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Abstract. The thermodynamics of the ocean and atmosphere
partly determine variability in tropical cyclone (TC) number
and intensity and are readily accessible from climate model
output, but an accurate description of TC variability requires
much higher spatial and temporal resolution than the mod-
els used in the GeoMIP (Geoengineering Model Intercom-
parison Project) experiments provide. The genesis potential
index (GPI) and ventilation index (VI) are combinations of
dynamic and thermodynamic variables that provide proxies
for TC activity under different climate states. Here we use
five CMIP5 models that have run the RCP4.5 experiment and
the GeoMIP stratospheric aerosol injection (SAI) G4 exper-
iment to calculate the two TC indices over the 2020 to 2069
period across the six ocean basins that generate TCs. GPI is
consistently and significantly lower under G4 than RCP4.5
in five out of six ocean basins, but it increases under G4 in
the South Pacific. The models project potential intensity and
relative humidity to be the dominant variables affecting GPI.
Changes in vertical wind shear are significant, but it is cor-
related with relative humidity, though with different relations
across both models and ocean basins. We find that tropopause
temperature is not a useful addition to sea surface temper-
ature (SST) in projecting TC genesis, perhaps because the
earth system models (ESMs) vary in their simulation of the
various upper-tropospheric changes induced by the aerosol
injection.

1 Introduction

Anthropogenic greenhouse gas (GHG) emissions are chang-
ing climate (IPCC, 2007). The best solution for limiting cli-
mate change is to reverse the growth in net GHG emis-
sions. It is doubtful that reductions in emissions can be done
fast enough to limit global mean temperature rises to targets
such as the 1.5 or 2 ◦C pledged at the Paris climate meet-
ing (Rogelj et al., 2015). Geoengineering is the deliberate and
large-scale intervention of Earth’s climate system to coun-
teract climate warming (Crutzen, 2006; Wigley, 2006). Geo-
engineering by stratospheric aerosol injection (SAI) attempts
to lessen the incoming sunlight to counteract the effect of
global warming. The Geoengineering Model Intercompari-
son Project (GeoMIP) (Kravitz et al., 2011) is a standard-
ized set of experiments designed to homogenize earth system
model (ESM) simulations of geoengineered climates and is
supported by 15 model groups globally, with further experi-
ments planned under CMIP6 (Kravitz et al., 2015). Climate
system thermodynamics will change under SAI geoengineer-
ing because the reduction in shortwave radiation is designed
to offset increases in long-wave absorption (Huneeus et al.,
2014; Kashimura et al., 2017; Visioni, et al., 2017; Russotto
and Ackerman, 2018).

Tropical cyclones (TCs) are one of the most disastrous
weather phenomena influencing agriculture, human life, and
property (Chan et al., 2005). The large-scale changes in sur-
face temperatures under GHG forcing will impact cyclogen-
esis changing both the frequency and intensity of TCs (Grin-
sted et al., 2012, 2013). Hence, how TCs would change in a
geoengineered world is of general as well as scientific inter-
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est for its enormous social and economic impact. However,
since almost all climate models do not, at present, possess
the resolution required to simulate directly the response of
TCs to changing patterns of radiative forcing, methods that
rely on the statistical links between the thermodynamics of
the ocean and atmosphere with cyclone dynamics have pre-
dominantly been the topic of studies.

Many methods have been used to study the changes in TCs
under climate warming. These can be divided into implicit
methods, such as the genesis potential index (GPI) and venti-
lation index (VI) which we focus on here; semi-explicit, such
as downscaling (Emanuel, 2006, 2013); and explicit, such as
feature-tracking storm systems (Hodges, 1995; Jones et al.,
2017). Implicit methods rely on using historical climate and
storm records to quantify relationships between TC and key
variables such as local, tropical, and global sea surface tem-
peratures (SSTs), and various teleconnection patterns (Grin-
sted et al., 2012; Emanuel et al., 2008; Landsea, 2005; Gray,
1979). The potential intensity theory (Bister and Emanuel,
1998; Emanuel and Nolan, 2004) predicts the dependence
of TC wind speed on the air–sea thermodynamic imbalance
and the temperature of the lower stratosphere. For example,
many studies suggest that wind shear has an inhibitory effect
on the TC activity (Vecchi and Soden, 2007). Others have
also identified changes in the large-scale environmental fac-
tors influencing tropical storm activity to assess TC changes
in the future (Tippett et al., 2011; Grinsted et al., 2013).

While much is known about which factors influence TC
cyclogenesis, a quantitative theory is lacking (Emanuel,
2013), so empirical methods have been used to define the
relationship between large-scale environmental factors and
tropical cyclogenesis. The GPI uses four environmental vari-
ables: potential intensity, low-level absolute vorticity, verti-
cal wind shear, and relative humidity. Potential intensity is
the maximum sustainable intensity of TCs based on the ther-
modynamic state of the atmosphere and sea surface, that is
the difference between the saturation enthalpy of the sea sur-
face and the moist static energy of the subcloud layer (Riehl,
1950). Tang and Emanuel (2012) introduced the VI, defined
as the flux of low-entropy air into a tropical disturbance or
TC, because ventilation disrupts the formation of a deep,
moist column that is hypothesized to be necessary for the
spin-up of the vortex (Bister and Emanuel, 1997; Nolan,
2007; Rappin et al., 2010). For the Atlantic hurricane re-
gion, Tippett et al. (2011) formulated a genesis potential in-
dex using the relative sea surface temperature, defined as the
tropical Atlantic sea surface temperatures minus the tropi-
cal mean sea surface temperatures, and mid-level relative hu-
midity in lieu of the potential intensity and non-dimensional
entropy deficit, respectively. Dynamic potential intensity is
yet another index designed to describe ocean feedbacks on
TCs, because storms bring cold, deeper water to the surface,
which reduces the potential intensity (Balaguru et al., 2015).
These indices represent the thermodynamic and hence sea-
sonal control of TC genesis and not the dynamic develop-

ment of individual storms, which is beyond the abilities of
most contemporary climate models, in particular those we
use here. The relative contribution of the individual large-
scale environmental factors to TC genesis may be different
in different ocean basins (Emanuel, 2010; Wing et al., 2015).

