Articles | Volume 18, issue 13
Research article
02 Jul 2018
Research article |  | 02 Jul 2018

A statistical examination of the effects of stratospheric sulfate geoengineering on tropical storm genesis

Qin Wang, John C. Moore, and Duoying Ji

Related authors

Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Atmos. Chem. Phys., 23, 5835–5850,,, 2023
Short summary
Using specularity content to evaluate five geothermal heat flux maps of Totten Glacier
Yan Huang, Liyun Zhao, Yiliang Ma, Michael Wolovick, and John C. Moore
The Cryosphere Discuss.,,, 2023
Preprint under review for TC
Short summary
Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176,,, 2023
Short summary
The Indonesian Throughflow Circulation Under Solar Geoengineering
Chencheng Shen, John C. Moore, Heri Kuswanto, and Liyun Zhao
Earth Syst. Dynam. Discuss.,,, 2023
Preprint under review for ESD
Short summary
Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79,,, 2023
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Divergent convective outflow in large-eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081,,, 2023
Short summary
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842,,, 2023
Short summary
Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
EGUsphere,,, 2023
Short summary
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436,,, 2023
Short summary
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842,,, 2023
Short summary

Cited articles

Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes on the global hydrological cycle, P. Natl. Acad. Sci., 105, 7664–7669,, 2008.
Balaguru, K., Foltz, G. R., Leung, L. R., Asaro, E. D', Gabriel, K. A., Liu, H., and Zedler, S. E.: Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones, Geophys. Res. Lett., 42, 6739–6746, 2015.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720,, 2013.
Bister, M. and Emanuel, K. A.: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study, Mon. Weather Rev., 125, 2662–2682, 1997.
Bister, M. and Emanuel, K. A.: Dissipative heating and hurricane intensity, Meteor. Atmos. Phys., 65, 233–240, 1998.
Short summary
(1) Genesis potential and ventilation indices are assessed in 6 ESMs running RCP4.5 and G4, in 6 tropical cyclone genesis basins. (2) Genesis potential is reasonably well parameterized by simple surface temperature, but other factors are important in different basins and models such as relative humidity and wind shear. (3) The Northern Hemisphere basins behave rather differently from the southern ones, and these dominate TC statistics. G4 leads to significantly fewer TCs globally than RCP4.5.
Final-revised paper