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Abstract. This study examines the formation of tropical cy-
clones (TCs) from the large-scale perspective. Using the non-
linear dynamical transition framework recently developed by
Ma and Wang, it is shown that the large-scale formation of
TCs can be understood as a result of the principle of ex-
change of stabilities in the barotropic model for the intertrop-
ical convergence zone (ITCZ). Analyses of the transition dy-
namics at the critical point reveal that the maximum number
of TC disturbances that the Earth’s tropical atmosphere can
support at any instant of time has an upper bound of ∼ 12
for current atmospheric conditions. Additional numerical es-
timation of the transition structure on the central manifold
at the critical point of the ITCZ model confirms this impor-
tant finding, which offers an explanation for a fundamental
question of why the Earth’s atmosphere can support a lim-
ited number of TCs globally each year.

1 Introduction

The life cycle of a tropical cyclone (TC) is typically divided
into several stages including early genesis, tropical distur-
bance, tropical depression, tropical storm, hurricane, and fi-
nally the dissipation. Among these five stages, the tropical
cyclogenesis (TCG), defined as a period during which a weak
atmospheric disturbance grows into a mesoscale tropical de-
pression with a close isobar and a maximum surface wind of
> 17 m s−1 (Karyampudi and Pierce, 2002; Tory and Mont-
gomery, 2006), is perhaps the least understood due to its un-
organized structure as well as ill-defined characteristics of
TCs. During this genesis period (typically 2–5 d), synergetic
interactions among various dynamical and thermodynamic

processes at different scales can result in an eventually self-
sustained, warm-core vortex before the subsequent intensifi-
cation can take place. These early formation processes are so
intricate that no single or distinct mechanism could operate
for all TCs, rendering the genesis forecasting very challeng-
ing in practice. Such a multi-faceted nature of TCG is the
main factor preventing us from obtaining a complete under-
standing of TC formation and development at present.

Early studies by Gray (1968, 1982) provided a list of nec-
essary climatological conditions for TCG to occur, which in-
clude (i) an underlying warm sea surface temperature (SST)
of at least 26 ◦C, (ii) a finite-amplitude low-level cyclonic
disturbance, (iii) weak vertical wind shear, (iv) a tropical up-
per tropospheric trough, and (v) a moist lower to middle tro-
posphere. While the above conditions for genesis have been
well documented in numerous observational and modeling
studies since then, it is intriguing that the actual number of
TCs composes a small fraction of the cases that meet all these
conditions in the tropical region every year. Moreover, TCG
varies wildly among different ocean basins due to relative
importance of large-scale disturbances, local forcings, and
surface conditions, thus inheriting strong regional character-
istics that common criteria may not be applied everywhere.
For example, TC genesis in the North Atlantic basin often
shows a strong connection to active tropical waves originat-
ing from the South African jet (Avila and Pasch, 1992; De-
Maria, 1996; Molinari et al., 1999). In the northwestern Pa-
cific basin, studies by Yanai (1964), Gray (1968, 1982), Mark
and Holland (1993), Ritchie and Holland (1997), Harr et al.
(1996), and Nakato et al. (2010) showed that the genesis is
mostly related to the intertropical convergence zone (ITCZ)
and monsoon activities. In the northeastern Pacific, vortex in-
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teraction associated with the topographic and tropical waves
seems to generate abundant disturbances that act as the seeds
of TC genesis (Zehnder et al., 1999; Molinari et al., 1997;
Wang and Magnusdottir, 2006; Halverson et al., 2007; Kieu
and Zhang, 2010).

Other large-scale conditions that can interfere with TCG
have been also reported in previous studies such as the Sa-
haran air layer (SAL; Dunion and Velden, 2004), upper-
level potential vorticity anomalies (Molinari and Vollaro,
2000; Davis and Bosart, 2003), mixed Rossby–gravity waves
(Aiyyer and Molinari, 2003), the ITCZ breakdown (Ferreira
and Schubert, 1997; Wang and Magnusdottir, 2006), or mul-
tiple vortex merges (Simpson et al., 1997; Ritchie and Hol-
land, 1997; Wang and Magnusdottir, 2006; Kieu and Zhang,
2008; Kieu, 2015). Along with this diverse nature of gen-
esis in different basins, observational and modeling studies
of TC development have shown that the evolution of tropi-
cal disturbances during the early genesis stage often encom-
passes a wide range of scales from convective-scale hot tow-
ers and mesoscale convective systems to large-scale quasi-
balanced lifting and cloud–radiation feedbacks (e.g., Riehl
and Malkus, 1958; Yanai, 1964; Gray, 1968; Zhang and Bao,
1996; Ritchie and Holland, 1997; Simpson et al., 1997). In
this regard, TCG is a truly multi-scale process and the rel-
ative importance of different mechanisms must be carefully
examined when studying the TC genesis in real atmospheric
conditions.

Recent efforts in the TC genesis research have been shifted
from examining local mechanisms to a broader perspective of
how environmental conditions can produce and maintain TC
disturbances during TC early development (Wang and Mag-
nusdottir, 2006; Dunkerton et al., 2009; Montgomery et al.,
2010; Wang et al., 2012; Lussier et al., 2014; Zhu et al, 2015;
Wu and Shen, 2016; Patricola et al., 2018). The most current
attempt in quantifying the large-scale factors governing the
genesis in the North Atlantic basin focuses on the so-called
“pouch” conceptual model, which treats an early TC embryo
as a protected region within large-scale easterly waves (Wang
et al., 2010, 2012; Dunkerton et al., 2009; Montgomery et al.,
2010). To some extent, this pouch idea can be considered as
an advance of the requirement of an incipient disturbance for
genesis to occur that was originally put forth by Gray (1968).
Much of the development along this “pouch” idea has been
on tracking wave packets in the co-moving frame required to
protect the mid-level disturbances (the so-called Kelvin cat-
eye in Dunkerton et al., 2009; Lussier et al., 2014).

Despite much progress over recent decades, several out-
standing issues in the TC genesis study still remain. From the
global perspective, a particular question of what is the max-
imum number of TCs that the Earth’s tropical atmosphere
can form and support in any given day has not been ade-
quately addressed. Answering this question will help explain
a long-standing question of why the Earth has only a specific
number of ∼ 100 TCs globally every year. A recent model-
ing study of the global TC formation by Kieu et al. (2018)

demonstrated that the daily number of genesis events is in-
deed intriguingly bounded (< 10), even in a perfect environ-
ment. This number is quite consistent with a simple scale
analysis based on the typical scale of TCs with a diameter
∼ 3000 km, which shows that there should have been less
than 14 TCs on the Earth’s atmosphere at any given time, as-
suming that the radius of the Earth is ∼ 6400 km. Using ide-
alized simulations for a tropical channel, Kieu et al. (2018)
showed in fact that genesis occurs in episodes of 7–10 storms
each time with a frequency between the episodes of 12–16 d.
This episodic development at the global scale as well as the
upper bound of ∼ 10 storms for each episode as obtained
from these idealized experiments suggests that there must
have some large-scale environmental conditions or intrinsic
properties of the tropical dynamics, which control the gene-
sis processes beyond the basin-specific mechanisms as dis-
cussed in Patricola et al. (2018) .

