Articles | Volume 19, issue 13
Atmos. Chem. Phys., 19, 8383–8397, 2019
https://doi.org/10.5194/acp-19-8383-2019
Atmos. Chem. Phys., 19, 8383–8397, 2019
https://doi.org/10.5194/acp-19-8383-2019

Research article 02 Jul 2019

Research article | 02 Jul 2019

Large-scale dynamics of tropical cyclone formation associated with ITCZ breakdown

Quan Wang et al.

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020,https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
The “urban meteorology island”: a multi-model ensemble analysis
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020,https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020,https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020,https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary

Cited articles

Agee, E. M.: Note on itcz wave disturbances and formation of tropical storm anna, Mon. Weather Rev., 100, 733–737, https://doi.org/10.1175/1520-0493(1972)100<0733:NOIWDA>2.3.CO;2, 1972. a
Aiyyer, A. R. and Molinari, J.: Evolution of mixed rossby-gravity waves in idealized mjo environments. J. Atmos. Sci., 60, 2837–2855, https://doi.org/10.1175/1520-0469(2003)060<2837:EOMRWI>2.0.CO;2, 2003. a
Avila, L. A. and Pasch, R. J.: Atlantic tropical systems of 1991, Mon. Weather Rev., 120, 2688–2696, https://doi.org/10.1175/1520-0493(1992)120<2688:ATSO>2.0.CO;2, 1992. a
Bister, M. and Emanuel, K. A.: The genesis of hurricane guillermo: Texmex analyses and a modeling study, Mon. Weather Rev., 125, 2662–2682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2, 1997. 
Charney, J. G. and DeVore, J. G.: Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 36, 1205–1216, https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2, 1979. a, b
Download
Short summary
This study presents an analytical model to study large-scale tropical cyclone (TC) formation that can help us understand the maximum capacity of the Earth's atmosphere to produce TCs. Using a barotropic model for the intertropical convergence zone and recent advances in nonlinear dynamical transition, it is found that the Earth's atmosphere can support a limited number of TCs at any given time (<12) in the current climate, thus providing new theoretical insights into the TC formation process.
Altmetrics
Final-revised paper
Preprint