Articles | Volume 19, issue 20
Atmos. Chem. Phys., 19, 13017–13035, 2019
https://doi.org/10.5194/acp-19-13017-2019
Atmos. Chem. Phys., 19, 13017–13035, 2019
https://doi.org/10.5194/acp-19-13017-2019

Research article 22 Oct 2019

Research article | 22 Oct 2019

On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?

Brendan Byrne et al.

Related authors

A comparison of posterior atmospheric CO2 adjustments obtained from in situ and GOSAT constrained flux inversions
Saroja M. Polavarapu, Feng Deng, Brendan Byrne, Dylan B. A. Jones, and Michael Neish
Atmos. Chem. Phys., 18, 12011–12044, https://doi.org/10.5194/acp-18-12011-2018,https://doi.org/10.5194/acp-18-12011-2018, 2018
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021,https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Indirect contributions of global fires to surface ozone through ozone–vegetation feedback
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021,https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Improved gridded ammonia emission inventory in China
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-439,https://doi.org/10.5194/acp-2021-439, 2021
Revised manuscript accepted for ACP
Short summary
Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021,https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021,https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary

Cited articles

Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.: Modelling CO2 weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, 2019. a
Andres, R., Boden, T., and Marland, G.: Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A, https://doi.org/10.3334/CDIAC/ffe.MonthlyMass.2016, 2016. a
Atmospheric Chemistry Modeling Group at Harvard University: GEOS-Chem Wiki, available at: http://wiki.seas.harvard.edu/geos-chem, last access: 12 October 2019. a
Aura Validation Data Center: NASA GOME-2 SIF, available at: https://avdc.gsfc.nasa.gov/, last access: 12 October 2019. a
Bacastow, R.: Modulation of atmospheric carbon dioxide by the Southern Oscillation, Nature, 261, 116–118, 1976. a
Download
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Altmetrics
Final-revised paper
Preprint