An increase in future global TC frequency has been
projected based on dynamical downscaling CMIP5 mod-
els (Emanuel, 2013). However, the same downscaling ap-
plied to the CMIP3 models projected a decrease in global TC
frequency (Tory et al., 2013; Emanuel, 2006). Some models
show that, although Atlantic TC frequency will decrease, the
frequency of intense TC (those having wind speeds larger
than 55 ms−1) will increase, and different TC basins are pre-
dicted to behave differently (Emanuel et al., 2008; Knutson
et al., 2015).

There has been little research about TC changes under
SAI. Moore et al. (2015) used the statistical relation between
Atlantic tropical storm surges and spatial patterns of global
surface temperature to deduce that moderate amounts of SAI
could reduce the frequency of the most intense TC relative
to GHG-only climates. Jones et al. (2017) showed SAI in
the Northern Hemisphere reduced the numbers of TC in the
North Atlantic while SAI in the Southern Hemisphere in-
creased numbers in the basin.

In contrast with earlier work that has focused only on the
impacts of SAI on North Atlantic hurricanes (Moore et al.,
2015; Jones et al., 2017), we examine ESM simulations of
the global TC evolution in six ocean basins using the GPI
and VI indices. We then evaluate how far TC changes under
SAI and GHG forcing can be attributed to thermodynamic
changes and hence be forecast in statistical terms.

Section 2 introduces the methods and data used in this
study. Section 3 describes the temporal and spatial variations
of the GPI and ventilation index in five models, in GHG and
SAI simulations. We quantify the contribution of SST, rel-
ative humidity, and wind shear to TC genesis based on at-
tribution of monthly variance in GPI and VI in each basin’s
time series using multiple linear regression methods. Finally,
a discussion and conclusions are provided in Sect. 4.

2 Methods and data

2.1 Methods

We use climate model output from the GeoMIP G4 ex-
periment (Kravitz et al., 2011) and the control simulation,
RCP4.5 experiment of CMIP5 (Taylor et al., 2012), to analy-
sis the characteristic of TC changes in the future in different
models. The G4 experiment is based on the GHG emissions
from the RCP4.5 scenario but shortwave radiative forcing is
reduced by injection of SO2 into the equatorial lower strato-
sphere at altitudes of 16–25 km, at a rate of 5 Tg yr−1 from
the year 2020 to 2069. The experiment continues for a fur-
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Table 1. Climate models used in this study.

Model Reference Resolution Ensemble
(long× lat) members

BNU-ESM Ji et al. (2014) 128× 64 1
HadGEM2-ES Collins et al.(2011) 192× 144 3
MIROC-ESM Watanabe et al. (2011) 128× 64 1
MIROC-ESM-CHEM Watanabe et al. (2011) 128× 64 9
NorESM1-M Bentsen et al. (2013) 144× 96 1

Table 2. Definitions of regions and numbers of observed TC.

Region Latitudes Longitudes Annual mean numbers and
percentages (1980–2008)

North Atlantic (NA) 6–18◦ N 20–60◦W 12 (15 %)
Eastern North Pacific (ENP) 5–16◦ N 90–170◦W 15 (19 %)
Western North Pacific (WNP) 5–20◦ N 110–150◦ E 25 (32 %)
North Indian (NI) 5–20◦ N 50–110◦ E 4 (5 %)
South Indian (SI) 5–20◦ S 50–100◦ E 23 (29 %)
South Pacific (SP) 5–20◦ S 160◦ E–130◦W

ther 20 years to 2089 with only GHG forcing as specified by
RCP4.5.

We assess the large-scale environmental conditions for TC
generation primarily in reference to the widely used genesis
potential and ventilation index, and we use the results for the
VI for comparison. While other indices also exist as men-
tioned above, the data fields required to calculate them are
presently not all available. The signal-to-noise ratio of the
G4 experiment is not as large as that of G1 (Yu et al., 2015)
where solar dimming offsets quadrupled CO2 concentrations.
It is, however, more interesting for TC studies because the
sulfate aerosol injected into the stratosphere causes radiative
heating (Pitari et al., 2014) and other indirect effects on the
upper troposphere (Visioni et al., 2018) that will potentially
affect the deep tropospheric convention systems that charac-
terize intense tropical storms.

The GPI has been widely employed to represent TC ac-
tivity (e.g., Song et al., 2015), and several different formula-
tions have been described (e.g., Emanuel, 2004, 2010). Here,
we chose to use perhaps the most commonly used method
(Emanuel, 2004) to calculate the GPI as follows:

GPI=
∣∣∣105η

∣∣∣3/2
(
H

50

)3(Vpot

70

)3

(1+ 0.1Vshear)
−2, (1)

where η is the absolute vorticity in s−1, H is the relative hu-
midity at 700 hPa in percent, Vpot is the potential intensity
in ms−1, and Vshear is the magnitude of the wind shear from
850 to 200 hPa in ms−1. Potential intensity (Emanuel, 2000)
is defined as

V 2
pot = Cp(TS− TO)

TS

TO

CK

CD
(lnθ∗e − lnθe), (2)

where TS is the ocean surface temperature; TO is the mean
outflow temperature, which is taken near the tropopause at
the 100 hPa level and spatially averaged (Wing et al., 2015);
Cp is the heat capacity of dry air at constant pressure; CK is
the exchange coefficient for enthalpy; and CD is the drag co-
efficient. θ∗e is the saturation equivalent potential temperature
at the ocean surface and θe is the boundary layer equivalent
potential temperature.

