Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 19, issue 5
Atmos. Chem. Phys., 19, 3307–3324, 2019
https://doi.org/10.5194/acp-19-3307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 3307–3324, 2019
https://doi.org/10.5194/acp-19-3307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Mar 2019

Research article | 14 Mar 2019

Multi-satellite retrieval of single scattering albedo using the OMI–MODIS algorithm

Kruthika Eswaran et al.

Related authors

Assessment of Regional Aerosol Radiative Effects under SWAAMI Campaign – PART 2: Clear-sky Direct Shortwave Radiative Forcing using Multi-year Assimilated Data
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-454,https://doi.org/10.5194/acp-2020-454, 2020
Preprint under review for ACP
Short summary
Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Ravi Shankar Nanjundiah, Krishnaswamy Krishna Moorthy, Sivaramakrishnan Lakshmivarahan, and Surendran Nair Suresh Babu
Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019,https://doi.org/10.5194/acp-19-11865-2019, 2019
Short summary
Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements
Kadiri Saikranthi, Basivi Radhakrishna, Thota Narayana Rao, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 19, 10423–10432, https://doi.org/10.5194/acp-19-10423-2019,https://doi.org/10.5194/acp-19-10423-2019, 2019
Short summary
Simulations of black carbon over the Indian region: improvements and implications of diurnality in emissions
Gaurav Govardhan, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Nanjundiah
Atmos. Chem. Phys., 19, 8229–8241, https://doi.org/10.5194/acp-19-8229-2019,https://doi.org/10.5194/acp-19-8229-2019, 2019
Short summary
Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons
James Brooks, James D. Allan, Paul I. Williams, Dantong Liu, Cathryn Fox, Jim Haywood, Justin M. Langridge, Ellie J. Highwood, Sobhan K. Kompalli, Debbie O'Sullivan, Suresh S. Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019,https://doi.org/10.5194/acp-19-5615-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Optical and geometrical aerosol particle properties over the United Arab Emirates
Maria Filioglou, Elina Giannakaki, John Backman, Jutta Kesti, Anne Hirsikko, Ronny Engelmann, Ewan O'Connor, Jari T. T. Leskinen, Xiaoxia Shang, Hannele Korhonen, Heikki Lihavainen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 8909–8922, https://doi.org/10.5194/acp-20-8909-2020,https://doi.org/10.5194/acp-20-8909-2020, 2020
Short summary
Determination and climatology of the diurnal cycle of the atmospheric mixing layer height over Beijing 2013–2018: lidar measurements and implications for air pollution
Haofei Wang, Zhengqiang Li, Yang Lv, Ying Zhang, Hua Xu, Jianping Guo, and Philippe Goloub
Atmos. Chem. Phys., 20, 8839–8854, https://doi.org/10.5194/acp-20-8839-2020,https://doi.org/10.5194/acp-20-8839-2020, 2020
Short summary
Site representativity of AERONET and GAW remotely sensed aerosol optical thickness and absorbing aerosol optical thickness observations
Nick A. J. Schutgens
Atmos. Chem. Phys., 20, 7473–7488, https://doi.org/10.5194/acp-20-7473-2020,https://doi.org/10.5194/acp-20-7473-2020, 2020
Short summary
Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations
David Painemal, Fu-Lung Chang, Richard Ferrare, Sharon Burton, Zhujun Li, William L. Smith Jr., Patrick Minnis, Yan Feng, and Marian Clayton
Atmos. Chem. Phys., 20, 7167–7177, https://doi.org/10.5194/acp-20-7167-2020,https://doi.org/10.5194/acp-20-7167-2020, 2020
Short summary
Remote sensing of two exceptional winter aerosol pollution events and representativeness of ground-based measurements
Alexandre Baron, Patrick Chazette, and Julien Totems
Atmos. Chem. Phys., 20, 6749–6768, https://doi.org/10.5194/acp-20-6749-2020,https://doi.org/10.5194/acp-20-6749-2020, 2020
Short summary

Cited articles

Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007. 
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006. 
Bond, T. C. and Sun, H.: Can reducing black carbon emissions counteract global warming?, Environ. Sci. Technol., 39, 5921–5926, 2005. 
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.: Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci., 2, 181–184, https://doi.org/10.1038/ngeo437, 2009. 
Publications Copernicus
Download
Short summary
Multiple satellite retrieval algorithms are used to counter problems, such as cloud contamination, faced by sensors with large pixel sizes. This work uses one such algorithm to retrieve a parameter (single scattering albedo) over the oceans. It was found that the joint algorithm performed better than the original when aerosols were present near the surface. Discrepancy between the measurements was seen when elevated aerosols were present which might not have been detected by cruise instruments.
Multiple satellite retrieval algorithms are used to counter problems, such as cloud...
Citation
Final-revised paper
Preprint