Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-10111-2019
https://doi.org/10.5194/acp-19-10111-2019
Research article
 | 
12 Aug 2019
Research article |  | 12 Aug 2019

Speciated atmospheric mercury and sea–air exchange of gaseous mercury in the South China Sea

Chunjie Wang, Zhangwei Wang, Fan Hui, and Xiaoshan Zhang

Related authors

Soil–atmosphere exchange flux of total gaseous mercury (TGM) at subtropical and temperate forest catchments
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles T. Driscoll, and Che-Jen Lin
Atmos. Chem. Phys., 20, 16117–16133, https://doi.org/10.5194/acp-20-16117-2020,https://doi.org/10.5194/acp-20-16117-2020, 2020
Short summary
Soil emissions, soil air dynamics and model simulation of gaseous mercury in subtropical forest
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles Driscoll, and Che-Jen Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-161,https://doi.org/10.5194/acp-2019-161, 2019
Preprint withdrawn
Short summary
Mercury fluxes, budgets and pools in forest ecosystems of China: A critical review
Jun Zhou, Buyun Du, Zhangwei Wang, Lihai Shang, and Jing Zhou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-794,https://doi.org/10.5194/acp-2017-794, 2018
Preprint withdrawn
Short summary
Phosphorus addition mitigates N2O and CH4 emissions in N-saturated subtropical forest, SW China
Longfei Yu, Yihao Wang, Xiaoshan Zhang, Peter Dörsch, and Jan Mulder
Biogeosciences, 14, 3097–3109, https://doi.org/10.5194/bg-14-3097-2017,https://doi.org/10.5194/bg-14-3097-2017, 2017
Short summary
Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l.) and remote site in the central Qinghai–Tibet Plateau
Zhijia Ci, Fei Peng, Xian Xue, and Xiaoshan Zhang
Atmos. Chem. Phys., 16, 14741–14754, https://doi.org/10.5194/acp-16-14741-2016,https://doi.org/10.5194/acp-16-14741-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements
Clément Narbaud, Jean-Daniel Paris, Sophie Wittig, Antoine Berchet, Marielle Saunois, Philippe Nédélec, Boris D. Belan, Mikhail Y. Arshinov, Sergei B. Belan, Denis Davydov, Alexander Fofonov, and Artem Kozlov
Atmos. Chem. Phys., 23, 2293–2314, https://doi.org/10.5194/acp-23-2293-2023,https://doi.org/10.5194/acp-23-2293-2023, 2023
Short summary
Airborne glyoxal measurements in the marine and continental atmosphere: comparison with TROPOMI observations and EMAC simulations
Flora Kluge, Tilman Hüneke, Christophe Lerot, Simon Rosanka, Meike K. Rotermund, Domenico Taraborrelli, Benjamin Weyland, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 1369–1401, https://doi.org/10.5194/acp-23-1369-2023,https://doi.org/10.5194/acp-23-1369-2023, 2023
Short summary
Mercury in the free troposphere and bidirectional atmosphere–vegetation exchanges – insights from Maïdo mountain observatory in the Southern Hemisphere tropics
Alkuin M. Koenig, Olivier Magand, Bert Verreyken, Jerome Brioude, Crist Amelynck, Niels Schoon, Aurélie Colomb, Beatriz Ferreira Araujo, Michel Ramonet, Mahesh K. Sha, Jean-Pierre Cammas, Jeroen E. Sonke, and Aurélien Dommergue
Atmos. Chem. Phys., 23, 1309–1328, https://doi.org/10.5194/acp-23-1309-2023,https://doi.org/10.5194/acp-23-1309-2023, 2023
Short summary
Diurnal variability of atmospheric O2, CO2, and their exchange ratio above a boreal forest in southern Finland
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023,https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
How adequately are elevated moist layers represented in reanalysis and satellite observations?
Marc Prange, Stefan A. Buehler, and Manfred Brath
Atmos. Chem. Phys., 23, 725–741, https://doi.org/10.5194/acp-23-725-2023,https://doi.org/10.5194/acp-23-725-2023, 2023
Short summary

Cited articles

Ahn, M. C., Kim, B., Holsen, T. M., Yi, S. M., and Han, Y. J.: Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir, Environ. Pollut., 158, 347–355, https://doi.org/10.1016/j.envpol.2009.08.036, 2010. 
Andersson, M. E., Gårdfeldt, K., Wängberg, I., Sprovieri, F., Pirrone, N., and Lindqvist, O.: Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea, Mar. Chem., 104, 214–226, https://doi.org/10.1016/j.marchem.2006.11.003, 2007. 
Andersson, M. E., Sommar, J., Gårdfeldt, K., and Jutterström, S.: Air–sea exchange of volatile mercury in the North Atlantic Ocean, Mar. Chem., 125, 1–7, https://doi.org/10.1016/j.marchem.2011.01.005, 2011. 
Angot, H., Barret, M., Magand, O., Ramonet, M., and Dommergue, A.: A 2-year record of atmospheric mercury species at a background Southern Hemisphere station on Amsterdam Island, Atmos. Chem. Phys., 14, 11461–11473, https://doi.org/10.5194/acp-14-11461-2014, 2014. 
Download
Short summary
A low GEM level indicated that the SCS suffered less anthropogenic influence. There was no significant difference in GEM and HgP2.5 values between day and night, but the RGM level was higher in daytime than in nighttime. The size distribution of HgP in PM10 was observed to be bi-modal, but the coarse modal was the dominant size. The annual emission flux of Hg0 from the SCS was estimated to be 159 ton yr-1. The dry deposition was an important pathway for the input of atmospheric Hg to the SCS.
Altmetrics
Final-revised paper
Preprint