While recent advances in global numerical models can rea-
sonably capture the very early stage of the TCG and serve as
guidance for operational genesis forecasts, analytical models
of TC development have been confined mostly to the later
stage of TC development such that the axisymmetric charac-
teristics of disturbances could be employed. The axisymme-
try is critical for the theoretical purposes, because it reduces
the Navier–Stokes equations to a set of approximated equa-
tions for which some balance constraints and simplifications
can be employed.

Given various basin-specific mechanisms that could pro-
duce TCs beyond axisymmetric models for an individual TC,
the main objective of this study is to focus specifically on
a large-scale mechanism behind the formation of tropical
disturbances associated with ITCZ breakdown. This special
pathway is very typical at the global scales whereby converg-
ing winds from the two hemispheres could set up the right
environment for large-scale stability to develop (Gray, 1968;
Yanai, 1964; Zehnder et al., 1999; Molinari et al., 2000; Fer-
reira and Schubert, 1997; Wang and Magnusdottir, 2006). In-
deed, satellite observations often show that the ITCZ tends
to undulate and break into a series of mesoscale vortices,
some of which may eventually grow into TCs (Agee, 1972;
Hack et al., 1989; Ferreira and Schubert, 1997). This is es-
pecially apparent in the WPAC basin where early studies by
Gray (1968, 1982) showed that TC genesis primarily occurs
along the ITCZ, which accounts for nearly 80 % of genesis
occurrences in this area.

Although the ITCZ breakdown appears to be a slow pro-
cess as compared to other pathways such as vortex mergers
(e.g., Wang and Magnusdottir, 2006; Kieu and Zhang, 2008,
2010) or tropical easterly waves (e.g., Zehnder et al., 1999;
Molinari et al., 1997; Halverson et al., 2007; Dunkerton et al.,
2009; Montgomery et al., 2010; Wang et al., 2012), it is an in-
herent property of the tropical atmosphere at the global scale
that could provide a source of large-scale disturbances re-
sponsible for TCG. To minimize the complication due to the
basin-specific features, we thus limit our study of the global
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TC formation to an idealized aqua-planet configuration to fa-
cilitate the analytical analyses in this study.

The rest of the paper is organized as follows. In the next
section, an analytical model for the large-scale TC genesis
based on the ITCZ breakdown model is presented. Section 3
presents detailed analyses of the principle of exchange of sta-
bilities for the ITCZ model as well as the stability analyses
of the dynamical transition. Numerical examination will be
discussed in Sect. 4, and concluding remarks are given in the
final section.

2 Formulation

A unique characteristic of the ITCZ that provides a favorable
environment for TC genesis to occur is the highly unstable
zone along the ITCZ where trade winds from the two hemi-
spheres converge. Such a zone with strong horizontal shear
is well documented along the tropical belt where the poten-
tial vorticity gradient changes sign, providing a necessary
condition for disturbances to grow according to Rayleigh’s
theorem (Charney and Stern, 1962; Ferreira and Schubert,
1997). Thus, a disturbance embedded within the ITCZ can
trigger a nonlinear growth and extract the energy from the
background, resulting in a potential amplification of the dis-
turbance with time.

Because of such a dominant role of the ITCZ in the global
TC formation, a natural model for global TCG should take
into account the large-scale ITCZ breakdown processes. This
ITCZ breakdown model is particularly suitable for an aqua-
planet that does not have other triggering mechanisms such
as land–sea interaction or terrain effects. For this reason, we
will consider the ITCZ breakdown as a starting model for the
TC genesis at the global scale in this study. Inspired by the
modeling studies of the ITCZ breakdown based on the shal-
low water equation (e.g., Ferreira and Schubert, 1997), we
examine a similar model for the ITCZ dynamics on the hor-
izontal plane for which the governing equation for the ITCZ
can be reduced to an equation for the potential vorticity as
follows.

d1ψ
dt
= νe1

2ψ +F −α1ψ −β
∂ψ

∂x
, (1)

where the horizontal streamfunction ψ has been introduced
as a result of the continuity equation, νe is horizontal eddy
viscosity, α is a relaxation time, 1 is the Laplacian operator,
and F is an external force that represents either a source/sink
of mass within the ITCZ1. Note here that the derivative on
the left-hand side of Eq. (1) is the total derivative such that
the horizontal advection of the vorticity is included. Unlike
the original ITCZ model in Ferreira and Schubert (1997), we

1In Charney and DeVore (1979), the relaxation time α is propor-
tional to the ratio of the Ekman depthDE over the depth of the fluid
H , while the external forcing term F can be treated as a large-scale
vorticity source.

have, however, introduced in the above model (Eq. 1) an ex-
plicit drag forcing term to represent the impacts of eddy dif-
fusion as discussed in Rambaldi and Mo (e.g., 1984), Legras
and Ghil (e.g., 1985), and Ferreira and Schubert (e.g., 1997).
The governing Eq. (1) for the horizontal streamfunction has
been extensively used in previous studies to examine the
quasi-geostrophic dynamics under different large-scale con-
ditions (e.g., Charney and DeVore, 1979; Legras and Ghil,
1985; Rambaldi and Mo, 1984; Schar, 1990).

To be specific for our TCG problem, we will apply Eq. (1)
for a zonally periodic tropical channel, which is defined as

�= [0,Lx]×
[
0,Ly

]
, (2)

where Ly is the half-width of the tropical channel and Lx is
the zonal length of the channel. This domain roughly rep-
resents a region where the ITCZ can be treated as a long
band wrapping around the Equator. For the current Earth con-
dition, Lx ∼ 40 000 km, and Ly ∼ 1000–1500 km (i.e., 10–
15◦), and so by definition Lx � Ly .

Before we can analyze the ITCZ breakdown model, it is
necessary to have first an explicit expression for the forc-
ing term F that represents the vertical mass flux within the
ITCZ. In the early study by Ferreira and Schubert (1997), F
is a mass source that is a piecewise unit step function of lati-
tudes. To account for the existence of the zonal jet in mid-
latitude regions, Legras and Ghil (1985), however, used a
forcing of the form F = α∇ψ∗, where ψ∗ is a given stream-
function that represents the zonal jet around 50◦ N. Given
our focus on the ITCZ dynamics, we will choose this forcing
term such that its corresponding steady state can best repre-
sent the typical background flow in the tropical lower tropo-
sphere. A zonally symmetric functional form for the F that
meets this requirement is

F = γ sin
πy

Ly
, (3)

where γ denotes the strength of the forcing. Note that this
forcing amplitude is not arbitrary, because its value dictates
the zonal mean flow in the tropical region as will be shown
below.

While the forcing term given by Eq. (3) differs from the
unit step function in Ferreira and Schubert (1997), it turns out
that Eq. (3) allows a steady solution consistent with the typ-
ical flow associated with the ITCZ. Indeed, the steady-state
solution ψS of Eq. (1) that results from this zonally symmet-
ric forcing is

ψS =
−γL4

y

νeπ4+αL2
yπ

2 sin
πy

Ly
. (4)

The horizontal flow corresponding to this steady streamfunc-
tion is illustrated in Fig. 1, which shows an easterly flow to
the north and a westerly flow to the south of an ITCZ during
a typical Northern Hemisphere summer as expected.
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Table 1. Parameters of the model.