We assess the large-scale environmental conditions for TC
generation primarily using the GPI but make use of the VI
for comparison purposes (Tang and Camargo, 2014), defined
as

VI=
χmVshear

Vpot
, (3)

where χm is the (nondimensional) entropy deficit, defined as

χm =
s∗m− sm

s∗SST− sb
, (4)

where s∗m is the saturation entropy at 600 hPa in the inner core
of the TC; sm is the environmental entropy at 600 hPa; s∗SST is
the saturation entropy at the sea surface temperature; and sb
is the entropy of the boundary layer, which we chose as the
925 hPa layer. The numerator of Eq. (4) is the difference in
entropy between the TC and the environment at mid-levels,
while the denominator is the air–sea disequilibrium; both are
calculated following Emanuel (1994). In contrast with GPI
where increases correspond to heightened TCs, increases in
VI mean fewer TCs are likely.
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Table 3. Differences (G4−RCP4.5) in TC basins and season during 2020–2069 year calculated point by point. Northern Hemisphere
numbers are above and Southern Hemisphere below. GPI and VI are expressed as percentages ((G4−RCP4.5) /RCP4.5). Bold fonts are
significant at 95 % level according to the Wilcoxon signed-rank test.

Models Ts To Ts–To GPI Vpot H Vshear η VI χm

(◦C) (◦C) (◦C) (%) (ms−1) (%) (ms−1) (× 10−8 s−1) (%) (× 10−3)

BNU-ESM −0.50 0.12 −0.62 −3.8 −0.45 −0.071 0.014 −0.63 2.2 16
−0.42 0.11 −0.53 0.37 0.070 0.20 −0.27 −1.0 −1.5 15

MIROC-ESM −0.34 −0.58 0.24 −6.7 −0.94 −0.36 0.13 1.3 2.5 −3.7
−0.30 −0.56 0.26 −0.86 −0.50 −0.19 0.13 −2.3 2.3 6.8

MIROC-ESM-CHEM −0.25 −0.45 0.21 −4.8 6.9 4.8 1.8 −0.054 1.9 −7.9
−0.21 −0.43 0.22 −11 6.5 3.6 2.2 −0.027 1.3 3.6

NorESM1-M −0.23 −0.087 −0.15 4.8 −0.52 −0.51 0.029 −3.4 −2.0 −4.8
−0.21 −0.071 −0.14 −0.73 −0.62 −0.10 −0.12 −0.83 2.5 3.3

HadGEM2-ES −0.65 0.16 −0.80 −3.1 −1.0 0.17 0.041 1.9 3.8 35
−0.61 0.15 −0.76 0.39 −0.71 −0.088 −0.079 1.0 1.1 30

Ensemble −0.40 −0.14 −0.26 −2.7 0.80 0.80 0.40 −0.2 1.9 7.0
−0.35 −0.13 −0.23 −2.5 0.95 0.68 0.37 −0.7 1.0 11.8

Table 4. Difference percentage in GPI and VI calculated as (G4−RCP4.5) /RCP4.5 over the period 2020–2069 during TC season and
basins. GPI are written above VI in each cell. Bold means the difference is significant at the 5 % level according to the Wilcoxon signed-rank
test.

Models WNP ENP NA NI SI SP All

BNU-ESM 2.8 −4.0 −3.7 −8.7 0.9 2.1 −3.3
3.0 5.6 3.0 1.9 −0.7 −1.7 0.7

MIROC−ESM −4.2 −5.6 −8.4 −4.6 2.2 8.5 −6.1
8.1 2.4 1.9 1.9 2.2 0.1 2.3

MIROC−ESM−CHEM −4.1 −7.7 −10.2 −12.2 −14.0 −3.0 −8.6
−1.7 −0.9 3.9 8.0 1.2 0.3 2.0

NorESM1−M 0.4 37.0 9.1 11.2 −0.3 3.1 0.9
−1.7 −8.1 −1.3 6.0 4.7 1.3 −0.8

HadGEM2−ES 3.2 −6.8 −5.2 −4.2 −0.7 2.1 −2.3
4.0 6.0 0.9 7.1 2.5 0.1 3.0

Ensemble −0.4 3.3 −3.7 −3.7 −2.4 2.6 −3.9
2.3 1.0 1.7 5.0 2.0 0.5 1.5

2.2 Data

Although to date eight ESMs have performed the RCP4.5
and G4 simulations, a subset of six models have access to all
required model data fields, but one of those, CanESM2, was
not used because all three of the realizations of the model
failed to pass statistical tests, leaving five models in this
study (Table 1). The particular tests we performed to exclude
some data and models from the analysis are discussed in de-
tail in Sect. 3.2. The rejected simulations all produced sta-
tistically weak and insignificant regression fits to linearized
forms of GPI and VI with all combinations of the thermo-
dynamic and dynamic terms used to compute them. Hence,
it is unlikely that VI or GPI can meaningfully represent TC
activity in these cases. In comparison, the ESM simulations
we do use have regression models that are significant at least

at the 99.9 % level and, in many cases, achieve far higher
significance.

We use monthly sea surface temperature (SST), relative
humidity, vertical wind shear, sea level pressure, specific hu-
midity, and air temperature on different vertical levels. All
the model outputs at different spatial resolutions were inter-
polated to a common grid (128× 64) using the bilinear in-
terpolation method. All the models were weighted equally
in the ensemble mean, so the models with more than a sin-
gle ensemble member were first averaged before taking the
overall model ensemble mean.

2.3 TC basins

Factors influencing TC change are diverse across different
ocean basins. Some studies (Emanuel, 2010; Knutson et al.,
2010) find robust or significant declines in the frequency
of events in the Southern Hemisphere, while the Northern
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Hemisphere is relatively constant in the observational record.
We therefore examine relationships across all the six TC
basins listed in Table 2. The observed TC annual mean num-
bers for the period 1980–2008 for each basin (Emanuel,
2010) are also listed in Table 2. The North Atlantic makes
up a relatively small fraction of the total, with the Pacific
dominant in the global locations of TCs.

3 Results

The climate response to G4 forcing has been discussed by Yu
et al. (2015). The general pattern of temperature change un-
der GHG forcing includes accentuated Arctic warming and
least warming in the tropics. The G4 experiment largely re-
verses these changes, but leaves some residual warming in
the polar regions and under-cools the tropics. SAI also re-
duces temperatures over land more than over oceans relative
to GHG and hence reduces the temperature difference be-
tween land and oceans. Between 2020 and 2069, SSTs in the
six basins during their TC seasons are 0.4 ◦C (with a model
range of 0.2–0.6 ◦C) warmer in RCP4.5 than under G4.

