Articles | Volume 19, issue 15
Atmos. Chem. Phys., 19, 10111–10127, 2019
https://doi.org/10.5194/acp-19-10111-2019
Atmos. Chem. Phys., 19, 10111–10127, 2019
https://doi.org/10.5194/acp-19-10111-2019

Research article 12 Aug 2019

Research article | 12 Aug 2019

Speciated atmospheric mercury and sea–air exchange of gaseous mercury in the South China Sea

Chunjie Wang et al.

Related authors

Soil–atmosphere exchange flux of total gaseous mercury (TGM) at subtropical and temperate forest catchments
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles T. Driscoll, and Che-Jen Lin
Atmos. Chem. Phys., 20, 16117–16133, https://doi.org/10.5194/acp-20-16117-2020,https://doi.org/10.5194/acp-20-16117-2020, 2020
Short summary
Soil emissions, soil air dynamics and model simulation of gaseous mercury in subtropical forest
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles Driscoll, and Che-Jen Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-161,https://doi.org/10.5194/acp-2019-161, 2019
Preprint withdrawn
Short summary
Mercury fluxes, budgets and pools in forest ecosystems of China: A critical review
Jun Zhou, Buyun Du, Zhangwei Wang, Lihai Shang, and Jing Zhou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-794,https://doi.org/10.5194/acp-2017-794, 2018
Preprint withdrawn
Short summary
Phosphorus addition mitigates N2O and CH4 emissions in N-saturated subtropical forest, SW China
Longfei Yu, Yihao Wang, Xiaoshan Zhang, Peter Dörsch, and Jan Mulder
Biogeosciences, 14, 3097–3109, https://doi.org/10.5194/bg-14-3097-2017,https://doi.org/10.5194/bg-14-3097-2017, 2017
Short summary
Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l.) and remote site in the central Qinghai–Tibet Plateau
Zhijia Ci, Fei Peng, Xian Xue, and Xiaoshan Zhang
Atmos. Chem. Phys., 16, 14741–14754, https://doi.org/10.5194/acp-16-14741-2016,https://doi.org/10.5194/acp-16-14741-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Characterization of uncertainties in fluxes and fuel sulfur content from ship emissions in the Baltic Sea
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021,https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions – a case study for methane in Heidelberg
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021,https://doi.org/10.5194/acp-21-17907-2021, 2021
Short summary
Positive and negative influences of typhoons on tropospheric ozone over southern China
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021,https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Declines and peaks in NO2 pollution during the multiple waves of the COVID-19 pandemic in the New York metropolitan area
Maria Tzortziou, Charlotte Frances Kwong, Daniel Goldberg, Luke Schiferl, Róisín Commane, Nader Abuhassan, James Szykman, and Lukas Valin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-592,https://doi.org/10.5194/acp-2021-592, 2021
Revised manuscript accepted for ACP
Short summary
Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe, and Xinglong in North China
Yang Yang, Minqiang Zhou, Ting Wang, Bo Yao, Pengfei Han, Denghui Ji, Wei Zhou, Yele Sun, Gengchen Wang, and Pucai Wang
Atmos. Chem. Phys., 21, 11741–11757, https://doi.org/10.5194/acp-21-11741-2021,https://doi.org/10.5194/acp-21-11741-2021, 2021
Short summary

Cited articles

Ahn, M. C., Kim, B., Holsen, T. M., Yi, S. M., and Han, Y. J.: Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir, Environ. Pollut., 158, 347–355, https://doi.org/10.1016/j.envpol.2009.08.036, 2010. 
Andersson, M. E., Gårdfeldt, K., Wängberg, I., Sprovieri, F., Pirrone, N., and Lindqvist, O.: Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea, Mar. Chem., 104, 214–226, https://doi.org/10.1016/j.marchem.2006.11.003, 2007. 
Andersson, M. E., Sommar, J., Gårdfeldt, K., and Jutterström, S.: Air–sea exchange of volatile mercury in the North Atlantic Ocean, Mar. Chem., 125, 1–7, https://doi.org/10.1016/j.marchem.2011.01.005, 2011. 
Angot, H., Barret, M., Magand, O., Ramonet, M., and Dommergue, A.: A 2-year record of atmospheric mercury species at a background Southern Hemisphere station on Amsterdam Island, Atmos. Chem. Phys., 14, 11461–11473, https://doi.org/10.5194/acp-14-11461-2014, 2014. 
Download
Short summary
A low GEM level indicated that the SCS suffered less anthropogenic influence. There was no significant difference in GEM and HgP2.5 values between day and night, but the RGM level was higher in daytime than in nighttime. The size distribution of HgP in PM10 was observed to be bi-modal, but the coarse modal was the dominant size. The annual emission flux of Hg0 from the SCS was estimated to be 159 ton yr-1. The dry deposition was an important pathway for the input of atmospheric Hg to the SCS.
Altmetrics
Final-revised paper
Preprint