Variable Range Remark

Uo 10–20 m s−1 Mean easterly flow in the tropical lower troposphere
Ly 1200–1500 km Width of the tropical channel �
Lx ∼ 40 000 km Length of the tropical channel domain �

a
2Ly
Lx

Aspect ratio of the tropical channel
α 10−5

− 10−7 s−1 Relaxation time
ν 10–104 m2 s−1 Horizontal eddy viscosity coefficient
β 2× 10−11 s−1 Variation of the Coriolis parameter with latitudes
γ 10−10

− 10−11 s−2 Magnitude of the external mass source/sink in the ITCZ breakdown model

Figure 1. Illustration of the zonal wind that is derived from the
steady-state flow ψS in the ITCZ model (Eq. 1) with the external
forcing given by Eq. (3). The dotted curve represents the horizontal
profile of the mean flow, while the black arrows represent the direc-
tion of the mean flow for the tropical channel domain �a . The blue
dashed line denotes the location of the ITCZ.

Given the above forcing F and its corresponding steady
state, the problem of the ITCZ breakdown is now mathe-
matically reduced to the study of the stability of the steady
state (Eq. 4) as the model parameters vary. To this end, it
is more convenient to rewrite Eq. (1) in the nondimensional
form such that our subsequent mathematical analyses can be
simplified. Given the governing Eq. (1), it is apparent that the
natural scaling for time, streamfunction, and distance can be
chosen respectively as follows:

t =
1
Lyβ

t∗, ψ = LyU0ψ
∗, (x,y)= Ly(x

∗,y∗),

F =
αU0

Ly
F ∗,

where the asterisk denotes the nondimensional variables, and
U0 is a given characteristic horizontal velocity that deter-
mines the strength of the zonal mean flow in the tropical
region. Nondimensionalizing Eq. (1) and neglecting the as-
terisks hereinafter, the nondimensional form for Eq. (1) be-
comes

∂1ψ

∂t
+ εJ (ψ,1ψ)= E12ψ +F −A1ψ −

∂ψ

∂x
, (5)

where

ε =
U0

L2
yβ

is the Rossby number,

E =
νe

L3
yβ

is the Ekman number, and

A=
α

Lyβ
is the ratio of the relaxation time to the inherent

time related to the Earth’s rotation rate.

For the sake of mathematical convenience, we will here-
inafter extend the domain from [0,Ly] to [−Ly,Ly] such
that the boundary conditions become meridionally symmet-
ric along the Equator at y = 0. This mathematical extension
of the domain will simplify many calculations, while it has
no effect on our solutions so long as we limit the final so-
lution in the original domain [0,Lx]× [0,Ly] and maintain
the Neumann boundary at y = 0 as shown below. The nondi-
mensionalized domain is therefore given by

�=

[
0,

2
a

]
× [−1,1] ,

where the scale factor a ≡ 2Ly/Lx is introduced to simplify
our spectral analyses. Given the above nondimensionlization,
the nondimensional form of the forcing (Eq. 3) is now simply

F = γ1 sinπy, (6)

where the nondimensional parameter γ1 =
γL
αU0

denotes the
ratio of the forcing amplitude γ to the response U0, and the
nondimensional form of the steady state (Eq. 4) is

ψS =−
Aγ1

Eπ4+Aπ2 sinπy. (7)

We examine next the stability of the steady state (Eq. 7)
and how this critical point would bifurcate into different
states as the model parameters vary, using Ma and Wang’s
dynamical transition framework (Ma and Wang, 2013). To
this end, it is necessary to study the behaviors of a pertur-
bation ψ ′ around the given steady state (Eq. 4) in the form
ψ = ψS+ψ

′. This step is not an approximation but simply
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shifts the location of the stability analyses to the equilibrium
ψS, much like shifting the coordinate origin from 0 to a new
critical point in any linear stability analyses. Note that in Ma
and Wang’s dynamical transition framework, the full non-
linearity is maintained such that the analyses on the central
manifold can be subsequently carried out. Thus, no assump-
tion of ψ ′� ψS is needed for the dynamical transition. With
this partition, the corresponding governing equation for the
perturbation ψ ′ then becomes

∂1ψ

∂t
+ εJ (ψ,1ψ)= E12ψ −A1ψ −

∂ψ

∂x

+R
dψ̃S

dy
∂1ψ

∂x
−R

d3ψ̃S

dy3
∂ψ

∂x
, (8)

where all the primes are hereinafter omitted for the sake of
convenience, and a nondimensional number R and ψ̃S are
defined as follows.

R =
γ1ε

Eπ3+Aπ
,ψ̃S =−

sinπy
π

. (9)

Physically, the nondimensional number R is a ratio between
the external forcing amplitude γ1 and the sum of the vis-
cous and linear damping terms. As will be shown below,
this number turns out to be a key bifurcation parameter
that determines the dynamical transition of the ITCZ break-
down model.

Given the nature of the ITCZ model, the periodic boundary
conditions will be then imposed in the zonal direction, and
the free boundary conditions in the meridional direction for
the perturbation Eq. (8) are applied at y =−1 and y = 1 such
that

ψ(t,0,y)= ψ
(
t,

2
a
,y

)
,

ψ(t,x,−1)= ψ(t,x,1)= 0,and

∂2ψ

∂y2 (t,x,−1)=
∂2ψ

∂y2 (t,x,1)= 0.

(10)

The periodic boundary conditions along the west–east direc-
tion are naturally expected because of the cyclic property
of the tropical channel around the Equator, while the free
boundary conditions along the south–north direction will en-
sure that there is no meridional exchange (i.e., no v-wind
component) at y =−1 and y = 1. Apparently, the Neumann
boundary condition at y = 0 is still valid after the domain ex-
tension because of the continuity of the solution at y = 0 in
the interior region.

To further reduce the governing equation of the perturba-
tion as given by Eq. (8), we rewrite Eq. (8) in terms of an
abstract functional notation that is standard in the study of
the nonlinear dynamical transition. Three differential opera-

tors L, G, and A are introduced as follows.

Aψ ≡1ψ, (11)

Lψ ≡ E12ψ −A1ψ −
∂ψ

∂x
+R

dψ̃S

dy
∂1ψ

∂x

−R
d3ψ̃S

dy3
∂ψ

∂x
, (12)

Gψ ≡ εJ (1ψ,ψ). (13)

Physically, L is the Laplacian operator, G is a linear operator
that contains the advection associated with the background
flow, and A is a nonlinear operator representing the Jacobian
effect. Equation (8) for the perturbation streamfunction with
boundary condition (Eq. 10) can be then put into the follow-
ing abstract operator form.

∂Aψ
∂t
= Lψ −G(ψ). (14)

As seen in this abstract form, the operators A and L are lin-
ear, whereas G is a nonlinear operator due to the Jacobian’s
term. A typical analysis of Eq. (14) is to examine first the
spectra of eigenvalues and eigenvectors of the linear compo-
nent L. We then determine the stability characteristics of the
linear system, and finally construct the central manifold func-
tion with the full nonlinear terms included so that the stable
and/or unstable properties of the new states of Eq. (8) can
be quantified as the model parameters vary. The outcomes
from these analyses are (i) the conditions in the large-scale
environment that could determine the stability of the steady
state as well as the upper bound on the number of unstable
disturbances, and (ii) the structure of new states after the dy-
namical transition that the large-scale flows must possess to
allow for the formation of initial tropical disturbances. These
outcomes are important, because they could allow us to quan-
tify the maximum number of environmental tropical embryos
that the ITCZ can support in the tropical channel, thus ad-
dressing the question of the maximum number TCs that we
would expect in the tropical region at any given time.