3.1 The temporal and spatial distribution of GPI and
VI

We list the basin GPI and VI by model and month in Ta-
ble S1 in the Supplement. The individual monthly GPI val-
ues as a fraction of the annual totals are shown in Table S2
in the Supplement. We select the northern and southern TC
season on the basis of the each model’s monthly fractions of
GPI. We use a threshold of 10 % for above uniformly dis-
tributed GPI for RCP4.5- and G4-averaged GPI and find that
for the northern basins June through November are above the
threshold, while for the southern basins it is January through
June. Thus, there are 6 months in each hemisphere and they
account for 68 % under both RCP4.5 and G4 of the yearly
total GPI (Table S3 in the Supplement). We also notice from
Table S2 in the Supplement that under G4 the TC season oc-
curs about 1 month earlier than under RCP4.5 in both hemi-
spheres, although our choice of threshold for the TC season
means that we can use the same 6 months for each exper-
iment. The same analysis for VI shows similar results, al-
though the season is less well defined than for GPI; for in-
stance, VI in August is higher than December in the northern
basins as is January in the southern ones, but the general re-
sults do not require separate definitions of season from those
for GPI. The Northern Hemisphere peak TC season is June
through November and January through June in the Southern
Hemisphere; various authors have used longer periods in ana-
lyzing model data – e.g., Emanuel (2013) used all 12 months,
while Jones et al., (2017) used June–November for the North
Atlantic hurricane season. Li et al. (2013) note that the north-
ern Indian TC basin has a secondary peak in TC around May.
This peak is reproduced by the BNU-ESM, HadGEM2-ES,

MIROC–ESM, and NorESM1-M models, where it is about
half the size of the peak months later in the year (Table S1 in
the Supplement). This does not affect the statistical choice of
TC months (Table S2 in the Supplement), although it causes
the fraction of GPI accounted for in our TC season to be the
lowest for the northern Indian basin (Table S3 in the Supple-
ment).

The models we use have considerable range in their ab-
solute values of GPI, which is also a generally observed
feature of climate models (Emanuel, 2013). The GPI has a
rising trend under RCP4.5 and G4 (Fig. 1). Table 3 shows
that there are significantly (p < 0.05 when tested using the
Wilcoxon signed-rank test) lower values of GPI under G4
than RCP4.5 for Northern Hemisphere basins in all models
except for NorESM1-M, but only MIROC-ESM-CHEM has
significantly lower GPI for the Southern Hemisphere basins.
The time series indicate that tropical storms will become
more frequent with time and that G4 significantly reduces
the numbers.

Figure 1 also shows the evolution of VI in the TC sea-
sons during 2020 to 2069 among the five models. Note that
following the definition of VI in Tang and Camargo (2014)
we use the median value, not its mean. The model ensemble
shows decreasing trends over time, indicating a tendency for
more TCs, which is consistent with trends in GPI. Table 3
shows that the G4–RCP4.5 differences in Northern Hemi-
sphere basins are significantly positive except for NorESM1-
M; Southern Hemisphere basins show less consistent results,
which is also consistent with GPI, which indicates that G4
reduces TC occurrence, and is more effective in the Northern
Hemisphere.

Figure 2 shows the correlations between the G4–RCP4.5
model differences for annual mean GPI and VI. Most models,
and the ensemble, show significant anti-correlation across all
TC basins, except the South Pacific where more than half
the models have significant correlation. The ensemble mean
correlation is only around −0.3, indicating that GPI and VI
are addressing sufficiently different aspects of TC to war-
rant independent analysis. We next examine the spatial pat-
tern of GPI and VI calculated over the 50-year period: 2020–
2069 in the G4 and RCP4.5 experiments. The relative differ-
ences as percentages ((GPIG4−GPIRCP4.5) /GPIRCP4.5) dur-
ing the 6 months of each hemisphere’s TC season are shown
in Fig. 3. These geographic patterns can be compared with
the values in Tables 3 and 4.

Figure 3a shows that the GPI anomaly varies by region
and by model. For instance, all models except NorESM1-
M show negative differences in the North Indian basin. All
models except MIROC-ESM-CHEM show the South Pacific
to be reddish in color, indicating increased GPI under G4
compared with RCP4.5, which is consistent with Table S1
in the Supplement. Similarly, the northeast Pacific basin has
positive differences in MIROC-ESM-CHEM and NorESM1-
M. Negative differences indicate fewer tropical storms with
SAI than under GHG forcing alone. Despite model differ-
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Figure 1. Five yearly moving annual averages across the six TC basins and TC season of (a) normalized GPI shifted by the each model’s
mean over 2020–2069; solid lines denote forcing under RCP4.5 and dotted lines values under G4. The ensemble was calculated as the
mean of normalized models then offset by the mean across-model GPI. (b) VI with solid lines denoting model ensemble means and shading
indicating the range across the five models.

Figure 2. The correlation coefficients (R2) between annual GPI and
VI anomalies (G4−RCP4.5) during TC season and six ocean TC
basins. The MIROC-ESM-CHEM model has four ensemble mem-
bers, the HadGEM2-ES model has three ensemble members, and
other models have one member. Each model is weighted equally
and normalized for the ensemble regardless of the number of sepa-
rate realizations. The dashed line represents R2

= 0.

ences, the ensemble result shows robustly that the GPI dif-
ference is generally negative in the Northern Hemisphere but
insignificantly positive in the South Pacific and northeastern
Pacific basins (Table 4). At present the vast majority of trop-
ical storms occur in the Northern Hemisphere (Table 2), so
the overall global numbers would likely decrease.

The spatial distribution of VI also has large varia-
tion (Fig. 3b). All models except NorESM1-M have in-
creases in the North Atlantic. In the northeast Pacific, all
models except MIROC-ESM-CHEM and NorESM1-M have
increases. Increased VI differences (G4−RCP4.5) suggests
fewer cyclones in agreement with the results of GPI. In the
North Indian Ocean, all models show increased VI difference
in the Arabian Sea and all except BNU-ESM and MIROC-
ESM show increased VI difference in the Bay of Bengal.
Only MIROC-ESM shows an increase in the South Pacific.
The ensemble results are thus largely simply opposite in sign
to GPI.

