Articles | Volume 19, issue 22
Atmos. Chem. Phys., 19, 14329–14338, 2019
https://doi.org/10.5194/acp-19-14329-2019

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 19, 14329–14338, 2019
https://doi.org/10.5194/acp-19-14329-2019

Research article 27 Nov 2019

Research article | 27 Nov 2019

Wintertime aerosol properties in Beijing

Misti Levy Zamora et al.

Related authors

Stationary and portable multipollutant monitors for high-spatiotemporal-resolution air quality studies including online calibration
Colby Buehler, Fulizi Xiong, Misti Levy Zamora, Kate M. Skog, Joseph Kohrman-Glaser, Stefan Colton, Michael McNamara, Kevin Ryan, Carrie Redlich, Matthew Bartos, Brandon Wong, Branko Kerkez, Kirsten Koehler, and Drew R. Gentner
Atmos. Meas. Tech., 14, 995–1013, https://doi.org/10.5194/amt-14-995-2021,https://doi.org/10.5194/amt-14-995-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Dramatic changes in Harbin aerosol during 2018–2020: the roles of open burning policy and secondary aerosol formation
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021,https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 15081–15101, https://doi.org/10.5194/acp-21-15081-2021,https://doi.org/10.5194/acp-21-15081-2021, 2021
Short summary
Characterization of non-refractory (NR) PM1 and source apportionment of organic aerosol in Kraków, Poland
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021,https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Sources of black carbon at residential and traffic environments obtained by two source apportionment methods
Sanna Saarikoski, Jarkko V. Niemi, Minna Aurela, Liisa Pirjola, Anu Kousa, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 21, 14851–14869, https://doi.org/10.5194/acp-21-14851-2021,https://doi.org/10.5194/acp-21-14851-2021, 2021
Short summary
Reduced volatility of aerosols from surface emissions to the top of the planetary boundary layer
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021,https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary

Cited articles

An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in Northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019. 
Chang, D., Song, Y., and Liu, B.: Visibility trends in six megacities in China 1973–2007, Atmos. Res., 94, 161–167, 2009. 
Chang, R. Y.-W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J., Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation, Atmos. Chem. Phys., 10, 5047–5064, https://doi.org/10.5194/acp-10-5047-2010, 2010. 
Geller, M., Biswas, S., and Sioutas, C.: Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer, Aerosol Sci. Tech., 40, 709–723, https://doi.org/10.1080/02786820600803925, 2006. 
Download
Short summary
Severe haze formation in Beijing during wintertime is attributed to explosive secondary aerosol formation including particle nucleation and subsequent particle growth. Organic matter is responsible for producing nucleation mode particles, while secondary organic and inorganic components jointly contribute to the high aerosol mass during haze episodes. High levels of gaseous precursors and stagnant air mass are responsible for fast secondary aerosol formation.
Altmetrics
Final-revised paper
Preprint