3 An upper bound on unstable modes

3.1 Eigenmode analyses

We start first with the search for the entire spectrum of the
eigenvalues ρ of the linear operator L in Eq. (14). A linear
operator L(ρ) is defined as follows:

L(ρ)ψ = Lψ − ρψ, ρ ∈ C. (15)

Then, all eigenvectors of the linear operator L are nontrivial
solutions of L(ρ)ψ = 0 with the corresponding eigenvalue
ρ. Because of the periodic boundary condition in the x di-
rection, it turns out that the eigenvectors cannot be arbitrary.
Indeed, the boundary conditions (Eq. 10) impose a strict con-
straint on the possible functional forms of ψ such that every
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eigenvector ψ of L must be expressed in the following sepa-
rable form.

ψm(x,y)= e
iπmax9(y), (16)

where m ∈ Z is any integer representing the zonal eigen-
modes, and9(y) is the perturbation amplitude. Denoting the
corresponding eigenvalue ρm for each meridional mode m, a
substitution of the preceding separable form into the eigen-
value equation L(ρm)ψ = 0 yields{
Lm9 = ρmAm9,
9(−1)=9(1)=9 ′′(−1)=9 ′′(1)= 0,

(17)

where each prime in Eq. (17) hereinafter denotes a derivative
of the streamfunction with respect to y, and the following
notations have been introduced:

Lm9 ≡ E(D2
− a2m2π2)29 −A(D2

− a2m2π2)9−

imaπ9 + imaπRψ̃ ′S(D
2
− a2m2π2)9

− imaπRψ̃ ′′′S 9,

(18)

Am9 = (D2
− a2m2π2)9,and (19)

D ≡ d/dy. (20)

Applying the boundary conditions 9(−1)=9(1)=
9 ′′(−1)=9 ′′(1)= 0 to Eq. (17), it can be seen further
that all even-order derivatives of the perturbation amplitude
9(y) vanish at the boundaries, i.e.,

9(2n)(−1)=9(2n)(1)= 0,n= 0,1, · · ·, (21)

where n represents the order of derivative with respect to the
y direction. This important property of the perturbation am-
plitude 9(y) results in a constraint that 9(y) must be ex-
pressed in the following form.

9(y)=
∑
n≥0
φn cos

(
n+

1
2

)
πy+

∑
n≥1
φ̃n sinnπy, (22)

where φn and φ̃n are the coefficients to be determined by the
eigenvalue equation. As a result, every solution ψm(x,y) of
L(ρ)ψ = 0 can be expressed as

ψm(x,y)=
∑
n≥0
ineimaπxφm,n cos

(
n+

1
2

)
πy

+

∑
n≥1
ineimaπx φ̃m,n sinnπy, m ∈ Z, (23)

where we have redefined the expansion coefficients as inφm,n
and inφ̃n instead of φm,n and φ̃n as in Eq. (22) for the sake of
convenience.

In what follows, we will determine the wavenumber m
such that the eigenvector ψm given by Eq. (23) becomes first
unstable, i.e., the real part of the corresponding eigenvalue
ρm becomes positive, as the control parameter R increases.

(Requirements for the existence of the first unstable mode
are known as the principle of exchange of stabilities (PES)
conditions. See Appendix A.) It can be verified that for any
complex eigenvalue ρm ∈ C, ψm and L(ρ)ψm will have the
same functional form. Thus, let us denote

L(ρm)ψm = L(ρm)
∑
n≥0
ineimaπxφm,n cos

(
n+

1
2

)
πy

+L(ρm)
∑
n≥1
ineimaπx φ̃m,n sin nπy (24)

≡

∑
n≥0
ineimaπxϕm,n cos

(
n+

1
2

)
πy

+

∑
n≥1
ineimaπx ϕ̃m,n sin nπy = 0. (25)

Apparently, Eq. (23) is an eigenvector of the eigenvalue
equation L(ρm)ψ = 0 if and only if the above identity is
true ∀(x,y). As a result, explicit calculation of each term in
Eq. (24) will lead to

ϕm,n = Bm,n+1φm,n+1+Cm,nφm,n−Bm,n−1φm,n−1

= 0, n≥ 1, (26)

ϕm,0 = Bm,1φm,1+Cm,0φm,0+ i
(
Am,0φm,0−φm,0

)
= 0, n= 0, (27)

ϕ̃m,n =Dm,n+1φ̃m,n+1+Em,nφ̃m,n−Dm,n−1φ̃m,n−1

= 0, n≥ 2 (28)

ϕ̃m,1 =Dm,2φ̃m,2+Em,1φ̃m,1 = 0, n= 1, (29)

where the coefficients Am,n,Bm,n,Cm,n,Dm,n,Em,n are
Am,n = a

2m2
+ (n+ 1/2)2

Bm,n+1 = (1−Am,n+1)

Cm,n =
2π3EA2

m,n+2π(A+ρm)Am,n−2iam
amπ2R

,n≥ 0, |m| ≥ 1,

{
B0,n+1 = (1−A0,n+1)A0,n = (n+ 1/2)2

C0,n = 2π3EA2
0,n+ 2π(A+ ρm)A0,n

,n≥ 0,m= 0,

(30){
Dm,n = (1− Ãm,n), Ãm,n = a2m2

+ n2

Em,n =
Eπ3Ã2

m,n+π(A+ρm)Ãm,n−i2am
amπ2R

,n≥ 1, |m| ≥ 1,

{
D0,n = (1− Ã0,n), Ã0,n = n

2

E0,n = Eπ
3Ã2

0,n+π(A+ ρm)Ã0,n
,n≥ 1,m= 0.

(31)

Given the conditions (26)–(29), a simple way to obtain the
amplitudes φm,n and φ̃m,n is to group all coefficients φm,n in
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each of these identities. This can be done effectively by mul-
tiplying the conjugate coefficient φm,n and a factor Bm,n on
both sides of Eqs. (26)–(27), and similarly φ̃m,n and a factor
Dm,n on both sides of Eqs. (28)–(29). Adding the resulting
identities together and taking the sum over n allows us to ex-
tract a relationship between the amplitudes of φm,n and the
eigenvalue ρm as follows:

∑
n≥0
Bm,nϕm,nφm,n = 0, (32)

∑
n≥1
Dm,nϕ̃m,nφ̃m,n = 0. (33)

Note that all pairs of the form
(Bm,n+1Bm,nφm,n+1φm,n,Bm,n+1Bm,nφm,n+1φm,n) in
Eq. (32) are conjugated to each other so that their sum
will produce a purely imaginary number. As a result, the
real parts of Eqs. (32) and (33) must come from the term
involving Cm,n and can be therefore obtained as

∑
n≥0
Bm,nAm,n(Eπ

2Am,n+A+<[ρm])|φm,n|
2
= 0, (34)∑

n≥1
Dm,nÃm,n(Eπ

2Ãm,n+A+<[ρm])|φ̃m,n|
2
= 0, (35)

where < denotes an operator taking a real part of a com-
plex number. By imposing the physical requirement on the
existence of the eigenmodes with φm,n 6= 0 and φ̃m,n 6= 0,
Eqs. (34)–(35) can provide a great insight into the stability
and structure of the eigenmodes that we will now turn to.