3.2 Accounting for changes in GPI and VI

We use two different methods to examine how the contribut-
ing climate variables to GPI and VI account for differences
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Figure 3. Spatial distribution at each grid point during the appropriate TC season between 2020 and 2069 of the anomaly as a percentage
((GPIG4−GPIRCP4.5) /GPIRCP4.5) for (a) GPI and (b) VI. Yellow rectangles delimit the six TC ocean basins. The Northern Hemisphere
TC season is defined as June through November, and the Southern Hemisphere season is defined to be January through June.
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Figure 4. The mean month contribution of each variable to the difference (G4−RCP4.5) for the years 2020–2069 in TC basins and TC
season in GPI and VI.

between models and across the TC basins. The objectives are
to (1) learn which are the key variables in the model simula-
tions of cyclones, (2) find a subset that can be tested against
the understanding of how SAI affects the atmosphere heat
and water balance, and (3) examine if variations in TC basin
extent or cyclone seasons may be expected under SAI.

3.2.1 Monthly differences in GPI and VI components
between G4 and RCP4.5

To examine the effects of SAI on cyclone seasonality, we
look at the monthly contributions of the factors that make
up GPI and VI. Li et al. (2013) expressed Eq. (1) for GPI
as the product of four terms, respectively, representing an
atmospheric absolute vorticity term (AV), a vertical wind
shear term (WS), a relative humidity term (RH), and an at-

mospheric potential intensity term (PI).

GPI=
PI×RH×AV

WS
, (5)

where PI=
(

Vpot
70

)3
, RH=

(
H
50

)3
, WS= (1+ 0.1Vshear)

2,

AV=
∣∣105η

∣∣ 3
2 .

The AV and WS are considered dynamic components,
while the RH and PI are thermodynamic ones. We follow
Li et.al. (2013) in identifying the individual monthly contri-
butions from the four large-scale environmental processes.
Taking the natural logarithm of both sides of Eq. (5), differ-
entiating, and substituting back into Eq. (5) allows GPI to be
expressed as annual means and monthly anomalies:

δGPI= α1× δPI+α2× δRH+α3× δWS+α4× δAV,
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Figure 5. The fractional variance contribution of components of
GPI during the TC season and within the six TC basins during
2020–2069.

where α1 =
RH×AV

WS

α2 =
PI×AV

WS

α3 =−
PI×RH×AV

WS
2

α4 =
PI×RH

WS
and δGPI= GPI−GPI.

(6)

In Eq. (6), a bar denotes an annual mean value, and δ rep-
resents the difference between an individual month and the
annual mean, assuming constant coefficients for α1, α2, α3,
and α4.

We are interested in detecting changes between GHG forc-
ing alone and under SAI, so we examine the G4–RCP4.5 dif-
ferences for each model grouping the TC basins by hemi-
sphere in Fig. 4 and use δGPIG4− δGPIrcp45 to calculate the
difference. Figure 4 clearly shows that RH and WS make the
largest contribution to GPI differences in both hemispheres in
all models. In the Northern Hemisphere, RH and WS terms
show negative contributions in the cyclone season. Hence,
these are the factors that primarily enable SAI to reduce GPI
relative to GHG. In the Southern Hemisphere there are no
clear difference between GPI under G4 or RCP4.5. Absolute
vorticity, AV, makes almost no contribution to the GPI differ-
ences under SAI in all models.

We also do the same mathematical transform for VI. We
obtain annual means and monthly anomalies:

δVI= α5δ
(
Vpot

)
+α6δ (χm)+α7δ (Vshear) ,

where α5 =−Vshear
χm

V 2
pot

α6 =
Vshear

Vpot
α7 =

χm

Vpot

δVI= VI−VI. (7)

Analogously as for GPI, we show also results for VI in Fig. 4.
Vshear makes the largest contribution to ventilation index dif-
ferences between SAI and GHG forcing in both hemispheres.

3.2.2 Contributions to GPI and VI across TC basins

The GPI and VI dependencies may be expressed as a regres-
sion equation of X on Y where Y is the GPI or VI anomalies
under G4 relative to RCP4.5, and the fractional contribution
to variance, S, of each variable i in X to Y can be written,
following Moore et al. (2006) as

Si =MiCiσXi/σY, (8)

where the σX denotes the standard deviations of the predic-
tor terms, σY denotes the standard deviation of the anoma-
lies, C denotes the correlation coefficients of the X with Y ,
and M denotes the regression coefficients of the X with Y .
The regression can be expressed as a multiple linear regres-
sion in log space, and the coefficients can be simply trans-
formed after fitting. Fitting in log space also allows for the
generally heteroscedastic, fractional nature of the errors in
the variables.

The relative contributions to GPI anomalies from its four
variable terms following the regression Eq. (8) are shown in
Fig. 5. RH is the dominant factor for GPI differences in all
models and all TC basins. There is little variance explained
for the MIROC-ESM-CHEM and NorESM1-M models com-
pared with the other three models. Figure 5 also shows that
AV makes very little contribution to variance explained in
the G4–RCP4.5 differences. In all models, WS makes about
the same contribution as PI.

Figure S1 in the Supplement shows the same analysis as
Fig. 5 but for all nine realizations of MIROC-ESM-CHEM.
The first four realizations behave similarly as the BNU-ESM,
HadGEM2-ES, and MIROC-ESM models in Fig. 5, with
variance accounting for around 80 % of total and the RH
terms being about twice as important as WS and PI terms.
The remaining five realizations have far lower variance ex-
plained, similar to NorESM1-M, with RH still the dominant
term.

Figure S2 in the Supplement shows the three variables of
the ventilation index in a similar way to Fig. 5. Vshear makes
the largest contribution to VI for all TC basins and all mod-
els, especially for the BNU-ESM and MIROC-ESM models.
Figure S3 shows the VI components for all nine realiza-
tions of MIROC-ESM-CHEM, which appears similarly di-
vided into two groups as they were for GPI in Fig. S1 in the
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Figure 6. The F statistic of the 15 different combinations of regression variables for GPI differences between G4 and RCP4.5. The x axis on
each panel represents the combination of components used as predictors in each regression equation: 1 – PI, RH, WS, and AV; 2 – PI, RH,
and WS; 3 – PI, RH, and AV; 4 – AV, RH, and WS; 5 – PI, AV, and WS; 6 – PI and RH; 7 – PI and WS; 8 – PI and AV; 9 – RH and WS; 10 –
RH and AV; 11 – AV and WS; 12 – PI; 13 – RH; 14 – WS; 15 – AV.

