
layer, Bull. Am. Meteorol. Soc., 99, 955–973,
https://doi.org/10.1175/BAMS-D-17-0014.1, 2018.
Visioni, D., Pitari, G., di Genova, G., Tilmes, S., and Cionni, I.: Upper
tropospheric ice sensitivity to sulfate geoengineering, Atmos. Chem. Phys.,
18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, 2018a.
Visioni, D., Pitari, G., Tuccella, P., and Curci, G.: Sulfur deposition
changes under sulfate geoengineering conditions: QBO effects on transport
and lifetime of stratospheric aerosols, Atmos. Chem. Phys., 18, 2787–2808,
https://doi.org/10.5194/acp-18-2787-2018, 2018b.
Vogel, B., Müller, R., Günther, G., Spang, R., Hanumanthu, S., Li,
D., Riese, M., and Stiller, G. P.: Lagrangian simulations of the transport
of young air masses to the top of the Asian monsoon anticyclone and into the
tropical pipe, Atmos. Chem. Phys., 19, 6007–6034,
https://doi.org/10.5194/acp-19-6007-2019, 2019.
Wernli, H., Boettcher, M., Joos, H., Miltenberger, A. K., and Spichtinger,
P.: A trajectory-based classification of ERA-Interim ice clouds in the
region of the North Atlantic storm track, Geophys. Res. Lett., 43,
6657–6664, https://doi.org/10.1002/2016GL068922, 2016.
Winker, D. M., Pelon, J., Coakley, Jr. J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant P., Fu, Q., Hoff, R. M., Kittaka, C. , Kubar, T. L., Treut, H. Le, Mccormick, M. P., Mégie G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO MISSION A Global 3D
View of Aerosols and Clouds, Bull. Am. Meteorol. Soc., 91, 1211–1229, https://doi.org/10.1175/2010bams3009.1, 2010.
Wu, G. X. and Zhang, Y. S.: Tibetan Plateau forcing and the timing of the
monsoon onset over South Asia and the South China Sea, Mon. Weather Rev.,
126, 913–927, 1998.
Yang, Y., Wang, H., Smith, S. J., Easter, R. C., and Rasch, P. J.: Sulfate
aerosol in the Arctic: Source attribution and radiative forcing, J. Geophy.
Res., 123, 1899–1918, https://doi.org/10.1002/2017JD027298, 2018.
Yeh, S. W., Park, R. J., Kim, M. J., Jeong, J. I., and Song, C. K.: Effect
of anthropogenic sulphate aerosol in China on the drought in the
western-to-central US, Sci. Rep., 5, 14305, https://doi.org/10.1038/srep14305, 2015.
Yu, P., Murphy, D. M., Portmann, R. W., Toon, O. B., Froyd, K. D., Rollins,
A. W., Gao, R. S., and Rosenlof, K. H.: Radiative Forcing from anthropogenic
sulfur and organic emissions Reaching the Stratosphere, Geophys. Res. Lett.,
43, 9361–9367, https://doi.org/10.1002/2016GL070153, 2016.
Yu, P., Rosenlof, K. H., Liu, S., Telg, H., Thornberry, T. D., Rollins, A.
W., Portmann, R. W., Bai, Z., Ray, E. A., Duan, Y., Pan, L. L., Toon, O. B.,
Bian, J., and Gao, R. S.: Efficient transport of tropospheric aerosol into
the stratosphere via the Asian summer monsoon anticyclone, P. Natl. Acad.
Sci. USA, 114, 6972–6977, https://doi.org/10.1073/pnas.1701170114, 2017.
Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U.,
Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter, J.:
The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to
improvements in process representations, Atmos. Chem. Phys., 12, 8911–8949,
https://doi.org/10.5194/acp-12-8911-2012, 2012b.
Zhang, Q., He, K., and Huo, H.: Cleaning China's air, Nature, 484, 161–162,
2012a.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(19801 KB) - Full-text XML
- Corrigendum
-
Supplement
(1689 KB) - BibTeX
- EndNote
Short summary
This paper highlights the impact of Asian anthropogenic emission changes in SO2 on sulfate loading in the Asian upper troposphere–lower stratosphere from a global chemistry–climate model and satellite remote sensing. Estimated seasonal mean direct radiative forcing at the top of the atmosphere induced by the increase in Indian SO2 is −0.2–−1.5 W m2 over India. Chinese SO2 emission reduction leads to a positive radiative forcing of ~0.6–6 W m2 over China. It will likely decrease Indian rainfall.
This paper highlights the impact of Asian anthropogenic emission changes in SO2 on sulfate...
Altmetrics
Final-revised paper
Preprint