3.2 Upper bound on the unstable eigenmode

Equations (34)–(35) contain a number of powerful proper-
ties. First, note that the real part of the eigenvalue ρm for
m= 0 must be negative, if it exists, due to the properties that
the coefficients A> 0, A0,n > 0, B0,n ≤ 0, and D0,n ≤ 0. In-
deed, if we assume that there exists an eigenvector ψm such
that <[ρm]> 0 for m= 0, then it can be directly seen from
the quadratic form of Eq. (34) that

φ0,n = 0, φ̃0,n = 0, n≥ 0,

and so no solution would exist at all, which contradicts our
assumption of the existence of the eigenvector for m= 0.
Thus, the zonally symmetric mode with m= 0 is always sta-
ble. Because this stable mode does not allow us to exam-
ine any transition behaviors, this special zonally symmetric
mode will not be considered hereafter.

For m 6= 0, it can be seen also from Eq. (34) that all pos-
sible unstable eigenvectors with m 6= 0 must satisfy the fol-

lowing constraints



φm,n = 0, when, a ≥
√

3
2 , m ∈ Z;

φm,n = 0, when,
√

3
4 ≤ a <

√
3

2 , |m| ≥ 2,

φm,n = 0, when,
√

3
6 ≤ a <

√
3

4 , |m| ≥ 3,

· · ·
... · · ·

φm,n = 0, when,
√

3
2k ≤ a <

√
3

2k−2 , |m| ≥ k

φ̃m,n = 0, n≥ 1, for all a > 0.

(36)

These constraints can be explicitly verified if we note again
that the condition (Eq. 36) will ensure that the coefficients
Am,n > 0 and Bm,n < 0. If we assume that there exists
any unstable eigenvector ψm with some zonal wavenum-
ber m 6= 0 such that the corresponding eigenvalue ρm sat-
isfies <[ρm]> 0, then Eq. (34) immediately indicates that
φm,n = 0,∀ |m| ≥ k and n ∈ Z+ ∪ {0} (i.e., ψm = 0), and so
no such unstable eigenvector ψm can exist at all. Therefore,
we obtain the remarkable result that any possible unstable
modes must be bounded by the condition |m| ≤ k, where k is
an integer satisfying the following relationship:

√
3

2k
≤ a <

√
3

2k− 2
. (37)

To help understand the significance of this result, con-
sider a tropical channel domain between 10◦ S and 10◦ N
in the Earth’s atmosphere (i.e., Ly ∼ 1200 km) and Lx ∼

40 000 km such that a ≡ 2Ly/Lx ≈ 0.06. Using the con-

dition
√

3
2k ≤ a <

√
3

2k−2 , one obtains an upper bound zonal
wavenumber k = 12. For the current Earth’s tropical atmo-
sphere, this upper bound m≤ 12 appears to be consistent
with the most unstable mode m= 13, obtained from the ide-
alized simulations by Ferreira and Schubert (1997). In partic-
ular, it can be further seen from the constraint (Eq. 37) that a
narrower tropical channel width (i.e., smaller Ly) would lead
to a smaller aspect ratio a, and so a higher upper bound k. In
this regard, our result could offer further insight into how
the upper bound in the unstable zonal wavenumber varies on
different planets or in different climates with potentially dif-
ferent values of the aspect ratio a. It should be mentioned
that the constraint (Eq. 37) does not allow us to know in ad-
vance exactly which wavenumber m< k will become first
unstable, because the condition |m|< k includes a range of
m whose real part <[ρm] could be positive. Nonetheless, the
above result is still very significant due to its explicit indica-
tion that the unstable wavenumbers cannot be arbitrary but
must be upper bounded. Any eigenvectors with |m| ≥ k must
be stable and cannot grow.

A natural consequence of the above result is that not only
the total number of TC disturbances has an upper limit, but
the size of these disturbances must also be limited (i.e., the
size of each disturbance is ∼ Lx/m). If we assume that each
of these disturbances could be eventually responsible for one
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TC embryo, the upper limit in the number of the distur-
bances as found from the above condition would imply a
lower bound on the overall size of TCs, which has to be larger
than 3000 km in diameter. That is, the TC size on our current
Earth’s atmosphere cannot be arbitrarily small, but must be
larger than a limit of ∼ 103 km, a fact that has been long ob-
served but not fully explained so far. Of course, this TC size
implication by no means eliminates the existence of a small
TC such as midgets at the higher latitudes, because our an-
alytical results provide only an estimate for the size of an
area where a TC disturbance can emerge. Determining the
actual size of a fully developed TC requires, however, vari-
ous complex factors beyond the scope of the TC genesis that
is presented in this study (e.g., Chavas et al., 2016).

We emphasize here that the condition on the unstable
modes derived from the eigenvalue <[ρm] as seen from
Eq. (36) is just a necessary condition, and it is by no means
sufficient to specifically know which zonal wavenumber in
the range of [1,k] will become first unstable. Thus, it is nec-
essary to examine how the real part of the eigenvalue <[ρm]
varies as the model parameter R increases for each value
of m. Note that the nondimensional number R encodes sev-
eral important large-scale conditions including the Rossby
number, the Ekman number, and the strength of the back-
ground flow U0 as seen in Eq. (9). As these large-scale con-
ditions change, R will vary as well. Depending on how the
eigenvalue ρm varies as a function of R, there may emerge a
first unstable zonal wavenumbermwith a positive eigenvalue
<[ρm] that we need to quantify.

To ensure the existence of such a positive eigenvalue as
R increases, one needs to show that <[ρm] must be an in-
creasing function of R such that the real part can become
positive as R increases. The specific wavenumber m for
which <[ρm] first becomes positive will possess the struc-
ture that dictates the new dynamical transition of the sys-
tem according to the PES conditions. Due to the complica-
tion in deriving the exact expression for ρm, details of the
derivations of <[ρm] as a function of R are provided in Ap-
pendix 2. An important conclusion from these derivations is
that limR→+∞<[ρm(R)] = +∞, which implies that there in-
deed exists a critical value R∗ at which <[ρm](R∗)= 0. This
requirement is critical, since it directly indicates that the PES
conditions are ensured. More strictly speaking, this result
means that there exists a positive integer n≤ k and a criti-
cal number R∗ > 0 such that the following PES conditions,


<[ρn,1] = <[ρ−n,1]


> 0 if R > R∗,

= 0 if R = R∗, ∀n=m1, , · · ·,ml

< 0 if R < R∗,

,

<[ρm,k]< 0, if (m,k) 6= (mi,1), 1≤ i ≤ l,
=[ρn,1(R)] 6= 0 for R ≥ R∗,

(38)

Figure 2. Marginal stability curves R∗m(a) obtained from the con-
straint on the eigenvalue <ρm,1(R)= 0 for a range of the aspect
ratio 0.1≤ a ≤ 0.35.

must hold true. Corresponding to the first unstable mode m
and eigenvalue ρm,1, its eigenvector is then given by

ψm =

∞∑
n=0

ineimaπxφm,n cos
(
n+

1
2

)
πy, 1≤ |m| ≤ k.

Note that these eigenvectors are unstable for |m|< k only,
because all other eigenvectors (|m|> k) are always stable as
shown by the condition (Eq. 36).