Figure 7. The correlations (R2) between differences (G4−RCP4.5) during TC season and across the six TC basins for the years 2020–2069
for (a) Vpot anomalies as a function static stability Ts− To. Panels (b)–(e) show R2 coefficients for anomalies with sea surface temperature
differences (Ts) and (b) Vpot, (c) GPI, (d) relative humidity, and (e) vertical wind shear. Each model is weighted equally in the ensembles
regardless of number of observations.

Supplement. Indeed from Fig. S2 in the Supplement it ap-
pears that VI may be simply replaced by Vshear, for the mod-
els where any variance is explained, but viewing the month
by month contributions in Fig. 4 shows that other compo-
nents are relatively important for some models during some
months of the TC season. χm has no consistent contribution
for the models and basins.

The statistical power of a regression equation can be ex-
pressed as the F statistic. Given that the different variables
in Figs. 5 and S2 in the Supplement show notable differences

in their contribution to the GPI and VI, we can use the F
statistic to examine if a reduced model with fewer variables
is a better statistical model for the differences under G4 and
RCP4.5. GPI has four variables, so there are 15 combina-
tion to examine, as shown in Fig. 6. Only for BNU-ESM
and MIROC-ESM do the full set of variables have the high-
est F statistic. However, HadGEM2-ES has the best model
with all factors except the atmospheric vorticity term. This
is consistent with results shown in Figs. 4 and 5, and with
the analysis by Emanuel (2013). The value of the F statis-
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tic represents the degree to which the regression model ac-
counts for the data variability compared with the model hav-
ing no independent variables. The three models that the full,
or nearly full, set of variables performs best have F statis-
tics over 1000 (p < 0.001), while NorESM1-M has an F

value of around 25–60. This is still significant at the 99.9 %
level. When we analyzed realizations 5–9 of MIROC-ESM-
CHEM, we found much lower F statistics than for realiza-
tions 1–4 (Fig. S4 in the Supplement), with values similar
to NorESM1-M of 50–100. In general, the models show RH
has the largest F statistic for single parameter models, which
is consistent with Figs. 4 and 5. Figure S4 in the Supplement
also shows that all three realizations of CanESM2, which we
do not use for TC analysis in this paper, have even lower
F values, particularly r2 and r3, and around two of the F
values are not significant.

VI has three variables, so there are seven combinations
possible. As with GPI in Fig. 6, there are remarkable dif-
ferences in the values of F amongst the models. BNU-
ESM, MIROC-ESM, HadGEM2-ES and realizations 1–4 of
MIROC-ESM-CHEM achieve values over 1000 (p < 0.001),
while NorESM1-M and realizations 5–9 of MIROC-ESM-
CHEM have the best F statistics of 50–100 (p < 0.001). Fig-
ure S5 shows Vshear has the largest contribution to VI for most
of the models, and MIROC-ESM is the only model that has
the largest F statistic for the full set of model variables, as it
also had for GPI.

3.3 Primary factors that control GPI and VI changes

The analysis above shows that the common factors across
models and basins that affect TCs are potential in-
tensity (Vpot), relative humidity (H ), and vertical wind
shear (Vshear). We now discuss these factors separately, be-
ginning with Vpot as this is a function of several different
ESM variables.

According to Eq. (2), Vpot is dependent on the static sta-
bility of the troposphere, which is related to both sea sur-
face (TS) and upper-tropospheric temperatures (TO) where
rising air flows out of the storm. Wing et al. (2015) use
the trends in reanalysis and radiosonde products at 70 and
100 hPa in TC seasons to represent change in outflow tem-
perature across various TC basins and assign its contribu-
tion to trends in Vpot. For convenience, we choose the trop-
ical tropopause (100 hPa) temperature from the ESM output
to represent TO. Figure S6 shows the correlations across TC
basins and seasons for the various fields in RCP4.5 and G4,
while Fig. 7 shows the correlations in the differences be-
tween G4 and RCP4.5 so that the difference caused by the
SAI can be clearly evaluated. Figure 7a shows the depen-
dence of Vpot differences (G4−RCP4.5) on (TS–TO) differ-
ences for the models. All models have significant correlation
for all TC basins except BNU-ESM in the SI and SP basins
and HadGEM2-ES in the SP basin. However, there is an even
stronger dependence for Vpot on TS anomalies (Figs. 7b, S6

in the Supplement). The ensemble mean Vpot is better corre-
lated with TS rather than (TS–TO) due to better correlations
of all models in all basins except HadGEM2-ES.

All models show significant correlation between GPI and
TS anomalies shown as Fig. 7c. Some models have insignif-
icant correlations in particular basins; for example, BNU-
ESM is slightly anti-correlated in NA, as is HadGEM2-ES in
WNP. GPI is not significantly correlated with TS for half the
ESM in the NI and SP basins. Figure S6 shows that there are
fewer significant correlations under G4 than under RCP4.5.

Figures S7 and S8 in the Supplement show the seasonal
cycle of TS and TO for all the models. The annual cycle of
TS is very similar, as expected, for all the models, and with
good agreement on the differences in seasonal cycle between
the Northern Hemisphere and Southern Hemisphere as ob-
served (Fig. S9 in the Supplement). However, for TO the
models show differences in the shapes and phases of the cy-
cles in both hemispheres; for example, only the NorESM1-
M model shows roughly antiphase seasonality between the
hemispheres. Figure S9 shows the ERA-Interim reanalysis
TO data, which have similar seasonality in both hemispheres,
with peak temperature anomalies in August (∼ 1.5 ◦C) and a
sharp decline to a long minimum by November or December
of similar magnitude. Figs S7 shows that the models gen-
erally follow similar patterns under both G4 and RCP4.5
for TS, but Fig. S8 in the Supplement shows that there is
much larger variability between the models’ representations
of TO under G4 and RCP4.5. HadGEM2-ES is the model
with the largest amplitude of seasonal cycle, which is some-
what larger than in ERA-Interim; other models have smaller
amplitudes, with many around half that observed at present.
This degree of difference in TO simulation likely explains
some of the inter-model differences in GPI.