Due to the complicated expression for the eigenvalue
ρm(R) as shown in Appendix 2, the value R∗ cannot be ex-
actly derived but must be numerically approximated for each
m. The proof of limR→+∞<[ρm(R)] = +∞ provided in Ap-
pendix 2 ensures that R∗ always exists, and so it should be
found numerically. Figure 2 shows the critical value R∗m as
a function of 2/a for each value of m, which is obtained
by using a numerical approximation. Recall that for each
value of a, there will exist only one value k that satisfies
√

3
2k ≤ a <

√
3

2k−2 and a valuem< k such that<[ρm,1] = 0. By
searching for the value of R∗m that ensures <[ρm,1] = 0, we
obtain for each m≤ k a curve R∗m = R

∗
m(a) that determines

the onset of the dynamical transition. Because the eigenval-
ues and the eigenfunctions corresponding to−m are the com-
plex conjugate of the respective eigenvalues and the eigen-
functions corresponding to m, only the cases of nonnegative
m need to be examined.

As shown in Fig. 2, there are several key differences be-
tween the asymptotic limits of a very small and a very large
a. Specifically, for a larger value of a (i.e., a wider tropical
region), the smaller wavenumbers m will become unstable
first, starting with m= 5, and then decrease for a larger R.
For the smaller value of a (i.e., a narrower tropical channel),
the larger wavenumbers will, however, become unstable first
as shown in Fig. 2. For example, for the typical scales of
the Earth’s tropical region with Lx ≈ 40 000 km, and Ly ≈
1200 km, 2/a = Lx/|Ly ≈ 33.3. According to Fig. 2, the
wavenumber m= 9 will become unstable first as R crosses
the value R∗ = 4. Thus, the dynamical transition for m= 9
will produce a new unstable wave structure corresponding to
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Figure 3. The dependence of the first critical wave number m= n
on the scale factor a, assuming the Rossby number ε = 0.5 and the
Ekman number E = 0.05 similar to Fig. 2.

m= 9 at the bifurcation point. As the parameter R increases,
other unstable modes corresponding to m= 8,7,6. . . start to
emerge, thus producing a spectrum of unstable structures as
a result of the dynamical transition.

To focus on how the first unstable mode changes with the
aspect ratio a instead of the critical number R∗ as shown in
Fig. 2, Fig. 3 shows the first unstable modem as a function of
a, assuming all of the same parameter values used in Fig. 2. It
can be seen in this Fig. 3 that for each value of a, there is only
one wavenumber n= n(a) for which R∗n =minm∈NR∗m. This
is the critical value R∗ = R∗n at which the dynamical transi-
tion will occur according to the PES conditions. Apparently,
one can better see in this figure how the first unstable mode
depends on the aspect ratio of the tropical channel, with a
higher wavenumber for a narrower tropical region. The same
behavior is also valid for a range of values of the Ekman
number E and Rossby number ε, which are not shown here
because they do not provide any further information.

4 Bifurcation structure

While the stability analyses in the previous section could
show an upper bound on possible unstable modes, the struc-
ture of these unstable modes as well as the subsequent ef-
fects of the nonlinear terms have not been discussed. The
existence of an eigenvalue with a zero real part at R = R∗

immediately imposes the condition that the stability analyses
must require all nonlinear terms so that the behaviors of dy-
namical transitions can be captured. Depending on the mul-
tiplicity of the eigenvalues when the PES conditions are met,
one can, however, reduce the full nonlinear system (Eq. 14)
to a set of ordinary differential equations on a central mani-
fold at R = R∗ and construct a central manifold function to
examine the bifurcation and the structure of new states with
all nonlinear terms included. Standard procedures of stability
analyses on the central manifold for the ITCZ model show
that there exists indeed a supercritical Hopf bifurcation for
R > R∗, with a new stable state approximated as follows (see

Ma and Wang, 2013),

ψ = ψS +

(
<(ρn,1)

|<(A)|

) 1
2
fn(x,y, t)+h.o.t., (39)

where h.o.t. denotes higher order terms, provided that the
nondimensional parameter R is sufficiently close to R∗, i.e.,

0<
R−R∗

R∗
� 1.

Using a higher-order approximation around the critical
point on the extended central manifold, one can obtain a bet-
ter manifold function that better approximatesψ forR > R∗.
Nonetheless, the smooth behaviors of the eigenvector at R =
R∗ for the supercritical Hopf bifurcation suffices to indicate
that the structure of the solution at R = R∗ can represent
well the behavior of the new stable solution near R = R∗

as dictated by the dynamical transition theorem in Ma and
Wang (2013). Technically, either Hopf bifurcation or dou-
ble Hopf bifurcation may appear, depending on the transi-
tion multiplicity at the critical value. This subtlety will in-
troduce much more complex analysis of the bifurcation and
transversal intersections of the parameter planes that we will
not present herein.

While these higher-order derivations of the central mani-
fold function require some technical details that are beyond
the scope of this study, it is possible to approach the transi-
tion dynamics by numerically solving the eigenvalue prob-
lem (Eq. 18). Specifically, we notice that the x dependence
can be obtained by simply searching for the first unstable
mode m as R approaches the critical value R∗. Using this
numerical approach to find the critical value of R∗, the entire
spectrum of eigenvectors associated with the potential new
stable states after the dynamical transition can be found for
each set of large-scale environmental parameters. We note
again at this point that the exact mode m at which the eigen-
vector becomes first unstable is dependent on R as shown in
Figs. 2 and 3. The only constraint we can be certain of is that
|m|< k. Thus, a new stable mode for R > R∗ emerged under
the case of the supercritical Hopf bifurcation could inherit all
structure of a zonal mode |m|< k at R = R∗. This numerical
approach is powerful, as it allows one to search for not only
the critical parameter R∗ at which the PES conditions are en-
sured, but also the structure of new stable states for any value
of R > R∗ after the bifurcation point.

To illustrate the results from this numerical approach, we
consider the following set of the large-scale environmental
conditions in the typical tropical region:

Ly ∼ 1000km, U0 ∼ 10m s−1, α ∼ 10−6 s−1,

β ∼ 10−11 m−1 s−1, ν = 1000m2 s−1,

which result in a Rossby number ε ≈ 0.5 and an Ekman num-
ber E ≈ 0.05. With the further use of Eq. (4) for the steady
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state and noting that U0 = ∂ψS/∂y, one then obtains an es-
timation for the forcing amplitude γ ≈ 7× 10−10s−2. From
the definition of the nondimensional number R, we then get
R ≈ 4.8, which is above the critical value R∗ ≈ 4 for m= 9
as shown in Fig. 2. Thus, the PES conditions are satisfied,
and a new stable structure must emerge after the dynamical
transition as a consequence of the supercritical Hopf bifurca-
tion. As such, the eigenvalue problem (Eq. 17) can be solved
for the first eigenvector and its dual eigenvector, given the
value R = 4.8. Note that this estimation of R is most sensi-
tive to the strength of the shear flowU0, the beta effect β, and
the scale Ly but not on the diffusion coefficient ν. To some
extent, this insensitivity of the dynamical transition on the
diffusion is expected, because the large-scale eddy diffusion
process is often negligible.

For this numerical method, we use a Legendre–Galerkin
method where the unknown fields are expanded using a basis
of N polynomials, which are compact-combinations of the
Legendre polynomials satisfying the four boundary condi-
tions (Eq. 17; see Shen et al., 2011, for the details of this
numerical method). For the convergence of the numerical
scheme,N = 100 is sufficient. Once the eigenvector problem
is solved, a further approximation on the central manifold can
be applied so that the stability of new stable states can be ex-
amined around the critical point on the central manifold.

Figure 4 shows a new state as a result of the dynamical
transition for R > R∗ under the supercritical Hopf bifurca-
tion case that is obtained from the numerical procedures de-
scribed above. Among several significant features of this nu-
merical solution, the most noteworthy one is that the new
state possesses a large-scale structure consistent with the
ITCZ breakdown as observed in the idealized simulations by
Ferreira and Schubert (1997). Specifically, the tropical chan-
nel contains 10 large-scale disturbances; each has the hori-
zontal scale of about 5000 km and could serve as embryos
for the subsequent TC formation. Furthermore, the distur-
bances in this new state move to the left with a period of
T ∼ 3.2116 (i.e., T ≈ 4 d in the physical dimensional unit)
as a result of the nonzero imaginary part of the eigenvalues.
For different domain configurations such as different plan-
ets or future climates with different tropical width, the un-
stable structure and/or wave speed may be different, and so
the maximum number of the TC-favorable disturbances will
change as well.

That these large-scale structure of disturbances move to
the left with a timescale of ∼ 4 d as a consequence of the dy-
namical transition shown above is interesting, because these
westward-moving disturbances are to some extent similar to
easterly waves in the real atmosphere. While it is entirely
possible that these easterly waves are a mode of the equa-
torial mixed-Rossby waves, it should be noted that the nu-
merical procedure of finding new stable modes on the cen-
tral manifold presented in this study does not allow us to
separate different modes of easterly waves. As such, these
easterly waves could be a combination of different modes

of westward-moving Rossby waves and mixed-gravity waves
that we may not be able to separate. In any case, the easterly
waves that are often associated with TC genesis can be now
seen as a natural consequence of the dynamical transition,
even for barotropic flows. Such a consistency between the
observed and theoretical estimation of the large-scale modes
in the tropical region suggests that the barotropic instability
and its inherent nonlinear dynamics can account for the pre-
conditioning environment for TC genesis.

As a final remark, the large-scale structure shown in Fig. 4
does not itself impose that the disturbances have to grow and
turn into TCs. Instead, these structures are simply new sta-
ble periodic solutions associated with the supercritical Hopf
bifurcation after the dynamical transition occurs. That is, for
R < R∗, the stable structure is the steady state as given in
Fig. 2, whereas the new stable structure shown in Fig. 4
will emerge after R > R∗. As soon as these stable structures
emerge, subsequent dynamic-thermodynamic feedback may
be triggered and result in further growth of the disturbances
within each wave. For a larger value of R, the stability of the
periodic state may no longer be ensured, because the central
manifold function must be reevaluated and a new structure
may arise. The subsequent intensification of any tropical dis-
turbances as a result of the new unstable structure would re-
quire additional detailed physics that are, however, not the
focus of this work and so will not be discussed hereinafter.
In this regard, the new stable periodic state shown in Fig. 4
can serve only as a preconditioning environment for incipient
disturbances to grow.

5 Conclusions

In this study, we examined the dynamical mechanisms un-
derlying the large-scale formation of tropical cyclones (TCs)
using a barotropic model for the intertropical convergence
zone (ITCZ). Assuming a forcing function that mimics the
mass sink/source in the ITCZ, it was shown that the large-
scale steady flow (i.e., the critical point or equilibrium) in
the ITCZ model loses its stability for a bounded range of the
wavenumber |m|< k if large-scale environmental conditions
including the magnitude of the mean flow, the Ekman num-
ber, and the Rossby number satisfy certain constraints. That
the number of the unstable modes in the tropical region is
upper bounded is a very significant result, because it could
offer an explanation for a fundamental question of why the
Earth’s tropical atmosphere can support a limited number of
TCs globally each year.

Using the principle of exchange of stabilities condition
for the ITCZ model, we found that the ITCZ model under-
goes a bifurcation with associated dynamical transition at the
critical point, which helps determine the maximum number
of TC disturbances that the Earth’s atmosphere can gener-
ate. Specifically, a theoretical estimation of the largest zonal
wavenumber k that can allow an unstable structure as a re-
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Figure 4. Illustration of the streamfunction ψ for the new periodic state on the central manifold near the critical point R∗ after the dynamical
transition, assuming ε = 0.3, E = 0.05, and R = 3.8717>R∗ = 3.8517. The nondimensional period is T = 2.776, which corresponds to a
physical period of ∼ 3.213 d. Superimposed are corresponding vector flows derived from the streamfunction.

sult of the ITCZ breakdown is k = 12, assuming the typical
scales of the Earth’s tropical channel in which the zonal scale
of the tropical channel is about an order of magnitude larger
than the width of the channel. Such a dynamical constraint
on the maximum number of TC disturbances is remarkable,
as it suggest an intrinsic large-scale mechanism that controls
the climatology of the TC numbers beyond the basin-specific
features as recently noted in Patricola et al. (2018). Of inter-
est is that this constraint on the largest wavenumber of the
unstable eigenmodes imposes not only an upper limit on the
number of TC disturbances in the tropical region, but also
a lower bound on the size of TC disturbances. This lower
bound on the size of the tropical disturbances may help ex-
plain why TCs cannot be arbitrarily small but must be larger
than a certain limit in the tropical region.

To verify our theoretical analyses, a numerical method is
used to search for the new structure on the central manifold
of the ITCZ model as the model parameter R is larger than a
critical value R∗. Here, the key parameter R controlling the
bifurcation in our ITCZ model is given by

R =
γ επ

Eπ4+Aπ2 ,

where γ is a parameter measuring the strength of the ITCZ
mass sink/source, A is the parameter measuring the effect of
surface drag, ε is a parameter measuring the mean zonal flow,
and E is the Ekman number representing the eddy viscos-
ity. Our numerical results confirmed that for R > R∗, a new
large-scale state emerges as a result of the supercritical Hopf
bifurcation whose structure depends on the value R. For R
sufficiently close to the critical value R∗, the new periodic
state possesses a type of wave motion with two groups of

symmetric disturbances across the Equator. These new sta-
ble periodic solutions describe a type of westward-moving
disturbances within the ITCZ, very similar to the classical
easterly waves in the tropical region. These findings obtained
from the ITCZ breakdown model in this study thus provide
new insights into the formation of TC disturbances in the
Earth’s tropical atmosphere, as well as a rigorous mathemat-
ical proof for the bounded number of TCs at the global scale.

Data availability. For this work, there are no research data, as this
work is solely made up of theoretical analyses. All details are pre-
sented in this paper.
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Appendix A: Principle of exchange of stabilities

The principle of exchange of stabilities (PES) for a dynam-
ical system basically refers to a critical condition for which
the eigenvalues of the linear operator first cross a prescribed
value. More precisely, the PES can be precisely stated as fol-
lows.