We plot H differences between G4 and RCP4.5 as a func-
tion of sea surface temperature differences in Fig. 7d. Rel-
ative humidity rises with warming temperatures under both
G4 and RCP4.5 (Fig. S6 in the Supplement), as expected. But
there are obvious differences across the ocean basins with
the weakest response in ENP, NA, and NI and the strongest
correlations in the Southern Hemisphere basins. The G4–
RCP4.5 differences follow a similar spatial pattern, with
again largest correlations in the Southern Hemisphere basins.

Figure 7e shows how RCP4.5–G4 differences in Vshear
and TS are generally anti-correlated. The across-model
spread for correlations of Vshear and TS under both G4 and
RCP4.5 (Fig. S6 in the Supplement) is similar to the other
key variables. Anti-correlation with TS is weakest in the
SP and NA basins, but still significant. In terms of the dif-
ferences in Fig. 7e, all models show clear significant anti-
correlations, with the NI and NA basins having the weak-
est correlations. Vecchi and Soden (2007) found the North
Atlantic and eastern North Pacific wind shear increases in
model projections under global warming. If the models as-
sessed here capture the effect under G4 and RCP45, we
would expect positive correlations between Vshear and TS
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over these two basins for G4 and RCP4.5 in Fig. S6 in the
Supplement.

There are similar significant relationships between H and
Vshear under G4 and RCP4.5 (Fig. S6 in the Supplement) and
also with their differences (Fig. 7f). This relationship is anti-
correlation in all basins for most models, except in the North
Atlantic. The strength of the relationship is similar to those
with TS and demonstrates that the thermodynamic variables
TS and H can be useful proxies for the dynamic Vshear vari-
able.

4 Discussion and conclusion

Storms simulated by ESM may be counted using methods
such as the TRACK algorithm (Hodges, 1995; Jones et al.,
2017) that allow for feedbacks with the climate system. Sta-
tistical methods (Moore et al., 2015) may also implicitly
include feedbacks between regional storm and background
global climate conditions, but dynamical downscaling meth-
ods (Emanuel, 2013) do not include them. The GPI and VI
proxies we utilize here are useful tools for relating storm ac-
tivity to meteorological conditions but do not account for
changes to TC tracks or intensity. Since the proxies re-
quire coarse temporal-resolution data to calculate (monthly
means), compared with daily or 6-hourly data required for
TRACK or the CHIPS tools, and they convey information
from more than simply surface temperature fields, they may
give reasonable insights into the complex changes to TC un-
der SAI schemes.

We evaluated the hurricane index over six TC ocean basins
in five CMIP5 and GeoMIP models. We used G4 and RCP4.5
experiments to assess and compare the genesis potential and
ventilation indices that relate tropical storm activity to am-
bient meteorology. Based on the climatology of the years
2020–2069, GPI and VI both show small rising trends for TC
genesis in all five models under both G4 and RCP4.5 scenar-
ios. The TC season as measured by elevated monthly GPI
values is almost a month earlier in G4 than RCP4.5, a result
that is consistent across basins and models. There are fewer
TCs expected globally under SAI G4 than under the purely
GHG forcing of RCP4.5 as assessed by differences signif-
icant at the 95 % level in both GPI and VI. All five ESM
models show significantly reduced GPI under G4 in North-
ern Hemisphere basins (Tables 3 and 4), but results are in-
conclusive for southern basins. Spatial patterns of TCs show
both GPI and VI predicting fewer TC in the North Atlantic
and North Indian Ocean under G4 compared with RCP4.5
and more TC in the South Pacific for most models in the en-
semble. Thus, the G4 scenario of SAI based on equatorial
lower stratosphere injection of SO2 could lead to fewer TCs
in the North Atlantic and Indian Ocean but more TCs in the
South Pacific region than under GHG-induced global warm-
ing. There is, however, large inter-model variability across
the six ocean basins.

Detailed statistical analysis of the two TC indices indicates
that NorESM1-M and five out of nine MIROC-ESM-CHEM
ensemble members have lower dependencies on explanatory
variables for GPI or VI. This suggests that using GPI and VI
to elucidate TC activity in those particular ESM simulations
is much less reliable. It is not obvious from simple correla-
tions between GPI and VI, or between components such as
GPI or H with TS, which ESM runs have relatively poor re-
lationships for GPI.

The thermodynamic variables potential intensity and rela-
tive humidity are the dominant ones affecting genesis poten-
tial, while the dynamic variables absolute vorticity and en-
tropy deficit are much less important. Vertical wind shear is a
dynamic variable and dominates the ventilation index. By ex-
amining the contributions of variables to differences in GPI
and VI under SAI and GHG forced climates, we show that
relative humidity is the dominant factor for GPI differences
in all models and all TC basins. Relative humidity is also use-
fully correlated with wind shear, though the North Atlantic
displays a qualitatively different relationship than the other
basins. The analysis suggests that a simplified representa-
tion of TCs depending on fewer variables may be possible
but does require analysis of particular model behavior before
choosing those variables. Although wind shear is important
and a dynamic variable, it is encouraging that the thermody-
namic state of the system is of prime importance for the GPI.
This suggests that statistical methods of predicting changes
in TC behavior are plausible, although individual basin be-
havior depends on particular local forcing factors in addition
to the accessible thermodynamic variables used in the GPI
and VI.

Potential intensity is related to the difference between sea
surface temperature and outflow temperature (evaluated at
100 hPa). In fact we find that changes in SSTs alone pro-
vide a better correlation with both potential intensity and GPI
changes. This result is similar to that previous observational
(Grinsted et al., 2013) and modeling (Wu and Lau, 1992)
studies that suggest it is the geographical distribution of SST
anomalies that are crucial for the development of TC. Recent
analysis of GeoMIP results by Davis et al. (2016), on the ex-
tent of the tropical belt under G1 and abrupt 4×CO2 experi-
ments, demonstrates that tropical upper-tropospheric temper-
ature changes are well correlated with the change in global
mean surface temperature. This is because changes in the
static stability characterized by upper-troposphere and sur-
face temperature differences scale with the moist adiabatic
lapse rate and surface temperatures.