Let Lλ and G represent the linear and nonlinear parts of a
dynamical system in the abstract form:

du
dt
= Lλ(u)+G(u,λ), (A1)

where λ ∈ R is the model parameter, and u ∈ Rn represents
the state of the system. By definition, Lλ is a parameterized
linear operator that depends continuously on λ. Consider the
eigenvalue equation given by

Lλe = β(λ)e, (A2)

where e is eigenvector, and β(λ) ∈ C the eigenvalue. Let
βj (λ) ∈ C|j ∈ N be the eigenvalues (counting multiplicity)
of Lλ. If we have
<[βj (λ)]


< 0 if λ < λ0,

= 0 if λ= λ0, ∀1≤ i ≤m
> 0 if λ < λ0,

,

<[βj (λ0)]< 0, ∀j ≥m+ 1,

(A3)

then the system is said to satisfy the PES condition at λ0,
which signifies a bifurcation of the system from one state
to another. For dissipative systems, the PES condition has a
much more powerful implication than a simple bifurcation,
as it ensures a dynamical transition that can be completely
categorized by three different types of transition including
the continuous transition, the catastrophic transition, and the
random transition. See Ma and Wang (2013) for more details
of the PES conditions for nonlinear systems.

Appendix B: Existence of the critical number R∗

For
√

3
2k+2 ≤ a <

√
3

2k and 1≤m≤ k (k = 1,2, · · ·), it is easy
to see from Eq. (34) that we must have

φm,0 6= 0,

because otherwise we will have φm,n = 0,n≥ 0, and no
eigenvectors would exist. For the sake of convenience, we
will hereinafter replace ψm by ψm

Bm,0φm,0
, and similarly replace

φm,n by φm,n
Bm,0φm,0

. Equations (26)–(27) are then rewritten as
follows:

Bm,n+1φm,n+1+Cm,nφm,n−Bm,n−1φm,n−1 = 0, n≥ 1,

Bm,1φm,1+Cm,0φm,0+ i
(
Am,0φm,0−φm,0

)
= 0, n= 0,

(B1)

and∑
n≥0
Bm,nAm,n(Eπ

2Am,n+A+<[ρm])|φm,n|
2
= 0. (B2)

Denote

dm,n =
Cm,n

Bm,n
,

and let

ηm,n = Bm,nφm,n,

and then Eq. (B1) can be further rewritten as

ηm,n+1+ dm,nηm,n− ηm,n−1 = 0,n≥ 1,

ηm,1+ dm,0− i = 0,n≥ 0.
(B3)

This reduced Eq. (B3) allows us to deduce a number of im-
portant constraints. Indeed, we rearrange Eq. (B3) as follows:

− dm,0+ i = ηm,1, ηm,0 = 1,

ξm,n =
ηm,n

ηm,n−1
=

1
dm,n+

ηm,n+1
ηm,n

,

− dm,0+ i =
1

dm,1+ ξm,2
=

1

dm,1+
1

dm,2+ξm,3

.

(B4)

It is readily seen from Eq. (B3) that ηm,n = 0 for all n≥ 0
whenever there exists a l ≥ 0 for which ηm,l = 0. This means
that ξm,n 6= 0 for all n≥ 0. From Eq. (B4) one can derive that

ηm,n ≡ ξm,1ξm,2· · ·ξm,n, n≥ 1. (B5)

Therefore, for
√

3
2k+1 ≤ a <

√
3

2k (k = 1,2,3, . . .), Eq. (B2) can
be equally rewritten as follows:
∑
n≥0
<[dm,n]|ηm,n|

2
= 0,

<[dm,n]< 0(n≥ 1),<[dm,0]> 0,
m≤ k. (B6)

One can deduce from the third equality of Eq. (B4) that

ρm =−A−π
2EAm,0

+
2iam+ iamπ2R

(
1−Am,0

)
2πAm,0

+

−amπR(1−Am,0)
2Am,0

d1+ ξm,2
. (B7)

Let’s define a function F using the right-hand side of
Eq. (B7), i.e.,

F(ρm,R)=−A−π
2EAm,0

+
2iam+ iamπ2R

(
1−Am,0

)
2πAm,0

+

−amπR(1−Am,0)
2Am,0

d1+ ξm,2
.
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Due to the fact that

<dm,n < 0(n≥ 1),

we can obtain that

|F(ρm,R)| ≤

∣∣∣∣∣−A−π2EAm,0+
2iam+ iamπ3R

(
1−Am,0

)
2πAm,0

∣∣∣∣∣
+

∣∣∣−amπR(1−Am,0)2Am,0

∣∣∣
|<[d1]|

=KR.

Defining a set �R as

�R =

{
z ∈ C

∣∣∣∣<[z]>−A−Eπ2
(

1
4
+ a2

)
, |z| ≤KR

}
,

the Brown fixed point theorem implies then that F has a fixed
point in �R , i.e., there exists ρm(R) such that

ρm(R)= F(ρm(R),R).

At last, we prove that ρm(R) is a continuous function of R
and =ρm(R) 6= 0. Let G(ρm,R) be the function given by

G(ρm,R)= F(ρm,R)− ρm.

If we can prove

∂G

∂ρm
6= 0

then the implicit function theorem implies that ρm(R) is in-
deed a continuous function of R. From the definition of G
and Eq. (B7), we obtain∣∣∣∣ ∂G∂ρm

∣∣∣∣=
∣∣∣∣∣∑
n=1
(−1)n+1

(
1−Am,0

)
Am,n

Am,0
(
1−Am,n

)η2
m,n(ρm(R))− 1

∣∣∣∣∣
≥ 1−

∑
n=1

(
1−Am,0

)
Am,n

Am,0
(
1−Am,n

) |ηm,n|2
> 1−

∑
n=1

(
1−Am,0

)
Am,n

(
<[ρm(R)] +A+Eπ

2Am,n
)

Am,0
(
<[ρm(R)] +A+Eπ2Am,0

)(
1−Am,n

)
|ηm,n|

2
= 0.

To prove =[ρm(R)] 6= 0, we use the proof by contradiction.
Direct calculation gives∣∣=[dm,n]∣∣∣∣<[dm,n]∣∣ =

∣∣2π=[ρm(R)]Am,n− 2am
∣∣∣∣2π3EA2

m,n+ 2π(A+<[ρm(R)])Am,n
∣∣ .

If =ρm(R)= 0, we can deduce that∣∣=[dm,n]∣∣∣∣<[dm,n]∣∣ = |2am|∣∣2π3EA2
m,n+ 2π(A+<[ρm(R)])Am,n

∣∣
>

|2am|∣∣∣2π3EA2
m,n+1+ 2π(A+<[ρm(R)])Am,n+1

∣∣∣ =
∣∣=[dm,n+1]

∣∣∣∣<[dm,n+1]
∣∣ ,

through which and combining the continuous fraction

−dm,0+ i =
1

d1+ ξm,2
=

1

dm,1+
1

dm,2+ξm,3

we get∣∣=[ηm,1]∣∣∣∣<[ηm,1]∣∣ <
∣∣=[dm,1]∣∣∣∣<[dm,1]∣∣ ,

i.e.,∣∣−=[dm,0] + i∣∣∣∣−<[dm,0]∣∣ <

∣∣=[dm,1]∣∣∣∣<[dm,1]∣∣ ⇒∣∣−=[dm,0] + i∣∣∣∣=[dm,1]∣∣ <

∣∣−<[dm,0]∣∣∣∣<[dm,1]∣∣ ⇒
1<
|2am+ 1|
|2am|

<
2π3EA2

m,0+ 2π(A+<[ρm(R)])Am,0
2π3EA2

m,1+ 2π(A+<[ρm(R)])Am,1
< 1,

which leads to a contradiction. Hence, =[ρm(R)] 6= 0.
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