In contrast with the solar dimming G1 experiments ana-
lyzed by Davis et al. (2016), here we analyze G4, which is an
aerosol injection protocol. The aerosol is prescribed (Kravitz
et al., 2011) as injected into the equatorial stratosphere at
16–25 km altitude, where most of the direct radiative heat-
ing takes place (Pitari et al., 2014). However, due to the
large size of the geoengineering aerosol particles (effec-
tive radius of the order of 0.6 µm or more), a significant
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fraction of the stratospheric particles settle below the trop-
ical tropopause (Niemeier et al., 2011; English et al., 2012;
Cirisan et al, 2013), thus producing some diabatic heating a
few kilometers immediately below the tropical tropopause.
This is superimposed on the convectively driven upper-
tropospheric cooling caused by surface cooling due to the
SAI and reduced convection and weakened hydrological cy-
cle (Bala et al., 2008). This may be expected to be the domi-
nant process controlling the SAI-induced changes in atmo-
spheric static stability. Furthermore, recent work (Visioni
et al., 2018) explores the surface cooling impact on upper-
tropospheric cirrus cloud formation, as well as the concomi-
tant impact on static stability. Surface cooling and lower
stratospheric warming, together, tend to stabilize the atmo-
sphere, thus decreasing turbulence and updraft velocities.
The net effect is an induced cirrus thinning, which indirectly
increases net global cooling due to the SAI.

Pitari et al. (2014) note a warming of the 100 hPa layer
under G4 relative to RCP4.5 for the MIROC-ESM-CHEM
model in the 2040s for the tropics. Most models (Table 3) in
the TC basins and seasons show a cooling (ensemble mean
of 0.14. ◦C), with only HadGEM2-ES and BNU-ESM hav-
ing a warming at 100 hPa. Given the complexities of changes
in the upper troposphere due to the process outlined in the
previous paragraph, the range in static stabilities represented
by the model range in TS–TO differences relative to RCP4.5
is probably not surprising. Therefore, although we might ex-
pect to see an improvement in correlation of potential inten-
sity and GPI by using 100 hPa temperatures in addition to
SSTs, the ability of the models to capture all the processes
varies. The result is that the models used here have a better
relationship with sea surface temperatures than static stabil-
ity, and this suggests that the aerosol effects are not being
simulated well enough to allow their impacts on TC genesis
to be fully estimated.

The change in relative humidity on the tropical ocean
basins in the future is a key aspect of TC genesis according to
our analysis. Models tend to agree on the sign of change in
relative humidity as temperatures rise, but there are consis-
tent differences in response strength across the ocean basins.
This indicates that, although relative humidity is important
for most models, changes in TC genesis processes between
basins affect their utility as a predictor variable. Here we used
the widely utilized formulation of GPI given by Emanuel and
Nolan (2004), which specified moisture in terms of relative
humidity. More recently Emanuel (2010) reformulated the
GPI in terms of “saturation deficit” that is a measure of the
moist entropy deficit of the middle troposphere, which be-
comes larger as the middle troposphere becomes drier. This
parameter has the same denominator as χm in Eq. (4), which
is used in the calculation of VI, Eq (3), while the numerator
varies only in the definition of the boundary layer. Our anal-
ysis of the dependence of the three terms that describe VI
shows χm is moderately important in some models (Fig. S5
in the Supplement), and we can see the F value of (Vpotχm)

or (Vshearχm) is larger than (VpotVshear) in all models. This is
consistent with the analysis of six ESM models of 21st cen-
tury trends in GPI by Emanuel (2013), who also notes that
vorticity does not contribute to trends.

The final variable, Vshear, shows large scatter across the
models, but is consistent anti-correlation with TS. However,
there are also good but different relations between H and
Vshear in every basin, suggesting that the state of this dynamic
variable can be explained to a significant degree by the ther-
modynamic state driving H and TS. This is consistent with
the analysis of Li et al. (2010) showing that prescribed sea
surface temperatures can account for some changes in TC
in the Pacific basins as surface temperature gradients drive
trade winds, which changes the wind shear. Overall our anal-
ysis of the driving parameters in GPI suggests that, despite
large model differences, the simple dependence of GPI on
surface temperatures is reasonably robust.

Smyth et al. (2017) report the seasonal migration of the In-
tertropical Convergence Zone (ITCZ) in G1, associated with
preferential cooling of the summer hemisphere, and annual
mean ITCZ shifts in some models that are correlated with
the warming of one hemisphere relative to the other. ITCZ
location is correlated with TC and season. The timing of the
TC season under G4 is about a month earlier in both hemi-
spheres than under RCP4.5. This might also be a function of
the reduced amplitude of ITCZ motion, though this effect has
not yet been verified as occurring under SAI as prescribed
by G4. It is plausible because reduced solar heating of the
ocean basins means that less sea water is heated and there
will be reduced lag of those surface waters with solar zenith
position. Our analysis of seasonality of TCs shows that there
appears to be a difference in behavior between the South-
ern Hemisphere and Northern Hemisphere, with the southern
one showing no consistent changes between models under
RCP4.5 and G4 scenarios. Davis et al. (2016) show that there
are differences in the evolution of the northern and southern
Hadley cells under GHG forcing, with the expansion of the
northern one scaling nonlinearly with temperature. Differ-
ences seem to be driven fundamentally by the equator–pole
temperature gradient and therefore may be expected given
the far greater fraction of land surface and larger polar am-
plification in the Northern Hemisphere.

Considering the coarse spatiotemporal resolution of most
ESM models, evaluating the GPI is likely to remain popular
and be a good diagnostic of TC variability under different cli-
mates. The results presented here suggest that SAI produces
reductions in TCs across most of the major storm basins, and
this is primarily due to reduced sea surface temperatures in
the genesis regions.
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